Published in final edited form as:

Chem Commun (Camb). 2020 August 18; 56(64): 9098–9101. doi:10.1039/d0cc03994b.

Quantifying the Effects of Quadrupolar Sink via ¹⁵N Relaxation Dynamics in Metronidazoles Hyperpolarized via SABRE-SHEATH

Jonathan R. Birchall^a, Mohammad S. H. Kabir^a, Oleg G. Salnikov^{b,c,d}, Nikita V. Chukanov^{b,c}, Alexandra Svyatova^{b,c}, Kirill V. Kovtunov^{b,c}, Igor V. Koptyug^{b,c}, Juri G. Gelovani^{a,e}, Boyd M. Goodson^f, Wellington Pham^g, Eduard Y. Chekmenev^{a,h}

^aDepartment of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.

^bInternational Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia

^cNovosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia

^dBoreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia

^eUnited Arab Emirates University, Al Ain, United Arab Emirates

^fDepartment of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States

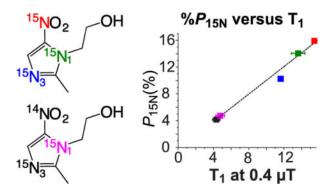
^gVanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States

hRussian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia

Abstract

 15 N spin-lattice relaxation dynamics in metronidazole- 15 N $_3$ and metronidazole- 15 N $_2$ isotopologues are studied for rational design of 15 N-enriched biomolecules for Signal Amplification by Reversible Exchange in microtesla fields. 15 N relaxation dynamics mapping reveals the deleterious effects of interactions with polarization transfer catalyst and quadrupolar 14 N nucleus within the spin-relayed 15 N- 15 N network.

Graphical Abstract


Electronic Supplementary Information (ESI) available: Numerical values of 15 N polarization build-up and polarization decay constants, additional experimental details (file type, PDF). See DOI: 10.1039/x0xx00000x

Conflicts of interest

BMG, EYC declare stake ownership in XeUS Technologies, LTD.

chekmenevlab@gmail.com.

To the memory of Dr. Kirill V. Kovtunov (PhD, 1983–2020), friend, colleague, and mentor.

Presence of 14 N nucleus in the scalar coupling network causes deleterious effects in SABRE hyperpolarization in microtesla fields resulting in 3-fold decrease of 15 N T_1 and polarization values for all 15 N sites in 15 N₂-isotopologue versus 15 N₃-isotopologue.

The nuclear spin polarization P at thermal equilibrium is governed by a Boltzmann distribution of nuclear spins among Zeeman energy levels. P increases linearly with magnetic field strength. For a conventional high-field NMR spectrometer (e.g., 9.4 T) or clinical Magnetic Resonance Imaging (MRI) scanner (e.g., 3 T) at room temperature, P is typically on the order of 10^{-5} to 10^{-6} , resulting in a relatively low sensitivity of NMR-based applications. For NMR applications where this sensitivity is too low to be useful, various hyperpolarization strategies may be employed to increase P by as much as 4–5 orders of magnitude, $^{1, 2}$ with corresponding signal gains.

One such technique is Signal Amplification by Reversible Exchange (SABRE), pioneered by Duckett *et al.* in 2009,³ which utilizes simultaneous reversible chemical exchange of parahydrogen (p-H₂) and to-be-hyperpolarized substrate molecules at a metal center. In SABRE, the transfer of nuclear spin polarization from parahydrogen-derived hydrides to a spin-polarizable substrate occurs spontaneously via the network of spin-spin couplings established in a transient polarization transfer catalyst (PTC) complex (Figure 1a).^{3–5} While several approaches have been developed for polarization transfer in SABRE,^{6–11} a variant of SABRE, SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei),^{12, 13} facilitates the generation of highly polarized spin states of heteronuclei^{14–17} including nitrogen-15 with high polarization (*P*_{15N}>30% ¹⁸) persisting for tens of minutes. ¹⁹ Nitrogen is found in a wide range of biomolecules including nucleic acids, amino acids, proteins, and drugs. Since SABRE-SHEATH is performed at very low magnetic fields (< 1 μT) and near room temperature, the production of such HP ¹⁵N spin-labeled biomolecules is comparatively simple, fast and inexpensive.¹⁰

Nitroimidazoles can be readily reduced in anaerobic environments. This property has been widely employed in a number of antibiotic drugs,²⁰ Positron Emission Tomography (PET) tracers for hypoxia sensing,²¹ and also in a number of emerging cancer therapeutics: *e.g.*, evofosfamide (a.k.a. TH-302)²² and the radiosensitizer nimorazole.²³

Metronidazole is an FDA-approved antibiotic,²⁴ belonging to the nitroimidazole class of compounds. We envision that ¹⁵N-hyperpolarized metronidazole can be potentially

employed for hypoxia sensing in a manner similar to that of nitroimidazole-based Positron Emission Tomography (PET) tracers. One such tracer, ¹⁸F-fluoromisonidazole (FMISO), ²¹ undergoes reduction in hypoxic environment (including most notably hypoxic tumors) and the metabolic products of this reduction process become trapped in hypoxic cells, providing contrast in FMISO PET images. ²⁵ The enormous potential for using HP MRI to sense metabolic transformations *in vivo* has been well demonstrated ^{10, 26}; correspondingly, HP MRI of metronidazole may obviate the limitations of FMISO PET imaging, including the use of ionizing radiation, the requirement for long clearance time from surrounding tissues, and the inability to spectrally distinguish parent compounds from downstream products.

We have demonstrated efficient SABRE-SHEATH hyperpolarization of the $^{15}N_3$ site in natural abundance metronidazole with $^{15}N_1$ exceeding 30%. 18 This nitrogen site directly interacts with the PTC, and therefore gains its polarization directly from p-H₂-derived hydrides. Subsequently, commercially available metronidazole- $^{15}N_2$ - $^{13}C_2$ (Sigma-Aldrich, #32744) was employed for SABRE-SHEATH, but unfortunately yielded significantly lower $^{15}N_1$ (roughly by an order of magnitude), although all $^{15}N_1$ - and $^{13}C_1$ -labeled sites have been successfully hyperpolarized. 27,28 Most recently we have synthesized metronidazole- $^{15}N_3$ and demonstrated $^{15}N_1$ -syn-relayed SABRE-SHEATH hyperpolarization via two-bond $^{15}N_1$ -N spin-spin couplings, Figure 1d. This metronidazole- $^{15}N_3$ isotopologue exhibited a remarkable $^{15}N_1$ -of $^{15}N_2$ -of all three $^{15}N_3$ sites including $^{15}N_1$ -0, which has a polarization relaxation decay constant $^{15}N_1$ approaching 10 minutes. However, in order to facilitate more effective production of HP biomolecules for bioimaging applications, it is clearly necessary to gain improved understanding of the underlying spin-relaxation phenomena to inform the rational design of these promising imaging agents.

Here, we report a quantitative study of spin relaxation dynamics of metronidazole-¹⁵N₂ and metronidazole-¹⁵N₃ isotopologues, Figure 1c and Figure 1d respectively, using previously described experimental setup (Figure S2).^{27, 29} Catalyst activation was performed for approximately 2 h for each sample studied to ensure reproducibility, see Figure S1 in the Supporting Information (SI). Other experimental parameters (temperature, p-H₂ pressure, flow rate and in-shield magnetic field) were optimized for each isotopologue, Figure S1. Using an overpressure of 94 psig, p-H₂ was bubbled through a solution of MNZ ¹⁵N-isotopologue substrate and Ir-IMes catalyst in 0.6 mL methanol-d₄ for one minute to facilitate polarization transfer in microtesla fields. Following polarization build-up, the sample solution was rapidly transferred (2–4 s to minimize the relaxation losses) to a 1.4 T NMR Pro (Nanalysis, Canada) bench-top NMR spectrometer for ¹⁵N NMR detection (Figure 1h). Each relaxation/build-up curve was obtained by varying the time duration that the sample spent in a given magnetic field.

The key results related to 15 N T_1 relaxation at the optimal magnetic field during the SABRE-SHEATH polarization transfer process ($ca. 0.4 \mu T$, Figure S1) for metronidazole- 15 N₃ and metronidazole- 15 N₂ are shown in Figures 2e and 2f, respectively. As expected for microtesla magnetic fields, all 15 N sites within a given molecule share approximately the same relaxation rate (e.g., 13.8-15.4 s for MNZ- 15 N₃, Figure 2e). However, the 15 NO₂ group replacement by 14 NO₂ leads to dramatic, 3-fold shortening of the

¹⁵N T_1 (4.3–4.8 s corresponding T_1 values for MNZ-¹⁵N₂, Figure 2f). This striking effect can be explained by the enhanced scalar relaxation of the second kind^{30, 31} induced by the quadrupolar ¹⁴NO₂ site within the N-N spin-spin coupling network. These results are further supported by the overall similar ¹⁵N T_1 trend at the Earth's magnetic field (*ca.* 10 μT in the basement of our lab at Detroit, MI, Table S1). Moreover, we find that each ¹⁵N polarization build-up constant (T_b , Figure 2c and Figure 2d) at 0.4 μT is closely correlated with the corresponding T_1 value. In practice, this means that the increased relaxation rate caused by the presence of the quadrupolar ¹⁴N spin in MNZ-¹⁵N₂ (despite the peripheral position of the NO₂ group) allows for achieving the steady-state % P_{15N} faster on ¹⁵N₃ and ¹⁵N₁ sites—but at significantly lower levels. The correlation plot of % P_{15N} versus T_1 at 0.4 μT indeed exhibits a linear trend with R²>0.99 (Figure 2inset). When the magnetic field is sufficiently high (*e.g.*, 1.4 T, Figure 2g and Figure 2h), the increased frequency dispersion of the nuclear spins puts them in a weakly coupled regime with ¹⁵N sites having significantly longer T_1 decay constants—on the order of many minutes.

On another note, the realization that scalar-coupled ^{14}N spins are highly deleterious in the context of SABRE-SHEATH suggests that if these quadrupolar effects would have been avoided, near-unity P_{15N} would have been potentially achievable in the previous studies. 18

It should be pointed out that substrate exchange of Ir-IMes catalyst may act as the potential source of additional undesirable ¹⁵N relaxation (e.g., due to compounding effects of quadrupolar Ir nucleus and the chemical exchange process). 13 Consequently, a series of control experiments were performed, where the catalyst concentration was systematically varied from 0.5 mM to 1 mM to 2 mM at a fixed concentration of metronidazole isotopologue (Figures S3a-d). The [catalyst] increase from 0.5 mM to 2 mM results in a stepwise decrease in 15 N T_1 and T_b by approximately 2-fold at 0.4 μ T (Figure S3b and Figure S3c). However, because the interplay of T_1 relaxation and catalyst concentration is complex in the SABRE process, $^{32, 33}$ these decreases in 15 N T_1 and T_b at $0.4 \,\mu\text{T}$ are offset by the overall increased catalyst-to-substrate ratio (i.e., better substrate access to p-H₂ spin bath), resulting in somewhat greater $\%P_{15N}$ in metronidazole- $^{15}N_3$ and similar $\%P_{15N}$ in metronidazole-¹⁵N₂ at higher [catalyst], Figure S3d. Of note, the Ir-IMes catalyst decreases 15 N T_1 even at high magnetic fields (1.4 T, weakly coupled regime) for 15 NO₂ (Figure S3a). Moreover, this observation clearly indicates a second reason (beyond agent purification) that SABRE catalyst removal^{18, 34–36} is warranted as soon polarization build-up is completed to minimize ¹⁵N polarization losses prior to biomedical utilization of HP metronidazole-¹⁵N₃ as a contrast agent.

The high levels of ¹⁵N polarization obtained in ¹⁵N-labeled metronidazole isotopologues enable direct ¹⁵N MRI. Figure 3 demonstrates the 2D ¹⁵N projection images of 5 mm NMR tubes filled with HP solutions of ¹⁵N-labeled metronidazole isotopologues with the highest spatial resolution reported to date to the best of our knowledge.

Conclusions

In summary, the spin-relayed SABRE-SHEATH hyperpolarization approach allows efficient polarization of scalar coupled ¹⁵N-¹⁵N spin networks. These networks may be created via

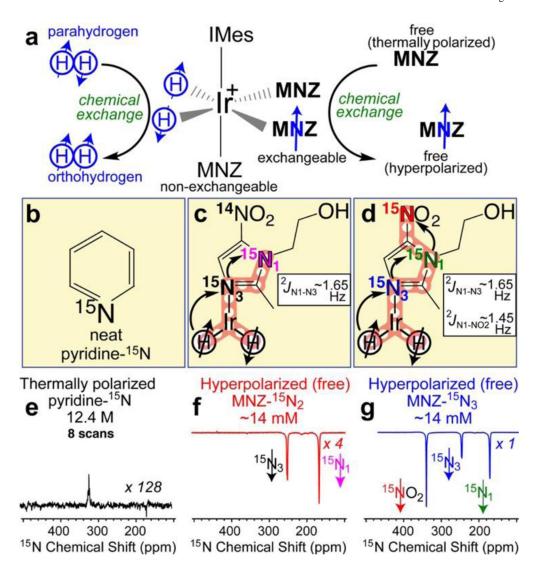
two-bond ¹⁵N-¹⁵N *J*-couplings at most. The presence of ¹⁴N spins in such networks must be avoided to prevent deleterious polarization losses due to quadrupolar relaxation effects (manifested on ¹⁵N as scalar relaxation of the second kind¹⁶), in order to maximize the resulting % P_{15N} . Although the catalyst decreases the ¹⁵N spin-relaxation time constant, T_1 , of metronidazole isotopologues in the microtesla regime in a concentration-dependent manner, the overall impact on the achievable ¹⁵N polarization level is relatively minor. On the other hand, the presence of a ¹⁴N nucleus in the scalar coupling network results in an approximately 3-fold decrease of microtesla 15 N T_1 values for all 15 N sites in the 15 N₂isotopologue versus the ¹⁵N₃-isotopologue over a wide range of catalyst concentrations. This 15 N T_1 reduction results in a corresponding 3-fold decrease of 15 N polarization levels. These findings have substantial translational relevance for the rational design of hyperpolarized MRI contrast agents comprising ¹⁵N- and ¹³C-labeled biomolecules—both in general, and in the specific case of SABRE-hyperpolarized metronidazole, an antibiotic that can be potentially employed for non-invasive hypoxia sensing antibiotics, ²⁰ emerging cancer therapeutics such as evofosfamide²² and nimorazole radiosensitizers, ²³ etc. Feasibility of high resolution MRI of HP metronidazole is shown, which bodes well for potential biomedical applications.

Supplementary Material

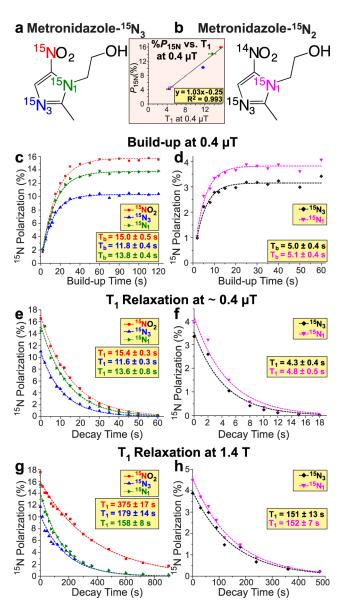
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the NSF under grants CHE-1904780 and CHE-1905341, NIH R21CA220137, DOD CDMRP W81XWH-12-1-0159/BC112431, W81XWH-15-1-0271 and W81XWH-15-1-0272. O.G.S. thanks the RFBR (#19-33-60045) for the support of mechanistic studies with the use of parahydrogen. N.V.C. and K.V.K. thank the RFBR and Novosibirsk region government (#18-43-543023) for their support in the synthesis of ¹⁵N-labeled compounds. I.V.K. thanks the Russian Ministry of Science and Higher Education (project AAAA-A16-116121510087-5) and the RFBR (#19-29-10003, #17-54-33037) for financial support.


Notes and References

- 1. Ardenkjaer-Larsen JH, J. Magn. Reson, 2016, 264, 3-12. [PubMed: 26920825]
- Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA and Koptyug IV, Chem. Asian J, 2018, 13, 1857–1871.
- 3. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J and Williamson DC, Science, 2009, 323, 1708–1711. [PubMed: 19325111]
- 4. Rayner PJ and Duckett SB, Angew. Chem. Int. Ed, 2018, 57, 6742–6753.
- Cowley MJ, Adams RW, Atkinson KD, Cockett MCR, Duckett SB, Green GGR, Lohman JAB, Kerssebaum R, Kilgour D and Mewis RE, J. Am. Chem. Soc, 2011, 133, 6134–6137. [PubMed: 21469642]
- 6. Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC and Green GGR, Prog. Nucl. Mag. Res. Spectrosc, 2012, 67, 1–48.
- 7. Ivanov KL, Pravdivtsev AN, Yurkovskaya AV, Vieth H-M and Kaptein R, Prog. Nucl. Mag. Res. Spectrosc, 2014, 81, 1–36.
- 8. Pravdivtsev AN, Yurkovskaya AV, Zimmermann H, Vieth H-M and Ivanov KL, RSC Adv, 2015, 5, 63615–63623.
- Pravdivtsev AN, Yurkovskaya AV, Vieth H-M and Ivanov KL, J. Phys. Chem. B, 2015, 119, 13619– 13629. [PubMed: 25970807]


10. Hövener J-B, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM and Chekmenev EY, Angew. Chem. Int. Ed, 2018, 57, 11140–11162.

- 11. Barskiy DA, Kovtunov KV, Koptyug IV, He P, Groome KA, Best QA, Shi F, Goodson BM, Shchepin RV, Truong ML, Coffey AM, Waddell KW and Chekmenev EY, ChemPhysChem, 2014, 15, 4100–4107. [PubMed: 25367202]
- 12. Theis T, Truong ML, Coffey AM, Shchepin RV, Waddell KW, Shi F, Goodson BM, Warren WS and Chekmenev EY, J. Am. Chem. Soc, 2015, 137, 1404–1407. [PubMed: 25583142]
- 13. Truong ML, Theis T, Coffey AM, Shchepin RV, Waddell KW, Shi F, Goodson BM, Warren WS and Chekmenev EY, J. Phys. Chem. C, 2015, 119, 8786–8797.
- Duckett S, Roy S, Norcott P, Rayner PJ and Green GGR, Chem. Eur. J, 2017, 23, 10496–10500.
 [PubMed: 28627764]
- Olaru AM, Robertson TBR, Lewis JS, Antony A, Iali W, Mewis RE and Duckett SB, ChemistryOpen, 2018, 7, 97–105. [PubMed: 29318102]
- Barskiy DA, Shchepin RV, Tanner CPN, Colell JFP, Goodson BM, Theis T, Warren WS and Chekmenev EY, ChemPhysChem, 2017, 18, 1493–1498. [PubMed: 28517362]
- Shchepin RV, Goodson BM, Theis T, Warren WS and Chekmenev EY, ChemPhysChem, 2017, 18, 1961–1965. [PubMed: 28557156]
- 18. Kidd BE, Gesiorski JL, Gemeinhardt ME, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY and Goodson BM, J. Phys. Chem. C, 2018, 122, 16848–16852.
- Shchepin RV, Birchall JR, Chukanov NV, Kovtunov KV, Koptyug IV, Theis T, Warren WS, Gelovani JG, Goodson BM, Shokouhi S, Rosen MS, Yen Y-F, Pham W and Chekmenev EY, Chem. Eur. J, 2019, 25, 8829–8836. [PubMed: 30964568]
- 20. Nepali K, Lee H-Y and Liou J-P, J. Med. Chem, 2018, 62, 2851–2893. [PubMed: 30295477]
- Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K and Rajendran J, Radiother. Oncol, 2011, 101, 369–375. [PubMed: 21872957]
- 22. O'Connor LJ, Cazares-Körner C, Saha J, Evans CNG, Stratford MRL, Hammond EM and Conway SJ, Org. Chem. Front, 2015, 2, 1026–1029.
- 23. ClinicalTrials.gov, Clinical tiral #NCT01507467.
- 24. Roy RB, Laird SM and Heasman L, Br. J. Vener. Dis, 1975, 51, 281–284. [PubMed: 1098732]
- 25. Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima K.-i., Zhao S, Higashino K, Sakamoto S, Numata Y, Yamaguchi Y, Tamaki N and Kuge Y, Sci. Rep, 2015, 5, 16802. [PubMed: 26582591]
- Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS and Malloy CR, Neoplasia, 2011, 13, 81–97. [PubMed: 21403835]
- 27. Shchepin RV, Jaigirdar L, Theis T, Warren WS, Goodson BM and Chekmenev EY, J. Phys. Chem. C, 2017, 121, 28425–28434.
- 28. Shchepin RV, Jaigirdar L and Chekmenev EY, J. Phys. Chem. C, 2018, 122, 4984–4996.
- 29. Theis T, Ariyasingha NM, Shchepin RV, Lindale JR, Warren WS and Chekmenev EY, J. Phys. Chem. Lett, 2018, 9, 6136–6142. [PubMed: 30284835]
- Bernatowicz P, Kubica D, Ociepa M, Wody ski A and Gryff-Keller A, J. Phys. Chem. A, 2014, 118, 4063–4070. [PubMed: 24835107]
- 31. Blanchard JW, Sjolander TF, King JP, Ledbetter MP, Levine EH, Bajaj VS, Budker D and Pines A, Phys. Rev. B, 2015, 92, 220202.
- 32. Barskiy DA, Pravdivtsev AN, Ivanov KL, Kovtunov KV and Koptyug IV, Phys. Chem. Chem. Phys, 2016, 18, 89–93. [PubMed: 26645782]
- 33. Barskiy DA, Knecht S, Yurkovskaya AV and Ivanov KL, Prog. Nucl. Mag. Res. Spectrosc, 2019, 114-115, 33-70.-
- 34. Barskiy DA, Ke LA, Li X, Stevenson V, Widarman N, Zhang H, Truxal A and Pines A, J. Phys. Chem. Lett, 2018, 9, 2721–2724. [PubMed: 29739186]
- 35. Mewis RE, Fekete M, Green GGR, Whitwood AC and Duckett SB, Chem. Comm, 2015, 51, 9857–9859. [PubMed: 25989727]

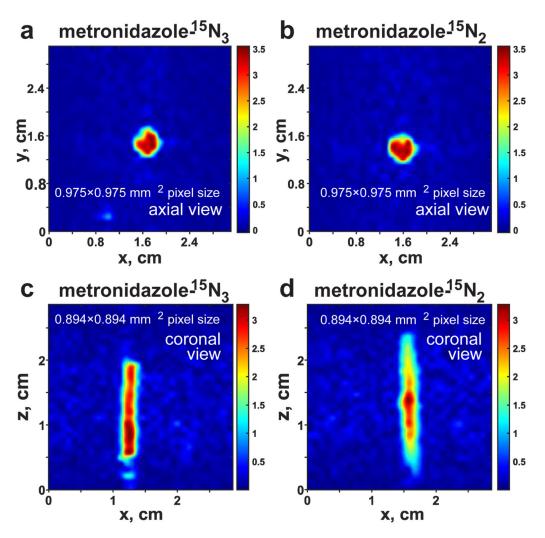

36. Manoharan A, Rayner P, Iali W, Burns M, Perry V and Duckett S, ChemMedChem, 2018, 13, 352–359. [PubMed: 29232489]

Figure 1.a) Molecular exchange between p-H₂ and substrate, *e.g.*, metronidazole (MNZ) employed here, in SABRE hyperpolarization. b) Structure of pyridine-¹⁵N employed as a signal reference. c-d) Corresponding structures and polarization transfer spin-relays (red overlay) between p-H₂ and ¹⁵N nuclei in corresponding MNZ ¹⁵N-isotopologues. e) Signal reference ¹⁵N NMR spectrum of a thermally polarized neat pyridine-¹⁵N acquired with 8 scans and 10-minute recovery time. f-g) Corresponding ¹⁵N NMR spectra of HP metronidazole-¹⁵N₂ and metronidazole-¹⁵N₃.

Figure 2. a-b) Structures of two metronidazole ¹⁵N-isotopologues. c-d) Corresponding ¹⁵N polarization build-up curves at 0.4 μ T. e-f) Corresponding ¹⁵N T_1 decay curves at 0.4 μ T. g-h) Corresponding ¹⁵N T_1 decay curves at 1.4 T. The presented data was recorded using a 2 mM IrIMes catalyst concentration and a corresponding 20 mM MNZ isotopologue concentration. All experiments are performed in CD₃OD.

Figure 3. \$^{15}N MRI of 5 mm NMR tubes filled with hyperpolarized solutions of 0.1 M metronidazole-\$^{15}N_3\$ (MNZ-\$^{15}N_3\$) and metronidazole-\$^{15}N_2\$ (MNZ-\$^{15}N_2\$) respectively using 5 mM of Ir(COD)(IMes)Cl in methanol-\$^{4}_{0}\$ obtained by TrueFISP pulse sequence. Imaging parameters employed: TR = 62.5 ms, TE = 3.6 ms, scan time = 2.0 seconds, flip angle = 15°, matrix size = 32×32 (zero-filled to 512×512). a) axial projection 2D image of metronidazole- $^{15}N_3$ using 1 average (maximum SNR(SNR_MAX) is ~500, b) axial projection 2D image of metronidazole- $^{15}N_2$ using 1 average, SNR_MAX is ~410, c) coronal projection 2D image of metronidazole- $^{15}N_3$ using 8 averages, SNR_MAX is ~450, d) coronal projection 2D image of metronidazole- $^{15}N_2$ using 8 averages, SNR_MAX is ~340.