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Abstract
In the present study, a total of 35 S. aureus isolates collected from two different geographical locations viz., Germany and 
Hungary were tested for their methicillin-resistant phenotype which revealed a high incidence of methicillin-resistant S. 
aureus. The quantitative test for biofilm production revealed that 73.3% of isolates were biofilm producers. The isolates 
were further characterized using a set of biochemical and genotypic methods such as amplification and analysis of S. aureus 
species-specific sequence and mecA gene. The 33 mecA positive isolates were then characterized by the amplification of 
SCCmec and pvl toxin genes. Further, based on the biofilm-forming phenotype, 15 isolates were selected and characterized 
through PCR–RFLP of coa gene, polymorphism of spa gene and amplification of biofilm-associated genes. The dendrogram 
prepared from the results of both biochemical and genotypic analyses of the 15 isolates showed that except for the isolates 
SA G5 and SA H29, the rest of the isolates grouped themselves according to their locations. Thus, the two isolates were 
selected for further characterization through whole-genome sequencing. Comparative genome analysis revealed that SA G5 
and SA H29 have 97.20% ANI values with 2344 gene clusters (core-genome) of which 16 genes were related to antibiotic 
resistance genes and 57 genes encode virulence factors. The highest numbers of singleton genes were found in SA H29 that 
encodes proteins for virulence, resistance, mobile elements, and lanthionine biosynthesis. The high-resolution phylogenetic 
trees generated based on shared proteins and SNPs revealed a clear difference between the two strains and can be useful in 
distinguishing closely related genomes. The present study demonstrated that the whole-genome sequence analysis technique 
is required to get a better insight into the MRSA strains which would be helpful in improving diagnostic investigations in 
real-time to improve patient care.
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Introduction

Staphylococcus aureus is one of the leading causes in 
both communities- and nosocomial-acquired infections. It 
acquires an arsenal of antibiotic resistance genes (ARGs) 
and virulence factors-encoding genes (VFGs) that are sub-
jected to horizontal gene transfer (HGT) and recombina-
tion (Hughes and Friedman 2005; Chan et al. 2011). It 
can cause a diverse range of infections including chronic 
skin and soft tissue infections to life-threatening illnesses 
(Stefani and Varaldo 2003; Yamamoto et al. 2013; Mot-
tola et al. 2016). The genomic plasticity of S. aureus has 
enabled the emergence of hypervirulent and drug-resistant 
strains and led to challenging issues in antibiotic therapy. 
Consequently, the morbidity and mortality rates caused by 
S. aureus infections have a substantial impact on health 
concern (Denis 2017). Methicillin-resistant S. aureus 
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(MRSA) acquired methicillin resistance gene (mecA) 
which is present within Staphylococcal Chromosomal 
Cassette mec (SCCmec) (Zhang et al. 2012) and reduced 
affinity of penicillin and β-lactam antibiotics (Jansen 
et al. 2006; Mistry et al. 2016). S. aureus anchors epithe-
lial surfaces and produces biofilm (Strandén et al. 2003; 
Goudarzi et al. 2017). Biofilms act as a barrier against 
many antibiotics and other stressors and prevent their entry 
into the cells. Biofilms also defend the bacterial cells from 
host-immune evasion (Mah and O’Toole 2001; Donlan 
and Costerton 2002; Le et al. 2018; Vestby et al. 2020). 
Biofilm is a complex 3D structure of sessile microbial 
community covered by an exopolysaccharide glycocalyx 
(Otto 2008; Deka et al. 2019). The biofilm-forming abil-
ity depends on several physicals, chemical, and biological 
factors (Garrett et al. 2008). The biofilm-forming pro-
cesses of S. aureus are determined by the icaADBC gene 
cluster, responsible for the synthesis of polysaccharide 
intracellular adhesin (PIA), and capsular polysaccharide/
adhesion (PS/A) (Chaieb et al. 2005; Arciola et al. 2015; 
Hoang et al. 2019). The PIA is composed of β-1,6-linked 
N-acetylglucosamine with partially deacetylated residues, 
a major component of the exopolysaccharide matrix that 
surrounds bacterial cells in the biofilm (Mack et al. 1996; 
Vuong et al. 2004). It was reported that the co-existence 
of icaA and icaD increase N-acetylglucosaminyltrans-
ferase activity and slime production (Arciola et al. 2001, 
2006). Additionally, S. aureus possesses microbial sur-
face components recognizing adhesive matrix molecules 
(MSCRAMMs), such as elastin (ebps), laminin (eno), col-
lagen (cna), fibronectin A and B (fnbA and fnbB), fibrino-
gen (fib), bone sialoprotein (bbp) and clumping factors A 
and B (clfA and clfB) and these molecules are present on 
the bacterial surface to enable adherence to host tissues, 
thus playing a pivotal role in pathogenesis (Lindsay et al. 
2006; Foster et al. 2014; Ghasemian et al. 2015; Dufrêne 
and Viljoen 2020).

Methods for molecular typing of MRSA that depend on 
gene-specific polymerase chain reaction such as SCCmec, 
pvl (Panton-Valentine leukocidin), coa (coagulase), and 
spa (S. aureus protein A) genes and followed by restric-
tion enzyme digestion (PCR–RFLP) has proven its good 
discriminatory power (DP) and is used routinely for typing 
MRSA strains (Faria et al. 2008; Omar et al. 2014; Al-
Obaidi et al. 2018; Tenover et al. 2019; Alkharsah et al. 
2019). SCCmec typing classifies the MRSA into hospital-
associated (HA-MRSA) and community-associated (CA-
MRSA) strains (Appelbaum 2007). HA-MRSA isolates 
carried SCCmec types I to III, but CA-MRSA isolates 
has a novel, small variant of SCCmec IV and V, but also 
has the locus for pvl gene (Baba et al. 2002; Shukla et al. 
2012). The coagulase enzyme, a virulence factor encoded 
by the coa gene contains several tandem repeats suitable 

to generate polymorphic RFLP patterns among different 
isolates. These molecular typing methods may be help-
ful in determining the relatedness among geographically 
diverse MRSA (Singh et al. 2006; Grundmann et al. 2010).

Phenotypic analysis including the antibiotic resistance 
patterns and molecular typing methods are beneficial for 
identifying the risk factors associated with MRSA infec-
tions which support the establishment of adequate infection 
control programs (Zhang et al. 2012; Mistry et al. 2016). 
Epidemiological studies of MRSA apply various molecular 
typing techniques such as Pulsed-Field Gel Electrophoresis 
(PFGE), SCCmec, spa genes typing, Multi-Locus Sequence 
Typing (MLST), and detection of pvl gene as well as 
PCR–RFLP of coa gene (Zhang et al. 2012; Al-Obaidi et al. 
2018). Many of these established techniques are costly and 
time-consuming, and the discriminatory abilities of these 
techniques are also different (Du et al. 2011). However, the 
spa typing method has been considered as a rapid and inex-
pensive method for genotyping and it provides high discrim-
inating power than other typing methods (Shittu et al. 2011; 
O’Hara et al. 2016; Goudarzi et al. 2017; Ali et al. 2019; 
Rezai et al. 2019; Kareem et al. 2020). Both phenotypic and 
molecular typing methods have been used widely to detect 
and differentiate several MRSA strains, but these techniques 
have certain limitations in infection control and investigat-
ing the nosocomial transmission as these techniques pro-
vide low resolution and more time-consuming. Because of 
that in recent times whole genome-based typing has been 
used as it offers an excellent resolution in global and local 
epidemiological investigations of pathogen outbreaks and 
offers further data mining activities essentially for ARGs and 
VFGs profiling (Köser et al. 2012). So, the Next Generation 
Sequencer (NGS) based-genome sequencing technique has 
become a vital tool in the clinical microbiology arenas for 
comparative genomic analysis of several other species of 
the Staphylococcus genus in terms of the niche adaptation, 
combat antibiotics, and emergence of new virulent strains 
in real-time (Al-Obaidi et al. 2018; McClure et al. 2018; 
Tenover et al. 2019; Maljkovic Berry et al. 2019; Raven et al. 
2020). In the current study, we performed characterization 
through molecular typing methods and their integrated poly-
phasic approach to determine the S. aureus lineage strains. 
The lineage strains were compared deeply into a genomic 
level based on Average Nucleotide Identity (ANI), genome 
distance, orthologue gene/ clusters, and the evolutionary 
relationship. Further, ARGs and VFGs were characterized 
to understand their crucial role in pathogenesis and defense. 
The information on genomic characteristics and compara-
tive genomics of S. aureus will facilitate investigations into 
the molecular basis of pathogenesis and improve diagnostic 
investigations of infectious diseases in real-time and improve 
patient care.
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Materials and methods

Collection and preliminary identification 
of the isolates

In this study, 35 S. aureus strains were collected from the 
Department of Medical Microbiology and Immunology Lab-
oratory, Medical School, University of Pecs, Hungary. The 
Hungarian S. aureus strains (60%) were previously recovered 
during February to July 2016 from wounds (31.42%), blood 
(8.57%), tracheas (5.71%), ears (2.85%), lungs (2.85%), nos-
trils (2.85%), skins (2.85%) and throats (2.85%) while the 
German S. aureus strains (40%) were recovered from body 
sites without documentation. The isolates were identified as 
Staphylococcal strain based on colony morphology on Nutri-
ent agar, Blood Agar, Mannitol Salt Agar, Gram staining, 
and different biochemical tests (Bergey and Holt 1994). The 
isolates were tested for catalase, coagulase, urease, DNase 
production, and mannitol fermentation test (Collee et al. 
1996).

Antibiotic susceptibility test

The 35 S. aureus clinical strains were screened for MRSA 
using BBL™ CHROMagar™ MRSA II media (BD, USA). 
Susceptibility of S. aureus strains to oxacillin (1 μg), cefoxi-
tin (30 μg), erythromycin (15 μg) and vancomycin (30 μg) 
were determined using disk diffusion method according to 
Clinical and Laboratory Standards Institute (CLSI) guid-
ance (CLSI 2014). The entire antimicrobial susceptibility 
test (AST) was repeated three times using the S. aureus 
ATCC25923 and ATCC700698 as MRSA negative and posi-
tive controls, respectively. The diameter zone of inhibition 
was measured in millimetre (mm).

Biofilm formation assay

Biofilm formation was performed as previously described 
(Rahimi et al. 2016) with some modifications. Briefly, S. 
aureus strains were cultured overnight at 37 °C in tryptic 
soy broth (TSB) (BD, Germany) containing 0.25% (w/v) 
glucose. The cell density was adjusted to a final concentra-
tion of 106 CFU/ml in TSB supplemented with 0.25% (w/v) 
glucose. Cell suspensions (200 µl) were loaded into 96-well 
round-bottomed microtiter plate (Sarstedt, Germany), and 
incubated at 37 °C for 18 h without shaking. Cells were 
washed three times with 200 µl sterile PBS (pH 7.2), dried 
at room temperature and fixed with methanol (99% v/v). The 
dried biofilm was stained with 200 µl of 0.16% (w/v) crys-
tal violet for 15 min. To remove the unbound dye, biofilms 
were washed three times with PBS and air dry. Finally, the 

biofilm-bound dye was solubilized with 200 µl of 95% (v/v) 
ethanol, and absorbance was measured at 540 nm wave-
length using a Multiskan Ex microtiter plate reader (Thermo 
Electron Corporation, USA) in a flat-bottom 96-well plate 
(Costar 3599; Corning; USA). Experiments were performed 
in triplicates with S. aureus ATCC25923 as a biofilm-posi-
tive control strain.

Molecular identification and genotyping

The DNA of the 35 strains was extracted from the over-
night culture of S. aureus using QIAamp DNA Mini Kit 
(Qiagen GmbH, Hilden, Germany). The extracted DNA 
concentration was assayed by the Nanodrop-2000 spectro-
photometer. Genomic DNA was used for the detection of S. 
aureus species-specific sequence (Martineau et al. 1996), 
mecA (Strommenger et al. 2003), and the pvl toxin (Hisata 
et al. 2005; Karahan and Çetinkaya 2007) genes. S. aureus 
ATCC25923, ATCC700698, and ATCC700699 strains were 
used as reference strains for mecA negative and positive con-
trols respectively. Multiplex PCR typing of SCCmec gene 
was performed on mecA-positive S. aureus strains using 
primers as described previously (Zhang et al. 2005). The 
MRSA isolates that showed unexpected amplified fragments 
or no amplification were defined as non-typeable (NT). For 
PCR–RFLP, the coa gene amplicons were digested with 
HaeIII (Fermentas, USA) restriction enzyme (Khoshkharam-
Roodmajani et al. 2014) and a heat-map with dendrogram 
was generated from the restriction banding pattern using 
Morpheus web-based program (https​://softw​are.broad​insti​
tute.org/morph​eus/) using the Euclidean distance feature. 
Polymorphism of the spa gene was detected based on a 
previously described primer set (Harmsen et al. 2003). The 
PCR products were purified using the ZR-96 DNA Clean-up 
Kit (Zymo Research, USA). Concentration was determined 
by Qubit 3.0 and sequencing reactions were performed using 
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 
Biosystems, USA). Sequencing reactions were run on ABI 
PRISM 310 Genetic Analyzer (Applied Biosystems, USA). 
The spa sequence types were assigned using spaTyper (https​
://spaty​per.forti​nbras​.us/) and confirmed by a spa database 
(https​://spa.ridom​.de/) in DNAGear software (Al-Tam et al. 
2012). The spa sequences were aligned, and a phylogenetic 
tree was constructed by the UPGMA method in MEGA X 
software (Kumar et al. 2018). The DPs of coa and spa typing 
were calculated based on Simpson’s index using the DP cal-
culator, available online (https​://insil​ico.ehu.es/mini_tools​/
discr​imina​tory_power​/).

Biofilm-encoding genes were amplified using the primer 
sets listed in Supplementary Table 2. The PCR amplification 
was performed using DreamTaq PCR Master Mix according 
to the manufacturer’s recommendation (Thermo Fisher Sci-
entific, USA) in a Veriti™ 96-Well Thermal Cycler (Applied 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
https://spatyper.fortinbras.us/
https://spatyper.fortinbras.us/
https://spa.ridom.de/
https://insilico.ehu.es/mini_tools/discriminatory_power/
https://insilico.ehu.es/mini_tools/discriminatory_power/
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Biosystem, USA) as follows: 96 °C for 3 min; 96 °C for 30 s, 
54 °C for 30 s, 72 °C for 1 min repeated for 35 cycles; final 
extension was performed at 72 °C for 7 min. The ampli-
fied products were electrophorized on 2% (w/v) agarose 
gel, stained using 0.5 µg/ml ethidium bromide solution, and 
captured using the FluroChem Q system (ProteinSimple™, 
USA).

Data setting for a polyphasic approach

Individual result of the applied techniques was converted 
into the unweighted binary code (0, 1), Jacquard’s similarity 
index was generated and visualized according to the Neigh-
bour-Joining (NJ) clustering method using Past 3.x (Ham-
mer et al. 2001). Besides the binary data (Supplementary 
file 2) was used to perform a logistic Principal Component 
Analysis (PCA) in R software.

Whole‑genome sequencing

Based on the dendrogram and PCA plot generated from 
combined results of the phenotypic and genotypic analy-
sis (binary data) of the S. aureus strains it was observed 
that two strains viz., SA G5 (collected from Germany) and 
SA H29 (collected from Hungary) were found in the same 
group (Fig. 1a–c). Therefore, these two strains (SA G5 and 
SA H29) were selected for further analysis through whole-
genome sequencing to get a better insight into their genomic 
background.

Genomic DNA extraction, library preparation, 
and sequencing

Whole-genome sequencing was performed at Microbial Bio-
technology Research Group, Szentágothai Research Centre, 
University of Pecs, Hungary with the following procedures: 

Fig. 1   Polyphasic comparison of S. aureus clinical isolates. a Colored 
similarity matrix categories representing resistant test against dif-
ferent antibiotics (ART), biochemical test, PCR based mecA and pvl 
genes detection, SCCmec typing, coa-HaeIII RFLP, spa type, biofilm-
forming assay and detection of biofilm-associated genes. Red and 
blue colors indicate the presence ( +) and absence (−) of particular 

properties respectively. b NJ-dendrogram prepared from the results of 
biochemical and molecular analysis of the 15 S. aureus clinical iso-
lates (SA). The isolates were labeled according to their geographical 
origin where G and H indicate Germany and Hungary. Clusters are 
labeled as A-F. c Principal component analysis of the results of bio-
chemical and molecular analysis of the 15 S. aureus clinical isolates
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the genomic DNA was extracted using the GenElute™ Bac-
terial Genomic DNA Kit (Sigma, USA) following the man-
ufacturer’s recommendation. The extracted DNA samples 
were quantified in a Qubit 3.0 fluorometer (Invitrogen, USA) 
using dsDNA High Sensitivity (HS) Assay Kit (Thermo 
Fisher Scientific Inc. USA) and subsequently, DNA qual-
ity was visualized by agarose gel electrophoresis. Genomic 
libraries were prepared using the NEB Next Fast DNA Frag-
mentation and Library Preparation Kit, developed for Ion 
Torrent (New England Biolabs, USA) and used according 
to 200 bp protocol. After chemical fragmentation, DNA size 
selection was performed on precast 2% E-Gel Size Select 
Gel (Thermo Fisher Scientific Inc. USA). The quality of the 
libraries was verified using Agilent high sensitivity DNA 
assay kit (Agilent Technologies Inc. USA) in Agilent 2100 
Bioanalyzer System (Agilent Technologies Inc. USA). For 
the template preparation, Ion PGM Hi-Q View OT2 Kit was 
used (Thermo Fisher Scientific Inc. USA). The template pos-
itive beads were loaded on Ion 316v2 Chip and sequenced 
using Ion PGM Hi-Q View Sequencing Kit on Ion Torrent 
Personal Genome Machine (PGM) (Thermo Fisher Scien-
tific Inc. USA).

Genome assembly, annotation, and comparison

Quality trimming of the reads was performed with the Ion 
Torrent Suite 5.4.0 (Thermo Fisher Scientific Inc. USA) 
with default settings. De novo genome assembly was per-
formed by SPAdes 3.7.1 software with default parameters 
for Ion Torrent data and k-mer settings of 21, 33, 55, 77, 
99, and 127 (Nurk et al. 2013). Closely related reference 
genomes were identified using kmerFinder 3.1 and NCBI 
microbial genome blast web-platforms. Identified high-
quality reference genomes, CP006044.1 (S. aureus CA-347), 
and CP023390 (S. aureus subsp. aureus str. Newman) were 
applied to orientate and order contigs of SA G5 and SA 
H29 respectively using the ‘Move Contigs’ algorithm in 
Mauve 2.4.0 (Darling et al. 2010). Scaffolds were generated 
using the reference-based scaffolder MeDuSa (Bosi et al. 
2015). Gene annotation was performed by two independ-
ent automated pipelines based on Rapid Annotation using 
Subsystem Technology (RAST) (Aziz et al. 2008) and NCBI 
Prokaryotic Genome Annotation Pipeline (Tatusova et al. 
2016).

The values for ANI were calculated using the OrthoANIu 
algorithm (Yoon et al. 2017). Also, dDDH (digital DNA-
DNA Hybridization) estimates were obtained from Genome 
to Genome Distance Calculator 2.1 (Meier-Kolthoff et al. 
2013). RAST server-based SEED viewer was used for the 
subsystem functional categorization (Overbeek et al. 2014). 
The protein-coding sequence identified by RAST was ana-
lyzed for orthologous genes/clusters and subsequent func-
tional annotation using web platform OrthoVenn2 (Xu 

et al. 2019). Graphical map of sequence features embed-
ded circular genomes of SA G5, CP006044.1, SA H29, and 
CP023390.1 were generated using CGView Server (Grant 
and Stothard 2008) with default parameters against the refer-
ence genome Staphylococcus aureus subsp. aureus NCTC 
8325 (NC_007795.1). ARGs and VFGs were identified by 
the Comprehensive Antibiotic Resistance Database (CARD) 
and the virulence factor database (VFDB) in PATRIC 3.5.43 
(Chen et al. 2016; Wattam et al. 2017). The genome assem-
blies were screened for plasmid replicon (rep) genes in nona-
ligned contigs or scaffold regions using PlasmidFinder ver-
sion 2.1 (Carattoli et al. 2014) with default parameters. The 
identified nonaligned contigs or scaffolds associated with 
plasmid sequences were extracted and used for the identifi-
cation of full-length plasmid regions using PLSDB (Plasmid 
Database) version-2020-03-04 with search strategy Mash 
screen, and the default values were a maximum P value of 
0.1 and a minimum identity of 0.99 (Galata et al. 2019).

Phylogenetic analysis

The 16S rRNA sequences obtained from the whole genome 
data of the two strains were aligned with the other closely 
related 16S rRNA sequences of S. strains and Bacillus cereus 
ATCC14579 (AE016877.1) using MUSCLE algorithm in 
MEGA X (Kumar et al. 2018). The phylogenetic tree was 
then constructed by the NJ method with 500 replicates. Phy-
logenetic trees were generated based on the concatenated 
alignment of all shared proteins (core) of S. aureus genome 
sequences with B. cereus ATCC14579 (AE016877.1) as out-
group by RAxML in PATRIC 3.5.43 (Wattam et al. 2017). 
SNPs were filtered from the genome sequences and gener-
ate phylogeny based on the concatenated alignment of the 
high-quality SNPs using CSI phylogeny 1.4 servers (https​
://cge.cbs.dtu.dk/servi​ces/CSIPh​yloge​ny/) and the tree was 
visualized in MEGA X (Kumar et al. 2018).

Sequence supporting data

The genomic data of this study were deposited in the NCBI 
genome database under the GenBank accession numbers: 
CP032160 and CP032468-CP032470.

Results

Phenotypic characterization

The colony characteristics of the strain are yellow colored, 
moist, round, glistening opaque colonies with β or weak 
hemolysis on blood agar. The strains are Gram-positive 
cocci showing typical staphylococcal bunch.

https://cge.cbs.dtu.dk/services/CSIPhylogeny/
https://cge.cbs.dtu.dk/services/CSIPhylogeny/
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Antibiotic susceptibility test

The 35 S. aureus clinical strains were screened for MRSA 
using BBL™ CHROMagar™ MRSA II media which 
revealed that 94.28% of the strains were MRSA. The tested 

strains were highly resistant to beta-lactam antibiotics viz. 
oxacillin (94.28%) and cefoxitin (94.28%), but less resist-
ant to non-beta lactam antibiotics, erythromycin (71.43%), 
and none of the strain displayed resistant to vancomycin 
(Table 1).

Table 1   Antibiotic 
susceptibility patterns of S. 
aureus isolates

Zone of inhibition in mm is given as Mean ± SD; R and S denote the resistant and susceptible, Ox oxacillin 
(≤ 10 mm = Resistant), Cfox cefoxitin (≤ 14 mm = Resistant), Ery erythromycin (≤ 13 mm = Resistant), Van 
vancomycin (≤ 9 mm = Resistant)
a SA G and SA H represent strains isolated from Germany and Hungary respectively. HA and CA represent 
the Hospital and Community-associated S. aureus strains respectively

Strain ID Origin Diameter of inhibition zone (mm)

Ox-1 µg Cfox-30 μg Ery-15 µg Van-30 μg

SA G1 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19.5 ± 0.7 (S)
SA G2 HA 11.5 ± 0.7 (R) 6 ± 0 (R) 6 ± 0 (R) 20 ± 0.7 (S)
SA G3 HA 28 ± 0 (S) 18.5 ± 0.7 (S) 27 ± 0 (S) 21 ± 1.4 (S)
SA G4 HA 6 ± 0 (R) 6 ± 0 (R) 24.5 ± 7.7 (S) 20.5 ± 0.7 (S)
SA G5 HA 6 ± 0 (R) 6 ± 0 (R) 24.5 ± 7.7 (S) 19.5 ± 0.7 (S)
SA G6 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 20 ± 0 (S)
SA G7 HA 24.5 ± 0.7 (S) 18 ± 0 (S) 30 ± 0 (S) 18.5 ± 0.7 (S)
SA G8 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 18.5 ± 0.7 (S)
SA G9 CA 6 ± 0 (R) 6 ± 0 (R) 24 ± 8 (S) 18 ± 0 (S)
SA G10 CA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 20 ± 1.4 (S)
SA G11 CA 6 ± 0 (R) 6 ± 0 (R) 10 ± 0 (S) 19 ± 1.4 (S)
SA G12 CA 6 ± 0 (R) 7.5 ± 2.1 (R) 30 ± 0 (S) 19.5 ± 07 (S)
SA G13 CA 6 ± 0 (R) 6 ± 0 (R) 30 ± 0 (S) 19 ± 0 (S)
SA G14 CA 6 ± 0 (R) 6 ± 0 (R) 30 ± 0 (S) 19 ± 0 (S)
SA H15 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 0 (S)
SA H16 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 20 ± 0 (S)
SA H17 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 18 ± 0 (S)
SA H18 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 18.5 ± 0.7 (S)
SA H19 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19.5 ± 0.7 (S)
SA H20 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 1.4 (S)
SA H21 HA 6 ± 0 (R) 6 ± 0 (R) 11 ± 0 (R) 18.5 ± 0.7 (S)
SA H22 HA 6 ± 0 (R) 6 ± 0 (R) 11 ± 0 (R) 18.5 ± 0.7 (S)
SA H23 HA 6 ± 0 (R) 7.5 ± 2.1 (R) 6 ± 0 (R) 20 ± 0 (S)
SA H24 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 0 (S)
SA H25 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 20 ± 0 (S)
SA H26 HA 8 ± 2.8 (R) 14.5 ± 0.7 (R) 6 ± 0 (R) 19 ± 1.4 (S)
SA H27 HA 6 ± 0 (R) 6 ± 0 (R) 16.14 ± 0 (R) 19.5 ± 0.7 (S)
SA H28 HA 6 ± 0 (R) 6 ± 0 (R) 24.5 ± 0.7 (R) 19 ± 1.4 (S)
SA H29 HA 10.5 ± 0.7 (R) 8 ± 2.8 (R) 6 ± 0 (R) 19 ± 1.4 (S)
SA H30 HA 6 ± 0 (R) 3 ± 0 (R) 6 ± 0 (R) 18.5 ± 2.1 (S)
SA H31 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 18.5 ± 0.7 (S)
SA H32 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 1.4 (S)
SA H33 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 1.4 (S)
SA H34 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19.5 ± 0.7 (S)
SA H35 HA 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19 ± 1.4 (S)
ATCC700698 – 6 ± 0 (R) 6 ± 0 (R) 6 ± 0 (R) 19.5 ± 0.7 (S)
ATCC25923 – 26.5 ± 0.7 (S) 25 ± 0 (S) 33.5 ± 0.7 (S) 20.5 ± 0.7 (S)
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Biofilm production test

The quantitative test for biofilm production revealed that 
among the 33 methicillin-resistant strains, 87.87% of strains 
produced biofilm. Fifteen strains were selected among 33 
methicillin-resistant strains based on non- (26.7%), mod-
erate- (40%), and strong- (33.3%) biofilm-forming abilities 
for molecular typing and discrimination. (Supplementary 
Table 1).

Molecular characterization and genotyping

The PCR amplified products showed that 100% strains of S. 
aureus were positive to S. aureus species-specific sequence 
represented by a distinct band of 107 base pairs (bp) (Sup-
plementary Fig. 1). The mecA and pvl genes were detected 
in 94.28% with an amplicon size of 532 bp and 22.85% 
with the amplicon size 1918 bp respectively (Supplemen-
tary Figs. 2, 3). The AST and mecA gene detection revealed 
concordant results, thus 94.28% of S. aureus isolates were 
confirmed as MRSA.

SCCmec typing revealed that SCCmec type II (33.33%) 
was the most predominant followed by type I (21.21%), 
type IVa (15.5%), type IVd (9.09%), IVb (3.03%) and the 
rest of the strains were non-typeable (12.12%). Among the 
35 strains, eight strains were positive for pvl of which four 
strains belonged to SCCmec II, three strains to SCCmec IV 
and, one to SCCmec V (Supplementary Fig.4). The distribu-
tion of SCCmec types showed that 36.36% of strains were 
CA-MRSA and 54.54% strains were HA-MRSA (Table 2).

The coa gene amplification produced amplicons size in 
the range of 550 to 800 bp, the amplicons of 700 bp showed 
the highest frequency (33.33%) followed by amplicon sizes 
of 550 bp (26.66%), 650 bp (13.33%), 740 bp (0.66%), 
660 bp (0.66%), 800 bp (0.66%) and 600 bp (0.66%) (Sup-
plementary Fig. 5). The result of the coa gene PCR–RFLP 
is summarized in supplementary Table 3 and supplementary 
Fig. 6. To get more insight into the similarity and differ-
ence of complex RFLP banding pattern, presence/absence 
heat-map and dendrogram was generated. Visualisation of 
banding patterns revealed six distinct clusters, namely A-F 
with calculated prevalence of 6.6, 13.3, 13.3, 20, 33.3 and 
13.3%, respectively. (Supplementary Fig. 7). Typing of coa 
gene and HaeIII RFLP, as well as DIs, were presented in 
supplementary Table 3.

Typing of the spa gene revealed 10 amplicons, rang-
ing in size from 355 to 560 bp (Supplementary Fig. 8). 
The DI of spa-PCR typing was 0.9429. Analysis of the 
spa gene revealed twelve known spa types. SA G11 and 
SA H29 strains possessing SCCmec-IV gene (CA-MRSA) 
and both were in the same t008 spa-type. SA H16 and SA 
H19 strains clustered together into t062 spa-type and both 

were found resistant to erythromycin, also classified into 
HA-MRSA group (Supplementary Table 4). The phylo-
genetic tree based on spa sequences revealed four distinct 
clusters, designated as A, B, C, and D with a prevalence 
of 33.33%, 46.66%, 13.33%, and 6.66% respectively (Sup-
plementary Fig. 9).

Although, all the selected strains did not produce bio-
film each of them harbors genes for intracellular adhesion 
(icaADBC) and regulation (icaR). The presence of fnbA 
and fnbB genes were detected in 73.3% and 66.6% strains, 
respectively. Genes also associated with biofilm-forming 
ability viz. cna, clfA, clfB, and ebps were found present in 
53.33%, 80%, 73.3%, and 86.6% strains, respectively. Aga-
rose gel electrophoresis pictures of biofilm-associated genes 
are presented in supplementary figs. 10–20.

Cluster analysis based on phenotypic and genotypic 
data

Although, the individual test, for example, performed AST, 
catalase, coagulase, DNase, citrate utilization, urease pro-
duction, mannitol fermentation, blood lysis, and biofilm 
production assays has the advantage of being cost-effective, 
but often cannot differentiate among the strains. PCR-based 
detection of mecA gene and genes responsible for PIA 
(icaADBC and icaR) could not differentiate the clinical iso-
lates in the present study. PCR-based detection of pvl gene 
and genes encoding for MSCRAMMs (fnaA, fnaB, clfA, 
clfB, cna, and ebps) also showed poor DP, while SCCmec, 
coa-HaeIII RFLP and spa typing revealed moderate DP. To 
avoid the misleading conclusion, the data from all applied 
methods were coupled to perform cluster and PCA analysis. 
The generated dendrogram suggested that strains collected 
from the same geographical region shared the same clus-
ter F. Except for cluster E in which strains SA G5 and SA 
H29 from different geographical locations clustered together 
(Fig. 1b). The PCA analysis also revealed that SA G5 and 
SA H29 shared less variance than the other strains (Fig. 1c).

General features of sequenced genomes

Ion-Torrent PGM sequencing of SA G5 and SA H29 
genomes generated reads range of 18.55 and 25.98 mil-
lion bases (Mb) per sample covering more than 98% of the 
reference genome (ASM1342v1) with an average depth of 
152.4X. SPAdes assembled sequences were further analyzed 
by QUAST producing genomes with 43 and 47 contigs and 
N50 ranging from 85 and 185 kb after filtering contigs 
size < 200 bp. Mauve contigs ordering and MeDuSa scaf-
folder produced SA G5 and SA H29 final genomes sequence 
lengths of 2,760,385 and 2,834,624 bp respectively. The 
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total GC contents were 32.77 and 32.65%. The SA G5 and 
SA H29 genomes contain 2689 and 2843 coding sequences 
(CDS) with 9 and 6 rRNAs, and 59 and 51 tRNAs, respec-
tively. The summarized genomic features were shown in 
Table 2.

Comparative genome analysis

OrthoANIu identity found ANI of 97.20% among the SA 
G5 and SA H29 genome sequences. Similarly, dDDH was 
calculated using the GGDC tool revealed that the probability 

Table 2   Biochemical tests and PCR based molecular detection of mecA, pvl and SCCmec genes of S. aureus isolates

a MF represents mannitol production, Blood lysis represents hemolysis on blood agar, Biofilm represents biofilm production, mecA represents 
gene encode for penicillin-binding protein 2A (PBP2A); pvl represents gene encode for Panton-Valentine leukocidin toxin. + and – represent pre-
sent and absent; NT denotes SCCmec cassette non-typeable

aStrain ID Biochemical tests Molecular detection

Catalase Coagulase DNase Citrate 
utilization

Urease 
production

MF Blood Lysis Biofilm mecA pvl SCCmec type

SA G1  +   +   +   +   +   +   +  −  +  − I
SA G2  +   +   +   +   +   +   +  −  +  − I
SA G3  +   +   +   +   +   +   +   +  − − NT
SA G4  +   +   +   +   +   +   +   +   +  − NT
SA G5  +   +   +   +   +   +   +   +   +  − IVd
SA G6  +   +   +   +   +   +   +  −  +  − I
SA G7  +   +   +   +   +   +   +   +  − − NT
SA G8  +   +   +   +   +   +   +   +   +   +  II
SA G9  +   +   +   +   +   +   +   +   +   +  IVa
SA G10  +   +   +   +   +   +   +   +   +   +  IVa
SA G11  +   +   +   +   +   +   +   +   +   +  IVa
SA G12  +   +   +   +   +   +   +   +   +  − IVa
SA G13  +   +   +   +   +   +   +   +   +  − IVa
SA G14  +   +   +   +   +   +   +   +   +   +  V
SA H15  +   +   +   +   +   +   +   +   +  − II
SA H16  +   +   +   +   +   +   +  −  +   +  II
SA H17  +   +   +   +   +   +   +   +   +  − II
SA H18  +   +   +   +   +   +   +   +   +  − I
SA H19  +   +   +   +   +   +   +   +   +  − I
SA H20  +   +   +   +   +   +   +   +   +  − II
SA H21  +   +   +   +   +   +   +   +   +  − IVb
SA H22  +   +   +   +   +   +   +   +   +  − II
SA H23  +   +   +   +   +   +   +   +   +  − IVa
SA H24  +   +   +   +   +   +   +   +   +  − II
SA H25  +   +   +   +   +   +   +   +   +  − II
SA H26  +   +   +   +   +   +   +   +   +  − I
SA H27  +   +   +   +   +   +   +   +   +  − IVd
SA H28  +   +   +   +   +   +   +   +   +  − IVa
SA H29  +   +   +   +   +   +   +   +   +  − IVd
SA H30  +   +   +   +   +   +   +   +   +   +  II
SA H31  +   +   +   +   +   +   +   +   +  − I
SA H32  +   +   +   +   +   +   +   +   +  − NT
SA H33  +   +   +   +   +   +   +   +   +  − II
SA H34  +   +   +   +   +   +   +   +   +   +  II
SA H35  +   +   +   +   +   +   +   +   +  − NT
ATCC700698  +   +   +   +   +   +   +   +   +  − II
ATCC25923  +   +   +   +   +   +   +   +  − − −
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of DDH (DNA-DNA hybridization) is 84.5% with a genetic 
distance of 0.0308, suggesting that SA G5 and SA H29 
occupy identical taxonomic status which is also supported 
by the different genotypic data.

According to SEED subsystems, SA H29 genome con-
tains amino acids and derivatives encoding genes (245 
CDSs), virulence, disease and defense genes (67 CDSs), 
carbohydrate utilization genes (178 CDSs) and genes 
derived from phages, prophages, transposable elements 
and plasmid (20 CDSs) as presented in the Fig. 2a, b. In 
addition, the relationship between SA G5 and SA H29 
genomes were analyzed using web platform OrthoVenn2, 
which identified 2366 gene clusters (pan-genome), of 
which 2344 orthologous clusters were shared between SA 

G5 and SA H29, and 2337 were single-copy gene clus-
ters (Fig. 3c). These two strains shared 2344 gene clus-
ters (core-genome) comprising 4695 proteins (Fig. 3a, b). 
SA H29 genome possesses the highest singleton genes 
covering 37 numbers of proteins that are responsible for 
virulence, resistance, mobile genetic elements, and lan-
thionine biosynthesis. Whole-genome circular compara-
tive map of two genomes (SA G5 and SA H29) and their 
close genomes against Staphylococcus aureus subsp. 
aureus NCTC 8325 (NC_007795.1) was generated using 
CGView server based on BLAST sequence similarities 
(Fig. 4). Each genome was represented by a different color 
and the darker areas in the circular genome showed a 100% 

Fig. 2   Subsystem category distribution of (a) SA G5 and (b) SA H29 
genomes. The genomes of SA G5 and SA H29 annotated using the 
RAST Server classified subsystems into 270 and 276 respectively. 

The green part in the bar-chart at the leftmost position corresponds 
to the percentage of proteins included and the pie-chart in the right 
panel demonstrates the subsystem category distribution
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Fig. 3   Comprehensive comparative protein analysis of SA G5 and SA 
H29. a Venn diagram showing the distribution of shared orthologous 
clusters (core-genome) among the genomes. b Occurrence pattern of 
shared orthologous groups among SA G5 and SA H29. The pattern to 
the left indicates SA G5 and SA H29 genomes are in the clusters, the 

number of clusters shared between genomes (cluster count), and the 
number of protein members in the shared clusters (protein count). c 
Showing the numbers of proteins, cluster genes, and singletons with 
respect to species

Fig. 4   Circular genome comparison map showing homologous chro-
mosome of S. aureus genomes against S. aureus subsp. aureus NCTC 
8325 (NC_007795.1) genome using CGviewer. The inner scales des-

ignate the coordinates in mega-base pairs (Mbp). White spaces indi-
cate regions with no identity to the reference genome and the genome 
features were indicated by the outermost (black) ring
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sequence similarity with the reference genome, whereas 
the lighter areas showed a 70% sequence similarity.

Epidemiological characterizations of SCCmec type, spa 
type, and multilocus sequence type (MLST) are presented 
in Table 2. In silico analysis of ARGs using CARD data-
base revealed 18 genes related to antibiotic resistance and 
among them, 16 genes were shared which are responsible 
for the resistance against methicillin (mecA), beta-lactams 
(blaZ), fluoroquinolone (norA, gyrA, and gyrB), tetracy-
cline (tet-38), glycylcycline (mepA), multidrug and toxic 
compound (mepR), fluoroquinolone and acridine dye (arlS 
and arlR), tetracycline, penam, cephalosporin, glycylcycline, 
rifamycin, phenicol, triclosan and fluoroquinolone (mgrA), 
daptomycin (clsA), diaminopyrimidine (dfrC), nitroimida-
zole (msbA), rifamycin (rpoB32) and defensin (mprF). In 
addition, genes that provide resistance against macrolide, 
lincosamide, streptogramin (emrA) were detected in the SA 
H29 genome. In-silico identification of ARGs and the results 
of in-vitro AST (for erythromycin, vancomycin, and beta-
lactam antibiotics) are in good agreement.

The VFGs were predicted against the VFDB in the PAT-
RIC annotation system. Genomic comparison of the two 
strains identified 78 genes that encode virulence factors of 
which 57 are common. These virulence factors are respon-
sible for adherence, toxins production, antiphagocytosis, 
immune evasion, exoenzyme activity, iron uptake, and secre-
tion system. Genomes annotation revealed common genes 
encoding MSCRAMMs i.e. adhesion (sdrC, sdrD, and sdrE) 
elastin binding protein (ebps), polysaccharide intercellular 
adhesion proteins (icaA, icaB, icaC, icaD, and icaR), clump-
ing factor (clfB) and cell wall anchored protein (sasH). The 
genome of SA H29 isolate harbored all these genes extended 
with additional genes encoding clumping factor A and B 
(clfA and clfB), fibronectin-binding protein A (fnbA), serine-
aspartate repeat-containing proteins (sdrC and sdrD), and 
fibronectin-binding protein (fnbp), while the genome of SA 
G5 contained additional genes responsible for collagen adhe-
sion (cna), and extracellular adherence protein (eap/map).

Several hemolysin toxin genes such as alpha (hla), beta 
(hlb), delta (hld) and gamma A, B, and C (hlgA, hlgC, 
and hlgB) were identified in both the strains. Bicomponent 
leukotoxins, leukocidin lukE, and lukD genes were identi-
fied in the SA H29 genome. In the sequenced genomes 10 
Staphylococcal enterotoxins (SEs) types were detected. 
The most prevalent enterotoxin genes, sea, and seb were 
presented in SA H29. The genome of SA G5 possessed 
8 enterotoxin gene types such as sec, sec3, seg, sei, sel, 
sem, seo, and seu. Toxin genes involved in immune eva-
sions such as IgG-binding proteins (sbi and spa), staphy-
lococcal complement inhibitor (scn), and staphylokinase 
(sak) were present in both genomes. Chemotaxis-inhib-
iting protein (CHIPS) encoded by chp was identified in 

the SA G5 genome. The antiphagocytosis capsular ste-
reotype encoding genes such as cap5C, cap5D, cap5F, 
cap5G, cap5O, cap5P, cap8M, and cap8N were present 
in both genomes, however, cap5E gene was detected in 
SA H29 genome. Moreover, capsular stereotype 8 genes 
(cap8E and cap8H) were detected in SA G5 genomes. S. 
aureus secret ESAT-6-like proteins consist of eight genes 
cluster namely esxA, esxB, esaA, esaB, esaC, essA, essB, 
and essC. These eight secretary system genes were identi-
fied in both genomes. Several exoenzyme encoding genes 
namely staphylocoagulase (coa), catalase (katA), hyalu-
ronidase (hysA), von Willebrand factor binding protein 
(vwb), zinc metalloproteinase aureolysin (aur), V8 pro-
tease/glutamyl endopeptidase (sspA), staphopain B (sspB), 
staphostatin B (sspC) and lipase (geh) were present in both 
genomes. Genes involved in iron uptake mechanism such 
as isdA, isdB, isdC, isdD, isdE, isdF, srtB, and isdG that 
encodes for cell surface protein, cell surface receptor, cell 
wall anchor protein, heme-transporter component, high-
affinity heme-uptake system protein, heme–iron transport 
system permease protein, sortase B and heme-degrading 
monooxygenase/staphylobilin-producing respectively, 
were identified in both genomes.

The putative plasmids were identified in nonaligned 
contigs that displayed an unexpected high coverage level 
after the genome assemblies. Two putative plasmids, 
p1H29 and p2H29 of 17,165 bp and 9020 bp lengths, 
respectively were identified in nonaligned contigs (scaf-
folds 2 and 3) of SA H29 genome, and these two plasmids 
constitute rep20 and rep7C type genes. Plasmid p1H29 has 
and showed 44.20% and 57.34% sequence coverage with 
plasmids pBU108b (KF831356.1) and pPS00089.1A.1 
(NZ_CP022911.1) respectively. Plasmid p2H29 has 
a length of and showed 23.42% and 23.45% sequence 
coverage with plasmid: II (LT671860.1), and UP_1395 
plasmid (NZ_CP047821.1) respectively. Identified plas-
mid p1H29 carried genes encoding cadmium resistance 
(CadD) and transportation (CadX) proteins, and entero-
toxins (EntA, EntD and EntG). Identified plasmid, p2H29 
has blaZ (beta-lactamase), blaR, and mecI genes that con-
ferred resistance to penicillin. The identified plasmids of 
S. aureus encode no transfer factors; thus, these plasmids 
may transfer via bacteriophage generalized transduction 
(McCarthy and Lindsay 2012).

A comparative phylogenetic relationship was analyzed 
using three different gene sequences (viz., 16S rRNA genes, 
SNPs, and genes encoding core protein) to compare at the 
strain level. The phylogenetic tree generated using 16S 
rRNA gene sequences showed that SA G5 and SA H29 
strains are highly similar and grouped them in the same 
group (Fig. 5b), however, the phylogenetic tree prepared 
from the SNP sequences and protein-coding gene sequences 
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grouped them differently suggesting that 16S rRNA gene 
sequences are not sufficient to discriminate them on the 
strain level, possibly due to the low resolution of their evolu-
tionary relationships (Konstantinidis and Tiedje 2007). It is 
interesting that both these methods and ANI values support 
each other and can be useful in distinguishing the genomes 
even in the strain level (Fig. 5b, c).

Discussion

In the present study thirty-five European S. aureus clini-
cal isolates were characterized by several different typing 
methods. The data generated from typing results along with 
virulence genes detection were evaluated through cluster 
analysis. Antibiotic susceptibility test and detection of mecA 

Fig. 5   Comparative phylogenetic analysis of SA G5 and SA H29 
strains with their closely related S. aureus strains. a Neighbor-joining 
tree prepared from the 16S rRNA gene sequences of SA G5, SA H29, 
and other related strains. Bacillus cereus ATCC 14,579 was used as 
an out-group and branch values are calculated from 500 bootstrap 
replicates. b Maximum likelihood (ML) tree based on all shared pro-

teins (core) obtained from the S. aureus genome sequences, where B. 
cereus ATCC14579 was used as an out-group. The ML tree was pre-
pared with the help of RAxML program. c Phylogeny tree based on 
the concatenated alignment of the high-quality SNPs using CSI phy-
logeny tool
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gene result showed 33 (94.28%) strains were MRSA while 2 
(5.72%) strains were MSSA. Such a validation process was 
reported by other researchers (Skov et al. 2006; Kumurya 
2015). Among the tested strains, 26 strains (71.43%) were 
found to be resistant to erythromycin. Prevalence of eryth-
romycin-resistant strains collected from Hungary repre-
senting 90.47% in a good agreement with previous data 
(Szabó et al. 2009). It was also reported that the frequency 
of erythromycin-resistance during 2010–2015 was 72% in 
Germany (Walter et al. 2017) and 60% in Greece (Stefanaki 
et al. 2017). However, in the present study, no vancomycin-
resistant strains were found which is supported by the obser-
vations of previous studies (Szabó et al. 2009; Chaudhari 
et al. 2014). Vancomycin kills Gram-positive bacteria by 
interfering with peptidoglycan synthesis and peptidoglycan 
assembly (McGuinness et al. 2017). The vancomycin sus-
ceptibility can be helpful in the treatment of MRSA infec-
tions. The resistance of S. aureus to vancomycin is gov-
erned by many factors. Previous studies have shown that 
point mutation in different regulatory loci associated with 
cell wall metabolism including two-component regulatory 
systems (guanylate kinase gene (gmk); walRK, graSR, and 
vraSR) resulted in vancomycin-resistant S. aureus strains 
(McAleese et al. 2006; Howden et al. 2008; Cui et al. 2009, 
2010; Cameron et al. 2012; Shekarabi et al. 2017). In addi-
tion to cell wall thickening, altered surface protein profile, 
enhanced capsule, and agr gene dysfunction are also found 
to be the cause of the generation of vancomycin-resistant 
S. aureus. The presence of the vanA operon is also found 
to confer vancomycin-resistant (Périchon and Courvalin 
2009; McGuinness et al. 2017). Also, it was observed that 
vancomycin-susceptibility in MRSA due to the activation 
of the WalRK two-component regulatory system (Cameron 
et al. 2016). The stains of the present study may neither 
have these mutations or cell wall-related modifications nor 
do they carry the genes required for vancomycin resistance 
and thus showed susceptible phenotype. However, a detailed 
study will be required to confirm the presence or absence of 
these factors.

Some of the MRSA strains produce PVL, encoded by 
two genes, lukS-PV, and lukF-PV which have been shown 
to play a role in the pathogenicity of S. aureus by provoking 
necrosis, accelerating apoptosis and destruction of polymor-
phonuclear and mononuclear-cells, thereby contributing to 
morbidity and mortality (Lina et al. 1999). It was reported 
that the low prevalence of pvl has found 5% and 4.9% in 
MRSA strains isolated from France and the UK respectively 
(Holmes et al. 2005). In the present study, 24.24% (8/33) 
strains were found positive to the pvl gene. Among these 
strains, three carried SCCmec type IV and one classified 
as SCCmec type V, however, four strains carried SCCmec 
II (Table 2). According to previous reports, MRSA strains 
belong to SCCmec types I, II, and III are dominant among 

the HA-MRSA, while SCCmec types IV and V characteristic 
of CA-MRSA (Monecke et al. 2011; Chua et al. 2014). In 
the present study, we found that SCCmec type II prevalence 
(12.12%) was higher in comparison with other SCCmec 
types. It was also reported that SCCmec type II usually pre-
sents in multidrug-resistant MRSA strains (Ito et al. 2001; 
Hiramatsu et al. 2001) and were dominant outside Euro-
pean countries (Kilic et al. 2006; Makgotlho et al. 2009; de 
Oliveira et al. 2015). Our data related to SCCmec type IV 
showed a higher prevalence (27.6%). The reason behind this 
observation is probably due to the easy acquisition of short 
size SCCmec type IV cassette (Robinson and Enright 2004). 
Even though the representation of non-typeable SCCmec 
in our case complies with the previous finding (Makgotlho 
et al. 2009), a few non-typeable SCCmec can be reduced by 
applying the new SCCmec cassette detection (Kaya et al. 
2018). Some of the MRSA strains harbored SCCmec IVa 
showed signs of pvl gene negative (Table 2), which is simi-
lar to the finding, reported earlier (Moroney et al. 2007). 
Our data related to pvl gene detection revealed that MRSA 
strains harboring SCCmec IVb and SCCmec IVd were found 
negative. Our finding also supports the idea that the harbor-
ing bacteriophage pvl gene by MRSA strains may not be 
a promising marker for CA-MRSA (Rossney et al. 2007). 
This conclusion is supported by other studies about SCCmec 
typing for the classification of HA-MRSA and CA-MRSA 
(Monecke et al. 2011; Chua et al. 2014). Taken together, our 
finding suggested that the SCCmec typing method is more 
informative in problem-solving approaches (control and pre-
vent infections caused by MRSA strains) for the clinicians 
and epidemiologists.

S. aureus secretes the coagulase enzyme, a polypeptide 
that helps promote the clotting of plasma or blood (Cheng 
et  al. 2010). The coa gene shows heterogenicity in the 
81 base-pair long tandem repeats region differing in num-
ber and location of restriction sites among the S. aureus 
isolates (Goh et al. 1992; Schwarzkopf and Karch 1994). 
The assay based on PCR amplification of the coa gene fol-
lowed by RFLP was used to differentiate among the geo-
graphically diverse MRSA strains. This technique is sim-
ple, rapid, specific, inexpensive, and reproducible; allowing 
early recognition of an epidemic strain in a hospital setting 
(Martineau et al. 1996; Hookey et al. 1998; Shopsin et al. 
2000; Mahmoudi et al. 2017). In this study, coa-PCR typing 
yielded seven different amplicons in size range from 550 to 
800 bp. Among 15 S. aureus strains, the highest occurrence 
size is 700 bp (33.33%) as shown in Table 4, however, it 
was earlier reported that 600 bp amplicon is the most pre-
dominant (Mahmoudi et al. 2017). Discrimination of coa 
gene-specific amplicon pattern was further improved by 
HaeIII restriction enzyme digestion, which yielded 11 types 
of patterns with DI of 0.9619. Our data were in good agree-
ment with the previous result in which DI was improved by 
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digestion (Janwithayanuchit et al. 2006). S. aureus produces 
protein A, an antiphagocytic protein that is coded by the spa 
gene (Shakeri et al. 2010). The analysis of spa-sequence 
revealed high diversity, however, two strains belonged to 
spa-type t008, and another two were classified to spa-type 
t062 (Supplementary Table 3). In a previous study con-
ducted on German, S. aureus isolates reported that t003 and 
t008 were predominant spa types (Strommenger et al. 2008). 
Also, a recently published article stated that t008 was the 
most prevalent spa type in Europe and America (Asadollahi 
et al. 2018). The spa-PCR typing method produced eleven 
different genotypes with variable amplicons size ranges from 
335 to 560 bp and revealed 0.9429 DI, which provides simi-
lar DI with coa-HaeIII RFLP method which is supported by 
a previous study (Omar et al. 2014). This study suggested 
that spa-typing has performed better than other molecular 
typing methods and showed better DP. This typing method is 
useful for studying the genetic diversity of S. aureus for the 
epidemiological tracking of the source of infections (Koreen 
et al. 2004) and offering several advantages in comparison 
with alternatives methods, such as a publicly available com-
prehensive and curated database for analyzing spa sequence 
with standard nomenclature (Strommenger et al. 2008).

In a good agreement with previous data, we found that 
not all ica-positive isolates produce biofilms (Møretrø et al. 
2003; Fitzpatrick et al. 2005), however, the clinical origin 
of the used S. aureus isolates was supported by the presence 
of icaADBC and icaR, indicating the ability to discriminate 
between the normal floras and virulence strains representa-
tives (Galdbart et al. 2000). In this study, we observed that 
66% of the isolates harbor two fnb genes almost similar to 
the results reported by Peacock et al. (2000) for European 
S. aureus strains. However, the presence of fnb genes in an 
isolate does not guarantee the biofilm-forming ability of the 
isolate.

In this study, the cna gene was found to be present in 
53.3% isolates. Earlier, the prevalence of the cna gene was 
reported in a range from 22 to 56.5% (Peacock et al. 1999; 
Rohde et al. 2007; Zmantar et al. 2008), The clfA, clfB, and 
epbs genes play an initial role for biofilm development (Gha-
semian et al. 2015), however, our data showed that the pres-
ence or absence of these genes does not represent a clear 
discriminative marker for differentiating strains in terms of 
biofilm-forming ability.

The grouping of the isolates based on the results of coa-
HaeIII-RFLP and spa gene sequences produced different 
groups with different strains. Therefore, the results of all the 
biochemical and genotypic tests were used to prepare a den-
drogram followed by PCA analysis. The dendrogram gener-
ated from the combined data of phenotypic and genotypic 
methods showed that the strain SA G5 and SA H29 collected 
from different geographical regions clustered together in the 
same group (Fig. 1b). Similar results were also obtained 

from the PCA analysis (Fig.  1c). To gain a better idea 
about their genetic background and closeness between the 
two strains, both strains were subjected to whole-genome 
sequencing and analysis. Comparative genome analysis of 
these two strains revealed 97.03% OrthoANI identity with 
a genetic distance of 0.0308, sharing 2344 gene clusters. 
The genes for virulence, resistance, plasmids, pathogenic-
ity islands, prophage-like elements, and mobile elements 
are encoded by singleton genes of the SA H29 genome, 
suggesting that these singleton genes might be inherited 
through horizontal gene transfer (HGT) events (Lindsay 
2014). Besides, the genes (5 genes) encoding lanthionine 
biosynthesis proteins were also found as singleton genes in 
the SA H29 genome. The presence of such genes influences 
the niche adaptation, pathogenesis, and contributes to evolu-
tion (Hacker and Carniel 2001). The map revealed a small 
gap with colorless region against the reference genome, 
which is due to the change in GC % content, this change 
in GC % content is due to the acquisition of gene through 
HGT (Hayek 2013) and the GC skewed regions indicated the 
regions where HGT occurred.

The 16S rRNA gene sequence-based phylogenetic analy-
sis has been used widely to study the evolutionary relation-
ships of microbes (Janda and Abbott 2002, 2007; Goswami 
et al. 2017). The phylogenetic tree generated using 16S 
rRNA gene sequences of the two isolates viz., SA G5, and 
SA H29 also clustered them in the same group whereas the 
other publicly available isolates were found in other groups 
(Fig. 5a) supporting the observations of the dendrogram and 
PCA analysis. However, the other two phylogenetic trees 
generated based on the SNP and core protein-coding gene 
sequences grouped the strain SA G5 and SA H29 in different 
groups. This indicated that these novel approaches of phylo-
genetic analysis using core protein-coding gene sequences 
and SNPs (Fig. 5b, c) are more powerful than the16S rRNA 
gene sequence-based phylogeny and are generally accept-
able to distinguish the genomes even in the genus or species 
level, higher strain-level resolution. It has been reported that 
16S rRNA gene sequence analysis is not powerful enough to 
discern clearly among the closely related species (Fox et al. 
1992). Overall, the results of the present study indicate that 
whole-genome sequence analysis is more powerful than the 
individual genotypic test and provide better insight into the 
taxonomic and genotypic background of the test isolates.

Conclusion

Methicillin-resistant S. aureus is the leading cause of 
nosocomial and community infections and the emergence 
of hypervirulent strains and becoming a greater threat to 
the public. The high-frequency emergence of antibiotic-
resistant could be due to the acquisition of resistance 
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determinants such as plasmids, integrons, and transposons 
through horizontal or vertical gene transfer and partly by 
improper administration of antibiotics. The phenotypic and 
genotypic characterizations are important for identifying the 
risk factors associated with S. aureus infections and useful 
to monitor and control the circulation or transmission of 
these strains. But a comparative analysis of the pathogens 
based on the NGS-based genome sequencing technique 
could extend our understanding of pathogenesis and evolu-
tion at the molecular level and has the potential to a break-
through in diagnosis, treatment, and infection control. In 
this study, the comparative genomic analysis revealed that 
niche-specific differences between the S. aureus strains in 
terms of genes and genes clusters that are related to amino 
acid metabolism, carbohydrate metabolism, cell envelope 
biogenesis, defense mechanisms, secondary metabolism, 
and phage-like elements. The difference in the presence 
of resistance genes (penicillin, methicillin, erythromycin, 
aminoglycoside, streptothricin acetyltransferase, and cad-
mium), VFGs (hlb, chp, scn, ear, qsa, sea, seb, sel, seg, 
lukD, lukE, sasH, clfA, and eap), plasmids and phage-related 
genes between the strains were also observed which may 
be due to the events like HGT and homologous recombi-
nation. Also, the comparative genome analysis provides 
high resolution to distinguish between the closely related 
sequenced strains which are indistinguishable by SCCmec 
and spa typing. The whole-genome analysis technique is a 
feasible tool to improve clinical diagnostic investigations of 
clinical infectious diseases in real-time and provides the goal 
of improving patient care.
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