
Signature-Ion Triggered Mass Spectrometry Approach Enabled 
Discovery of N- and O-linked Glycosylated Neuropeptides in the 
Crustacean Nervous System

Qinjingwen Cao1, Qing Yu2, Yang Liu1, Zhengwei Chen1, Lingjun Li1,2,*

1Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, 
Wisconsin, 53706, United States

2School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, 
Wisconsin, 53705, United States

Abstract

Crustaceans are commonly used model organisms to study neuromodulation. Despite numerous 

reported crustacean neuropeptide families and their functions, there has been no report on 

neuropeptide glycosylation. This is in part due to a lack of sensitive method that enables 

deciphering this intricate low-abundance post-translational modification (PTM), even though 

glycosylation has been shown to play an important role in neuromodulation. Here, we describe the 

discovery of glycosylated neuropeptides with an enrichment-free approach taking advantage of 

signature oxonium ions produced in higher-energy collision dissociation (HCD) MS/MS spectra. 

The detection of the oxonium ions in the HCD scans suggests glycan attachment to peptides, 

allowing electron-transfer/higher-energy collision dissociation (EThcD) to be performed to 

selectively elucidate structural information of glycosylated neuropeptides that are buried in non-

glycosylated peptides. Overall, 4 N-linked and 14 O-linked glycosylated neuropeptides have been 

identified for the first time in the crustacean nervous system. In addition, 91 novel putative 

neuropeptides have been discovered based on the collected HCD scans. This hybrid approach, 

coupling shotgun method for neuropeptide discovery and targeted strategy for glycosylation 

characterization enables the first report on glycosylated neuropeptides in crustacean and the 

discovery of additional neuropeptides simultaneously. The elucidation of novel glycosylated 

neuropeptides sheds light on the crustacean peptidome and offers novel insights into future 

neuropeptide functional studies.
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Introduction

Crustacea represents a vast group of arthropod animals, including crabs, shrimps and 

lobsters. Their relatively simple and well-defined neural networks1 have made themselves 

attractive model organisms in the neuromodulation studies2–4. The crustacean nervous 

system where active intercellular interactions take place includes the central nervous system 

(brain), the stomatogastric nervous system, the pericardial organs (POs), the sinus glands 

(SGs) and the thoracic ganglia (TG). Neuropeptides are secreted signaling peptides from 

neurons that play critical roles in signal transmission5–7 and physiological regulations8–10. 

Over the decades, there have been increasing interests in crustacean neuropeptides because 

many of them are functional homologues with human neuropeptides11–13. Also, the well-

characterized anatomy enables isolation of certain neuronal tissues for circuit-specific 

studies triggered by stimuli14–15. The neuropeptides inside different organs can react in 

completely different ways under experimental conditions, as reported in previous 

studies16–18. Thus, the analysis of crustacean neuropeptides typically involves characterizing 

various tissue organs to promote thorough understanding toward crustacean nervous system.

Unlike small molecule neurotransmitters, neuropeptides are synthesized by ribosome, 

further modified in endoplasmic reticulum, transported to Golgi apparatus for necessary 

processing, then secreted in dense core vesicles and experience local diffusion between 

axons and dendrites for intercellular communication19–20. Before a mature neuropeptide can 

be generated, the inactive precursor prohormone undergoes extensive enzymatic cleavages 

and post-translational modifications (PTMs). The occurrence of PTMs could change 

neuropeptide structure and function21. To obtain a better understanding toward 

neuromodulation mechanism, the characterization of neuropeptides and PTMs are of great 

significance. The large sequence variance brought by amino acids (building blocks of 

peptides) and dynamic PTMs generated by diverse enzymes have imposed great challenges 

to neuropeptide discovery and identification. Mass spectrometry (MS) has become an 

effective tool to study biomolecules22–41, including neuropeptides and PTMs, because it 

enables production of structure-specific fragments that can be integrated to elucidate 

chemical composition and peptide sequence. Although there have been prosperous 
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advancements of MS analytical methods, the characterization of one important PTM, 

glycosylation, on neuropeptides is still underdeveloped, largely due to the heterogeneity of 

glycans and extremely low abundance of both neuropeptides and glycan modification.42–43 

To fully characterize glycosylated neuropeptides, peptide sequence, glycosylation site as 

well as glycan composition should be reported. In commonly-used MS fragmentation 

techniques, collision-induced dissociation (CID) mainly produces extensively fragmented 

glycan and peptide pieces masking glycan site information whereas electron-transfer 

dissociation (ETD) generates limited glycan side chain composition with reasonable peptide 

backbone fragmentation.44 To achieve better identification of glycosylated peptides, 

electron-transfer/higher-energy collision dissociation (EThcD) has been utilized to combine 

advantages of both CID and ETD and has become an emerging tool for glycopeptide and 

glycoprotein analysis.27, 45–50 In an EThcD scan, both b/y and c/z ion series are produced,51 

uncovering peptide sequence, glycan site position and glycan composition in a single 

spectrum.27, 45–48

Even with a proper MS fragmentation approach, detection of glycosylated neuropeptides in 

the crustacean nervous system is still compromised by biological system complexity. The 

nervous system consists of a variety of molecules, including neurotransmitters, metabolites, 

lipids, proteins and peptides among which neuropeptides often exist in low abundance and 

small percentage. The glycosylated neuropeptides, as a subset of neuropeptides, usually 

occurs with extremely low abundance that makes its confident characterization increasingly 

difficult. To unravel the sample complexity, a commonly applied strategy is glycosylation 

enrichment through reversible affinity assays, including hydrazide chemistry52, lectin 

affinity chromatography53, HILIC54–56, boronic acid57–59, and titanium dioxide60 

enrichment. While these methods demonstrated their effectiveness in glycosylation analysis, 

they do suffer from various disadvantages such as sample loss and unsatisfactory 

reproducibility61. Therefore, a selective and facile method that can differentiate glycosylated 

and non-glycosylated peptides in a complex sample mixture is highly desirable. Previous 

studies62–66 showcase an effective strategy utilizing predominant glycan low-mass 

fragments (e.g. m/z 204.08, 366.14) produced in HCD/CID as diagnostic ions to probe 

glycopeptides in the subsequent ETD/EThcD events that allows structural elucidation of 

glycopeptide and the successful application in glycopeptides, glycoproteins and 

glycoproteomics without prior knowledge of the glycan structure and peptide sequences.

Hence, here we demonstrate the use of an MS/MS fragment-dependent mass spectrometric 

workflow for simultaneous targeted glycosylated neuropeptide characterization without the 

need of sample enrichment and global neuropeptide discovery. In this data-dependent 

acquisition (DDA) method, top-intensity peaks are first fragmented with HCD. Due to the 

labile nature of glycan, a peptide bearing glycosylation is prone to produce high abundance 

oxonium ions in the HCD spectra. Once the signature oxonium ions are identified in the 

HCD scans, the very same precursor ion will be further selected for additional EThcD 

fragmentation. In this decision-tree driven MS/MS approach, the simultaneous screening of 

non-glycosylated neuropeptides and glycosylated neuropeptides can be achieved in a single 

LC-MS/MS experiment to maximize instrument throughput. The identified N-linked 

glycosylation and O-linked glycosylation together with novel non-glycosylated 

Cao et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2020 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuropeptides offers deeper coverage of the neuropeptidome and novel insights into the 

crustacean nervous system.

Experimental Procedures

Chemicals.

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise 

specified.

Animal Experiments.

All animal experiments were performed following institutional guidelines (University of 

Wisconsin-Madison IACUC). Rock crabs Cancer irroratus were obtained from Ocean 

Resources Inc. (Sedgwick, ME) for our pilot study. Subjected to rock crab availability, all 

other experiments were carried out using blue crabs Callinectes sapidus purchased at a local 

grocery store. The crabs were maintained in artificial saline tank at 12–13 °C. Upon 

experiments, crabs were sacrificed for tissue collection after 15 min anesthetization in ice. 4 

rock crabs and 20 blue crabs were dissected following previously described protocol67. The 

isolated neuronal tissues were immediately transferred into acidified methanol68 

(MeOH/H2O/HAc = 90/9/1, v/v/v) and stored in dry ice. All tissues were then kept in a −80 

°C freezer until further handling.

Sample Processing.

Tissues were probe sonicated in 1 mL acidified methanol and the extracts were centrifuged 

(4 °C, 18000g, 20min) to collect supernatant. The peptides were collected in the flow-

through after spinning (4 °C, 14000g, 4×15min) the supernatant using Microcon YM-30 

cutoff filters (pre-rinsed with 80 μL ACN/MeOH/H2O=20/30/50, v/v/v, 4 °C, 13000g, for 

two times). After drying in vacuum, the peptide extracts were reconstituted in 100 μL 50 

mM ammonium bicarbonate. The samples were further reduced by 5 mM DTT (room 

temperature, 1h) then alkylated by 15 mM IAA (room temperature, in the dark, 30 min). The 

alkylation reaction was stopped by 5 min DTT incubation at room temperature. An offline 

high pH RP HPLC was utilized to fractionate complex sample contents before online LC-

MS/MS analysis using a C18 column (Phenomenex Kinetex 5u EVO, 150 mm × 2.1 mm, 

100 Å) with a 90 min gradient. Mobile phase A is 10 mM NH4HCOO in H2O, pH = 10 and 

mobile phase B contains 10 mM NH4HCOO in ACN/H2O (90/10, v/v) with pH = 10. 

Crustacean tissue extracts were separated at column temperature 30 °C with a flow rate of 

0.2 mL/min. The gradient stayed at 1% B for 3 min then was linearly ramped to 35% B in 3–

50 min, then was ramped to 60% in 4 min and continued to 70% in another 4 min then 

ramped to 100% in 1 min and stayed at 100% B for 15 min, followed by a 15.5 min 

equilibrium at the end with 1% B. A fraction collector was utilized to collect sample every 2 

min during the time period of 6–62 min. The fractionated samples were pooled into 4~5 

final fractions which were then dried down under vacuum.

LC-MS/MS Analysis.

LC-MS/MS experiments were performed on an Orbitrap Fusion Lumos Tribrid mass 

spectrometer (Thermo Fisher Scientific) coupled with a Dionex Ultimate 3000 UPLC 
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system (Thermo Fisher Scientific). Mobile phase A is 0.1% formic acid in H2O with mobile 

phase B as 0.1% formic acid in ACN. Chromatography separation was achieved using a 75 

μm × 15 cm homemade column packed with C18 material (1.7 μm, 150 Å, BEH) from a 

Waters UPLC column (part no. 186004661). Separation gradient started from 3% B, linearly 

ramped to 30% B in 90 min, then ramped to 75% in another 20 min. The full MS spectra 

(m/z 400–1800) were acquired in the Orbitrap with 120K resolution in positive polarity 

mode with AGC target 2e5 and maximum injection time 100 ms. A Top Speed method was 

utilized to make sure full MS spectra were acquired every 3 s. Data-dependent HCD was 

used to fragment most abundant precursor ions at a resolution of 30K with 35% normalized 

collision energy, dynamic exclusion 20 s, AGC target 1e5 and maximum injection time 60 

ms. If oxonium ions at m/z 138.0545, m/z 204.0867, or m/z 366.1396 (± m/z 0.01) were 

within the top 30 most abundant peaks, an EThcD MS/MS fragmentation would be further 

applied to the precursor at a resolution of 60K in the Orbitrap. In EThcD scans, precursors 

with different charges underwent different ETD reaction times (z = 2, 50 ms; z = 3–4, 20 ms; 

z = 5, 10 ms; z = 6–15, use instrument charge-dependent ETD parameters) then subject to 

supplemental activation energy of 33%.

Data Processing.

The raw data files were first processed by PEAKS Studio 7.0 with following parameters: no 

enzymatic cleavage, parent mass error tolerance 10.0 ppm, fragment mass error tolerance 

0.02 Da, carbamidomethylation on cysteine as fixed modification, and variable 

modifications including methionine oxidation, C-terminal amidation, dehydration, pyro-Glu 

from E and Q, sulfation on Y, methylation, glycans on serine/threonine including 

HexNAc(1), HexNAc(1)Hex(1), HexNAc(1)Hex(1)NeuAc(1), HexNAc(1)Hex(1)NeuAc(2), 

HexNAc(2), HexNAc(2)Hex(1) and glycan on asparagine including HexNAcylation. The 

generated de novo sequences were then combined with the Li Lab crustacean neuropeptide 

database to produce a new peptide database. The raw data were analyzed by Proteome 

Discoverer 2.1 embedded with Byonic. EThcD spectra were searched against the new 

peptide database and mammalian glycan database using precursor mass tolerance 10.0 ppm 

and fragment mass tolerance 0.01 Da. Common dynamic modifications include C-terminal 

amidation, pyro-Glu from N terminal Q and methionine oxidation, with cysteine residue 

carbamidomethylation as static modification. The glycosylation sites were assigned based on 

N-glycosylation occurring on asparagine with a sequence pattern of N-X-S/T where X 

cannot be proline and O-glycosylation occurring on serine or threonine together with 

accurate mass matching between observed peptide/glycan fragment masses and theoretical 

masses. For novel neuropeptide discovery, the de novo sequences were searched by a 

homebuilt Python program against consensus motif (the shared peptide sequence pattern 

within a certain neuropeptide family) in common neuropeptide families69, including A-type 

allatostatin (AST-A), B-type allatostatin, (AST-B), C-type allatostatin (AST-C), allatostatin-

combos, GSEFLamide, kinin, orcokinin, orcomyotropin, pyrokinin, RFamide, RYamide, 

YRamide, SIFamide, tachykinin, and WXXXnRamide where X denotes any amino acid and 

Xn is a glycine or nothing.

Cao et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2020 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results and Discussion

Discovery of N-linked and O-linked glycosylated neuropeptides

Mass spectrometry has become an attractive technique to detect and identify crustacean 

neuropeptides owing to its sensitivity and high throughput. Even though crustacean 

neuropeptides have been extensively characterized, the identification of glycosylation on 

neuropeptides remains to be challenging without proper analytical tools. The naturally 

occurring extremely low abundance has limited discovery of glycosylated neuropeptides as 

enrichment is typically difficult. Meanwhile, confident structural elucidation is challenged 

by glycan heterogeneity and site-specific modification. In our analysis workflow, a 

straightforward and enrichment-free method was developed to enable identification of both 

glycosylated neuropeptides and novel neuropeptides without glycosylation via a signature-

ion driven approach with MS. To overcome signal suppression from non-glycosylated 

peptides, the Orbitrap Fusion Lumos mass spectrometer only selectively applies EThcD 

hybrid fragmentation to those precursors with diagnostic oxonium ions present in prior HCD 

scans. As the entire crustacean genome has not been sequenced, there is no complete 

neuropeptide database available for data analysis. To reduce missed detection, the de novo 
sequences with average local confidence (ALC) >=50% generated from PEAKS Studio 7 

software70–71 were combined with in-house crustacean neuropeptide database as a new 

database for glycosylation screening in Proteome Discoverer 2.1 embedded with Byonic 

module. The thousands of de novo sequences were also searched by a homebuilt Python 

program for identification of novel neuropeptides based on neuropeptide family consensus 

sequence motifs. The discovered glycosylated neuropeptides and novel neuropeptides were 

further manually inspected to eliminate false discovery.

Summarized in Table 1 are all glycosylated neuropeptides identified by analyzing 4 different 

neuronal tissue organs (brain, PO, SG and TG) isolated from blue crab Callinectes sapidus. 

And the corresponding EThcD spectra are shown in Supporting Information Figure S1 

through Figure S17, respectively. Overall, 4 N-linked glycoforms on 3 neuropeptides and 14 

O-linked glycoforms on 11 neuropeptides were discovered in the crustacean nervous system, 

covering 5 distinct neuropeptide families. To the best of our knowledge, this study presents 

the first investigation and characterization of glycosylation on crustacean neuropeptides. No 

glycosylated neuropeptide was detected from blue crab brain sample while an O-

glycosylated orcomyotropin (Figure 1a) was discovered in rock crab brain sample in our 

pilot study. This might be caused by signal suppression of other biomolecules in the blue 

crab brain sample or biological differences among crustacean species.

Structural elucidation of N-linked and O-linked glycosylated neuropeptides

The direct characterization of glycan linkage is difficult solely based on the masses detected 

from the spectra, due to structural complexity and isomerization of glycans. However, the 

oxonium ion groups generated by HCD enabled differentiation of O-GlcNAc and O-

GalNAc. According to Halem et al.72, the GlcNAc/GalNAc ratio calculated from oxonium 

ion intensities in the HCD spectra is a useful tool to distinguish GlcNAc and GalNAc, with 

the ratio <1 indicating GalNAc and ratio >1 suggesting GlcNAc. The GlcNAc and GalNAc 

ratio is calculated as shown below:
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GlcNAc
GalNAcratio = ion intensity sum of m/z 138.06 and m/z 168.07

ion intensity sum of m/z 126.06 and m/z 144.07

where m/z 126.06, 138.06, 144.07 and 168.07 generated from HexNAc neutral losses 

represent [C6H7NO2]+, [C7H8NO2]+, [C6H10NO3]+ and [C8H10NO3]+, respectively. 

According to GlcNAc/GalNAc ratios, the predominant population of neuropeptides consist 

of GalNAc with the ratio <1, except for 3 B-type allatostatin (AST-B) O-glycosylated 

neuropeptides with relatively large glycan attached to amino acid side chain. It is interesting 

to note that even within the same neuropeptide family AST-B, there are significant 

glycosylation heterogeneity, reflected by different types of glycosylation (N-linked and O-

linked) and glycan composition variance. For example, there are 4 N-linked AST-B peptides 

and 4 other O-linked AST-B peptides. And among the O-linked glycosylated AST-B 

peptides, PDYPAVSPRSTNWSSLRGTWa has glycan modification of only one GalNAc and 

other 3 AST-B peptides are linked to larger glycans with at least 5 monosaccharide units, 

including 2 GlcNAc. The difference of glycan composition and saccharide heterogeneity 

could be associated with broadly distributed functions of AST-B neuropeptides as autocrine/

paracrine factors and circulating hormones69. Although EThcD generates rich fragmentation 

ions, it does not necessarily provide enough determinant evidence (c/z- ion series) of the 

glycosylation site for every neuropeptide, especially O-linked ones, so a few neuropeptides 

in Table 1 with underlined characters have putatively assigned glycosylation sites.

Shown in Figure 1 are three representative EThcD fragmentation spectra of the discovered 

glycosylated neuropeptides. Figure 1a and Figure 1b display the intact O-linked 

orcomyotropin and O-linked truncated neuropeptide in the crustacean hyperglycemic 

hormone precursor-related peptide (CPRP) family. In addition, EThcD spectrum of an N-

linked AST-B neuropeptide is shown in Figure 1c. EThcD provides rich sequence and 

structural information of the glycosylated neuropeptides, including glycan fragments and 

both peptide b/y- and c/z- ion series. The orcomyotropin neuropeptide detected in the brain 

of rock crab Cancer irroratus (Figure 1a and Figure S18) has a sequence of FDAFTTGFGHS 

where O-glycosylation could possibly occur at Thr5, Thr6 and Ser11. Since the EThcD 

spectrum contains c5 ion with the glycan preserved, the glycosylation site has been located 

at Thr5. On the truncated CPRP neuropeptide (Figure 1b), the glycosylation site has been 

assigned at Thr8 because the c7 ion does not contain glycan and the c12 ion includes the 

glycan, indicating Thr8 is the only position for glycan attachment. Fewer N-linked 

glycosylated neuropeptides have been discovered compared with O-linked glycosylation, as 

only part of the neuropeptides has the special N-glycosylation sequence pattern (N-X-S/T 

where X cannot be proline) being localized. In addition to confirmation of O-linked 

glycosylation, Figure 1c demonstrates how EThcD can benefit identification of N-

glycosylation based on produced c/z- ions. Just relying on this AST-B neuropeptide 

sequence NNNWTKFQGSWamide, the glycosylation could occur at Asn3 (N-linked), Thr5 

(O-linked) and Ser10 (O-linked). The produced c/z- ions bring more insights into the 

assignment of the glycosylation site. As the spectrum contains z6, z7 and z8 ions, the 

possibility at Thr5 and Ser10 have been excluded as there are no glycan attached on the 

generated z ions, meaning the glycosylation is N-linked and thus occurs at Asn3. Using the 

GlcNAc/GalNAc ratio, it is determined that the O-glycosylation cases in Figure 1a and 
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Figure 1b are both O-GalNAc as the ratios are less than 1. The assignment of glycan 

composition in Figure 1c is slightly different. The Byonic generated N-glycan sequence 

HexNAc(2)Hex(3)Fuc(2) was searched in UniCarbKB73, and three N-glycan compositions 

were returned with two of them given known species origins. Among the two N-glycan 

compositions, only one was selected as our putative N-glycan assignment to the arthropod 

crustacean neuropeptide because the same composition is present in two other arthropod 

animals, European honey bee Androctonus australis and scorpion Androctonus australis 
hector, while the other possibility excluded was detected in a mollusca animal Japanese 

flying squid Todarodes pacificus. By integrating information from various perspectives, the 

interpretation of complicated EThcD spectra is possible and has strengthened our 

understanding toward crustacean neuropeptide glycosylation.

Glycosylation occurring on peptides with neuropeptide consensus sequence motif

In addition to glycosylation occurrence on known neuropeptides, there are other 

glycosylated peptides whose sequences match with neuropeptide consensus sequence motif. 

Although currently more evidence is still needed to ultimately confirm their roles as 

neuropeptides, the findings have expanded the coverage and broadened the understanding 

toward crustacean peptidome. Figure 2 illustrates two O-linked glycosylated peptides that 

are potentially neuropeptides. The MS/MS spectra for confident identification of these two 

peptides (without glycosylation) in blue crab sample are shown in Supporting Information 

Figure S19 and Figure S20, respectively. EThcD enables glycan site verification on a 20-

amino acid peptide, as demonstrated in Figure 2a. The peptide 

PDYPAVSPRSTNWSSLRGTWa was discovered in rock crab Cancer irroratus as a putative 

neuropeptide candidate so it was included in database during data analysis. The O-

glycosylation could occur at Ser7, Ser10, Thr11, Asn12, Ser14, Ser15 and Thr19 on this 

peptide with AST-B consensus sequence (WX6Wamide). As suggested by the determinant 

c11 ion (glycan included) and z12 ion (not containing glycan), the O-glycosylation 

modification on this relatively long peptide has been assigned at Ser7. Figure 2b shows the 

glycosylation on a de novo peptide sequence QVTERSGFYANRYa with neuropeptide 

RYamide consensus sequence. As illustrated in the spectrum, the abundant c3 ion leads to a 

confident assignment that the O-glycosylation is attached to Thr3. The glycosylation 

occurrence on peptides with neuropeptide consensus sequence motif requires the 

combination of de novo sequences with known crustacean neuropeptide database when 

probing glycosylated (neuro)peptides. An interesting question to ask is what is the ratio of 

glycosylated to non-glycosylated forms for the same peptide sequence. The absolute 

quantitation requires synthesis of glycosylated peptide standards which presented technical 

challenges to several vendors. Although glycosylated and non-glycosylated peptides have 

different ionization efficiencies, a rough estimation of glycosylated/non-glycosylated ratio 

can be made by comparing the extracted ion chromatogram (EIC) intensity/area of the 

glycosylated and non-glycosylated forms. For instance, Figure S21 shows the EIC of 

glycosylated and non-glycosylated forms of PDYPAVSPRSTNWSSLRGTWa. The O-

glycosylated/non-glycosylated estimated ratio is ~10%. Another example is 

NNWSKFQGSWa, as shown in Figure S22. The N-glycosylated/non-glycosylated estimated 
ratio is ~0.1%. Although the glycosylated forms only consist of a small portion, they may 

play critical and indispensable roles in the nervous system which were less studied due to 
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lack of sensitive methods for discovery and identification. Future studies will include 

electrophysiological experiments to explore the functions of these glycosylated peptides.

Discovery of novel neuropeptide sequences

In our oxonium ion-triggered MS/MS fragmentation approach, numerous HCD spectra were 

acquired for novel neuropeptide discovery in addition to those identified glycosylated 

neuropeptides. The de novo sequences generated from HCD with ALC>70% were matched 

to neuropeptide consensus sequence motif from a variety of neuropeptide families, including 

A-type allatostatin (AST-A), AST-B, pyrokinin, RFamide, RYamide, tachykinin, 

WXXXnRamide and YRamide. Representative MS/MS spectra of de novo peptides with an 

AST-B consensus motif, a WXXXnRamide consensus and an RFamide consensus sequence 

are illustrated in Figure 3a, Figure 3b and Figure 3c, respectively. Figure 3d shows the 

number of novel non-glycosylated neuropeptides and neuropeptide family variance of de 
novo sequences detected in different tissue organs, which could be related to neuronal organ 

function diversities. The full list of the 91 putative novel neuropeptides can be found in 

Supporting Information Table S1. Although additional experiments will need to be 

performed to confirm the sequences and test their functional roles, this extended list of 

putative novel signaling peptides offers new knowledge and insights into the crustacean 

peptidome and helps to further advance our understanding toward the peptidergic signaling 

in the crustacean nervous system.

Conclusions

To summarize, our study established a facile strategy to simultaneously characterize 

glycosylated neuropeptides and novel neuropeptide sequences in the crustacean nervous 

system, resulting in a deeper understanding of the peptidome. The employed HCD-triggered 

EThcD workflow achieved complementary characterization of peptides with and without 

glycosylation with optimal throughput and coverage. Multiple glycosylated neuropeptides, 

in the form of N-linked and O-linked, were discovered in crustacean neuronal tissues for the 

first time. Also, a plethora of novel neuropeptides were sequenced to generate a 

comprehensive view of the complex biological system. The newly identified glycosylated 

neuropeptides together with novel neuropeptides have greatly expanded our knowledge 

about in vivo neuropeptide synthesis processes and are anticipated to offer novel insights 

into cellular signaling mechanisms and unique opportunities to explore the role of 

glycosylation in neuromodulation and peptidergic signaling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
EThcD spectra of (a) an O-linked orcomyotropin neuropeptide discovered in rock crab 

Cancer irroratus nervous system, (b) an O-linked truncated crustacean hyperglycemic 

hormone precursor-related (CPRP) neuropeptide discovered in blue crab Callinectes sapidus 
nervous system, and (c) an N-linked B-type allatostatin (AST-B) neuropeptide discovered in 

blue crab Callinectes sapidus nervous system. The spectra were analyzed using Proteome 

Discoverer 2.1 embedded with Byonic with following parameters: precursor mass tolerance 

10.0 ppm, fragment mass tolerance 0.01 Da, dynamic modifications C-terminal amidation, 

N-terminal pyro-Glu from Q and methionine oxidation, and static modification cysteine 

residue carbamidomethylation.
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Figure 2. 
EThcD spectra of (a) an O-linked peptide with crustacean hyperglycemic hormone 

precursor-related (CPRP) neuropeptide consensus and (b) an O-linked peptide with 

neuropeptide RYamide consensus discovered from blue crab Callinectes sapidus nervous 

system. Spectra were analyzed using Proteome Discoverer 2.1 embedded with Byonic with 

following parameters: precursor mass tolerance 10.0 ppm, fragment mass tolerance 0.01 Da, 

dynamic modifications C-terminal amidation, N-terminal pyro-Glu from Q and methionine 

oxidation, and static modification cysteine residue carbamidomethylation.
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Figure 3. 
HCD spectra detected in blue crab Callinectes sapidus: (a) a de novo peptide sequence 

(ALC=96%) with B-type allatostatin neuropeptide consensus sequence motif detected in 

pericardial organs, (b) a de novo peptide sequence (ALC=99%) with WXXXnRamide (Xn is 

a glycine or nothing) neuropeptide consensus detected in sinus glands and (c) a de novo 
peptide sequence (ALC=99%) with RFamide (subfamily sulfakinin) neuropeptide consensus 

detected in sinus glands. (d) the breakdown of de novo peptide sequences with various 

neuropeptide consensus distributed in different neuronal organs. PO: pericardial organ; SG: 

sinus gland; TG: thoracic ganglia. Spectra were analyzed by PEAKS Studio 7.0 with 

following parameters: no enzymatic cleavage, parent mass error tolerance 10.0 ppm, 

fragment mass error tolerance 0.02 Da, fixed modification cysteine carbamidomethylation, 

and variable modifications methionine oxidation, C-terminal amidation, dehydration, pyro-

Glu from E and Q, sulfation on Y, methylation, glycans on serine/threonine including 

HexNAc(1), HexNAc(1)Hex(1), HexNAc(1)Hex(1)NeuAc(1), HexNAc(1)Hex(1)NeuAc(2), 

HexNAc(2), HexNAc(2)Hex(1) and glycan on asparagine including HexNAcylation.
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Table 1.

List of glycosylated neuropeptides detected from blue crab Callinectes sapidus neuronal tissues (brain, PO, SG 

and TG). The square bordered character X indicates glycan position verified from EThcD spectra and 

underlined character X denotes putatively identified glycan position based upon Byonic search results. The 

neuropeptide family labeled with asterisk (X*) shows peptide sequences matched with neuropeptide 

consensus. AST-B: B-type allatostatin; CPRP: crustacean hyperglycemic hormone precursor-related peptide.

Type Tissue Neuropeptide
Family Neuropeptide Sequence Glycan

Observed
mass

(M+H+)

Calculated
mass (M+H+)

GlcNAc
to

GalNAc
Ratio

N PO AST-B NNNWTKFQGSWa HexNAc(2)Hex(2)Fuc(1) 2256.967 2256.967 N/A

N PO AST-B NNNWTKFQGSWa HexNAc(2)Hex(3)Fuc(2) 2565.082 2565.077 N/A

N PO AST-B* NNWSKFQGSWa HexNAc(2)Hex(3)Fuc(2) 2437.022 2437.019 N/A

N PO AST-B* DNNWTKFQGSWa HexNAc(2)Hex(3)Fuc(2) 2566.064 2566.061 N/A

O PO AST-B* NNWSKFQGSWa HexNAc(2)Hex(2)Fuc(2) 2274.969 2274.966 5.32

O PO AST-B* DNNWTKFQGSWa HexNAc(2)Hex(1)Fuc(2) 2241.961 2241.956 6.81

O PO AST-B* DNNWTKFQGSWa HexNAc(2)Hex(2)Fuc(2) 2404.012 2404.009 5.76

O PO AST-B* PDYPAVSPRSTNWSSLRGTWa HexNAc(1) 2479.205 2479.200 0.77

O PO CPRP SLKSDTVTPLRGFEGETGHPLE HexNAc(1) 2573.273 2573.273 0.56

O SG CPRP SDTVTPLRGFEGETGHPLE HexNAc(1) 2245.069 2245.062 0.63

O SG CPRP SDTVTPLRGFEGETGHPLE HexNAc(1)Hex(1) 2407.121 2407.115 0.83

O SG CPRP GFEGETGHPLE HexNAc(1)Hex(1) 1537.656 1537.654 0.58

O TG Orcomyotropin FDAFTTGFGHS HexNAc(1)Hex(1) 1551.656 1551.649 0.96

O TG RFamide DARTAPLRLRFa HexNAc(1)Hex(1) 1679.918 1679.908 0.74

O TG RFamide SMPTLRLRFa HexNAc(1)Hex(1) 1484.783 1484.778 0.97

O TG RFamide SMPTLRLRFa HexNAc(1)Hex(1) 1484.783 1484.778 0.72

O PO RYamide* QVTERSGFYANRYa HexNAc(1) 1792.861 1792.861 0.84

O PO RYamide* TERSGFYANRYa HexNAc(1) 1565.736 1565.734 0.99
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