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A robust 11‑genes prognostic model can 
predict overall survival in bladder cancer 
patients based on five cohorts
Jiaxing Lin1†, Jieping Yang1†, Xiao Xu2, Yutao Wang1, Meng Yu3* and Yuyan Zhu1* 

Abstract 

Background:  Bladder cancer is the tenth most common cancer globally, but existing biomarkers and prognostic 
models are limited.

Method:  In this study, we used four bladder cancer cohorts from The Cancer Genome Atlas and Gene Expression 
Omnibus databases to perform univariate Cox regression analysis to identify common prognostic genes. We used 
the least absolute shrinkage and selection operator regression to construct a prognostic Cox model. Kaplan–Meier 
analysis, receiver operating characteristic curve, and univariate/multivariate Cox analysis were used to evaluate the 
prognostic model. Finally, a co-expression network, CIBERSORT, and ESTIMATE algorithm were used to explore the 
mechanism related to the model.

Results:  A total of 11 genes were identified from the four cohorts to construct the prognostic model, including eight 
risk genes (SERPINE2, PRR11, DSEL, DNM1, COMP, ELOVL4, RTKN, and MAPK12) and three protective genes (FABP6, 
C16orf74, and TNK1). The 11-genes model could stratify the risk of patients in all five cohorts, and the prognosis was 
worse in the group with a high-risk score. The area under the curve values of the five cohorts in the first year are all 
greater than 0.65. Furthermore, this model’s predictive ability is stronger than that of age, gender, grade, and T stage. 
Through the weighted co-expression network analysis, the gene module related to the model was found, and the key 
genes in this module were mainly enriched in the tumor microenvironment. B cell memory showed low infiltration in 
high-risk patients. Furthermore, in the case of low B cell memory infiltration and high-risk score, the prognosis of the 
patients was the worst.

Conclusion:  The proposed 11-genes model is a promising biomarker for estimating overall survival in bladder 
cancer. This model can be used to stratify the risk of bladder cancer patients, which is beneficial to the realization of 
individualized treatment.
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Background
Bladder cancer is the tenth most common cancer in the 
world. It is more common in men than in women, and 
the morbidity and mortality rate in men is four times 
higher than that in women [1]. A significant risk factor 
for bladder cancer is smoking, with half of all cases are 
linked to smoking [2, 3]. About 75% of patients with non-
muscular invasive bladder cancer are treated by radical 
tumor resection, followed by intravesical instillation of 
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Bacille Calmette-Guérin vaccine. Approximately 25% of 
patients have muscular invasive or metastatic bladder 
cancer, and are treated with radical cystectomy and neo-
adjuvant chemotherapy [4]. Bladder cancer is a complex 
disease. Although many clinical factors and molecular 
markers have been identified that can predict prognosis 
[5], these have low accuracy, and it does not have univer-
sal applicability.

With the continued development of gene sequencing 
technology and expansion of public databases, it is pos-
sible to take advantage of biological information to mine 
sequencing data and identify biomarkers. This method 
can utilize large sample sizes with less investment, mak-
ing it an important new direction to screen disease bio-
markers. Of available databases, the Cancer Genome 
Atlas (TCGA, https​://cance​rgeno​me.nih.gov/) database is 
an authoritative oncology database, and the Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) 
database stores curated gene expression datasets. Many 
studies have constructed a multi-queue verification 
model based on these two databases, such as non-small 
cell lung cancer [6, 7], and ovarian cancer [8]. Prognos-
tic models provide effective guidance for doctors and 
patients to make optimal treatment decisions. However, 
in the study of the bladder cancer model, many models 
can only be verified in two or three cohorts [9, 10] and do 
not have clinical extensibility.

In this study, gene expression and clinical data related 
to bladder cancer were obtained from TCGA and GEO 
databases, and common prognostic genes were screened 
by univariate Cox proportional hazard regression. This 
prognostic model of bladder cancer was constructed by 
least absolute shrinkage and selection operator (Lasso) 
regression and then verified using five cohorts. This 
robust model can help patients with bladder cancer to 
achieve individualized treatment.

Materials and methods
Data obtaining and processing
To reduce the error of the data, we searched the TCGA 
and GEO databases for bladder cancer cohorts with a 
sample size of more than 100, and these cohorts need 
to include survival status and survival time. We found a 
total of five cohorts. The raw RNA sequencing and clini-
cal data of bladder urothelial carcinoma (BLCA, n = 412) 
were obtained from TCGA database, and the raw RNA 
sequencing and clinical data of GSE13507 (n = 165) [11], 
GSE32548 (n = 146) [12], GSE32894 (n = 308) [13] and 
GSE48075 (n = 142) [14] from the GEO database. These 
five cohorts were analyzed on the Illumina sequencing 
platform. In R Programming Language software, the R 
package “edgeR” [15] was used to standardize the raw 

RNA expression matrix and obtain the corresponding log 
values.

Construction of prognostic model
The Cox proportional hazard regression model was 
applied to perform univariate Cox proportional haz-
ard analysis of all genes in TCGA-BLCA, GSE13507, 
GSE32548, and GSE32894 cohorts. The hazard ratio 
(HR) from univariate Cox regression analysis was used to 
select the genes that were positively or negatively related 
to prognosis. A gene with HR > 1 was considered a risk 
gene, and a gene with HR < 1 was considered a protec-
tive gene; statistical significance was defined as p < 0.05. 
The genes with HR > 1 and p < 0.05 were selected from 
the four cohorts, and then risk genes were obtained by 
overlapping four groups of genes. Similarly, genes with 
HR < 1 and p < 0.05 were selected for the four cohorts and 
combined to obtain the set of protective genes. A Venn 
diagram was constructed using the online tool Bioinfor-
matics and Evolutionary Genomics (http://bioin​forma​
tics.psb.ugent​.be/webto​ols/Venn/). The identified risk 
and protective genes make up a set of prognostic genes.

The data from TCGA-BLCA as a training set was used 
to construct a prognostic model. To simplify the model, 
the genes were selected by univariate Cox regression 
analysis with a p value less than 0.01. The R package “glm-
net” [16] and “survival” were used to do Lasso regression 
to further screen genes and construct a Cox module. 
First, the function “glmnet” was randomly simulated 
1000 times to construct the model and establish the rela-
tionship between lambda (punishment coefficient) and 
regression coefficients (coef ). A higher value of lambda 
corresponds to greater punishment. With the increase 
of lambda, some gene coef become zero, indicating that 
the expression of the gene will not affect the model, so 
this gene can be removed from the model. Then the func-
tion “cv.glmnet” was randomly simulated 1000 times for 
cross-validation (CV). CV is usually divided into hold-
out, k-fold and leave-one-out CV. The function used 
k-fold CV, and k took the default parameter 10. In ten-
fold cross validation, the data set is divided into 10 equal 
parts, and then nine part are tested as training sets and 
one is used as the validation set. The deviance of the 10 
tests were used to estimate the accuracy of the model. 
When the deviance is minimum, the model is the best, 
and the coef of the model can then be obtained by using 
the corresponding lambda value. Finally, we obtained the 
genes and the corresponding coef to build the model. 
The prognostic model was defined as: Risk score = ∑ni 
(expi · coefi) (where n is the number of genes, expi is the 
expression of the ith gene, and coefi is the regression 
coefficient of the ith gene). The algorithm can prevent 
over-fitting of the model, remove highly co-expressed 
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genes, and finally construct a simplified model. Using 
the obtained model, we calculated the risk score of each 
patient in the four cohorts.

Kaplan–Meier analysis
R packages “survival” and “survminer” were used for 
Kaplan–Meier analysis, and the function “res.cat” was 
used to find the best cut-off value of factors. The cut-off 
was used to divide the sample into a high-risk group and 
a low-risk group to construct the Kaplan–Meier curve 
with the smallest p value. The risk score distribution, 
gene expression, and patient survival status data were 
plotted using the R package “pheatmap”.

Receiver operating characteristic curve
Receiver operating characteristic (ROC) curves of 
1/3/5  years were plotted and the area under the curve 
(AUC) values were calculated using the R package 
“survivalROC”.

Univariate and multivariate Cox regression analysis
The risk scores and clinicopathological factors were ana-
lyzed by univariate and multivariate Cox regression anal-
ysis using the R package “survival”. The multivariate Cox 
analysis included age, sex, primary tumor range (T stage), 
grade, and risk score (TCGA-BLCA and GSE13507 also 
include stage, lymph node and metastasis).

Exploration of gene methylation
“CBioPortal for Cancer Genomics” is an open-access 
open-source resource (https​://www.cbiop​ortal​.org) for 
interactive exploration of multiple cancer genomics 
data sets [17, 18]. Use this tool to query the relationship 
between gene expression and DNA methylation in the 
“Bladder Cancer (TCGA, Cell 2017)” dataset. The tool 
can also download gene methylation data, which can be 
combined with clinical data for Kaplan–Meier analysis.

Weighted co‑expression network analysis
The set of mRNA genes in the TCGA-BLCA cohort 
with univariate Cox analysis values less than 0.05 were 
selected to construct a bladder cancer co-expression net-
work by weighted gene co-expression network analysis 
(WGCNA). The R package “WGCNA” was used to con-
struct the co-expression network [19]. This method takes 
advantage of similarities of gene expression and groups 
the genes with similar expression patterns into the same 
module, with the idea that genes in the same module 
may share physiological function. We then explored the 
relationship between the clinical-factor/risk-score and 
module, and applied Pearson correlation to determine 
the module that was most related to the risk score. The 
key genes were selected by the calculated correlation 

between genes (module-membership > 0. 8), and the cor-
relation between genes and clinical traits (Gene-signifi-
cance > 0. 5).

Pathway and process enrichment analysis
Identified genes were entered into the Metascape data-
base (http://metas​cape.org) [20] for pathway and process 
enrichment analysis. The enrichment analysis included 
“KEGG Pathway, GO Biological Processes, Reactome 
Gene Sets, Canonical Pathways, and CORUM” to evalu-
ate the potential biological functions and pathways of the 
selected genes.

CIBERSORT and ESTIMATE algorithm
CIBERSORT (Cell-type Identification By Estimating 
Relative Subsets Of RNA Transcripts) is a bioinformatics 
algorithm to calculate cell composition from gene expres-
sion profiles of complex tissues [21]. The combination of 
CIBERSORT and LM22 (leukocyte signature matrix) can 
be used to calculate the content of 22 kinds of human 
leukocyte subsets. We used the R package “CIBERSORT” 
to calculate the number of immune cells in each sample 
of the TCGA-BLCA cohort. ESTIMATE (Estimation 
of STtromal and Immune cells in MAlignant Tumours 
using Expression data) is a tool that uses gene expression 
trends to infer the fraction of stromal and immune cells 
in tumor samples [22]. The immune score of each patient 
in TCGA-BLCA was calculated by the R package “esti-
mate”. Immune score represents the content of immune 
cells, and the higher the score, the higher the cell content.

Statistical analysis
All the statistical analyses were carried out by using R 
Programming Language software (Rx64 3.5.1). All R 
packages were obtained from CRAN (https​://cran.r-proje​
ct.org) or BioConductor (http://www.bioco​nduct​or.org). 
The two groups were compared by the Wilcoxon test, and 
comparison between multiple groups was performed by 
Kruskal–Wallis test. Statistical significance was defined 
as p < 0.05. Difference scatter plots were constructed 
using the R package “beeswarm”. We used the R pack-
age “vioplot” to draw violin pictures and the R package 
“corrplot” to draw correlation heat map.

Results
Data processing and research process
We obtained the raw RNA sequencing and clinical 
data of TCGA-BLCA (n = 412), GSE13507 (n = 165), 
GSE32548 (n = 146) and GSE32894 (n = 308). We utilized 
data only from patients associated with RNA sequencing 
data, survival time, survival status, and primary tumor 
for further analysis. The basic clinical information of the 
remaining patients is summarized in Table 1, the sample 
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sizes of these four cohorts are all greater than 100. The 
grade of bladder cancer is closely related to recurrence 
and invasive behavior. Two grading methods were used in 
these four cohorts. TCGA-BLCA and GSE13507 used the 
WHO grading standard of 2004, which was divided into 
PUNLMP (Papillary urothelial neoplasms of low malig-
nant potential), low grade, and high grade. GSE32548 
and GSE32894 used the WHO grading standard of 1999, 
which was divided into grade 1 (G1), grade 2 (G2), and 
grade 3 (G3). The research process is shown in Fig. 1.

Construction of prognostic model
Univariate Cox proportional hazard analysis was car-
ried out in TCGA-BLCA, GSE13507, GSE32548, 
and GSE32894 cohorts. There were 3301 genes in 
TCGA-BLCA, 440 genes in GSE13507, 2404 genes 
in GSE32548, and 2768 genes in GSE32894 that met 
the criteria (HR > 1 and p < 0.05). There were 4743 
genes in TCGA-BLCA, 414 genes in GSE13507, 1717 
genes in GSE32548, and 3248 genes in GSE32894 
that met the criteria (HR < 1 and p < 0.05). Combin-
ing the four datasets allowed identification of 24 risk 
genes and 10 protective genes (Fig.  1). Because of 
the large sample size of TCGA-BLCA, we used this 
cohort to build the prognostic model. First, 24 genes 

with univariate Cox p-values less than 0.01 in TCGA-
BLCA were selected. Then the 24 genes were analyzed 
by Lasso regression analysis (Fig.  2a), when the num-
ber of genes in the model was 11, the deviance was 
the smallest (Fig.  2b). According to the lambda value, 
the corresponding coef of the selected 11 genes could 
be determined. The prognostic model could then be 
constructed by using the corresponding coef of the 
11 genes. To see more intuitively whether these genes 
are collinear, we analyze the co-expression of these 
genes. As shown in the Fig. 2c, the co-expression index 
of none of these two genes is greater than 0.5. Finally, 
we successfully constructed a prognostic module: Risk 
score = SERPINE2 *​ 0.02 ​+ PRR11​ * 0.1​3 + FAB​P6 *​ (−​ 0.​
0​00318) + C​16orf74 * (−​ 0.056​4) + DS​EL * 0​.107 + D​
NM1 * ​0.0142 +​ COMP ​* 0.0223 + T​NK1 * (−​ 0.0972) ​
+ ELOV​L4 * 0.​00152 + RTKN * 0.126 + MAPK12 * 0.030
4. The basic information and coef values of the 11 genes 
are listed in (Additional file  1: Table  S1). The average 
expression values (Transcripts per million) of genes in 
the four cohorts are greater than 1, which is of practical 
significance for detection (Additional file  2: Table  S2). 
The results of univariate regression analysis of these 
11 genes in 4 cohorts are shown in Additional file  3: 
Table S3.

Table 1  Basic clinical information for the four cohorts

SD standard deviation

Clinical factors TCGA_BLCA GSE13507 GSE32548 GSE32894

n = 403 % n = 165 % n = 130 % n = 224 %

Age

 ≦ 60 107 26.55 46 27.88 27 20.77 46 20.54

 > 60 296 73.45 119 72.12 103 79.23 178 79.46

Gender

 Male 298 73.95 135 81.82 99 76.15 163 72.77

 Female 105 26.05 30 18.18 31 23.85 61 27.23

T stage

 < T2 4 0.99 104 63.03 91 70 173 77.23

 ≧ T2 366 94.29 61 36.97 38 29.23 51 22.77

Grade (WHO2004)

 Low 20 4.96 105 63.64 – – – –

 High 380 94.29 60 36.36 – – – –

Grade (WHO1999)

 G1 – – – – 15 11.54 45 20.09

 G2 – – – – 40 30.77 84 37.50

 G3 – – – – 75 57.69 93 41.52

Vital status

 Alive 248 61.54 96 58.18 105 80.77 199 88.84

 Dead 155 38.46 69 41.82 25 19.23 25 11.16

Follow-up (mean ± SD, year)

2.10 ± 2.23 3.98 ± 3.10 4.14 ± 2.38 3.28 ± 2.10
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Kaplan–Meier analysis of 11 genes
Eleven genes were taken Kaplan–Meier analysis in 
4 cohorts. Using the heat map to show the results of 
the study (Fig.  2d), except for DSEL in GSE32894 and 
C16orf74 in GSE32548, the other analyses were statisti-
cally significant (p < 0.05). SERPINE2, RTKN, PRR11, 
MAPK12, ELOVL4, DSEL, DNM1, and COMP showed 
that the prognosis of patients with high expression was 
worse, and the analysis of ELOVL4 in TCGA-BLCA was 
taken as an example (p < 0.001, Fig.  2e). TNK1, FABP6, 
and C16orf74 showed that the prognosis of the low 
expression group was worse, and the analysis of FABP6 in 
TCGA-BLCA was taken as an example (p < 0.001, Fig. 2f ).

The degree of DNA methylation of TNK1 and C16orf74 
was negatively correlated with gene expression
DNA methylation can regulate gene expression. We 
explored the relationship between expression and meth-
ylation of these 11 genes (Additional file 4: Figure S1a–k). 
The results showed that there was a negative correla-
tion between TNK1 gene methylation and gene expres-
sion (Spearmen cor = − 0.51, p = 1.44e−28), so did as 
C16orf74 (Spearmen cor = − 0.52, p = 8.97e−29). Then, 
we took TNK1 and C16orf74 methylation data combined 
with clinical data for Kaplan–Meier analysis. We found 
that the degree of methylation of these two genes can 
predict the prognosis of bladder cancer (p < 0.05, Addi-
tional file 4: Figure S1i, m), and the prognosis is worse in 
the case of hypermethylation. The expression of TNK1 

and C16orf74 is inhibited by hypermethylation, which 
leads to a worse prognosis of bladder cancer.

Verification of the prognostic model
The prognostic model was used to calculate the risk 
scores of each patient in the training set (TCGA-
BLCA) and three test sets (GSE13507, GSE32548, and 
GSE32894). We identified the best cut-off value with a 
risk score of 2.40 for TCGA-BLCA. Using this method, 
the cut-off values of GSE13507/GSE32548/GSE32894 
were 2.56/1.96/1.92. The Kaplan–Meier curves showed 
that the prognosis of patients with high-risk was signifi-
cantly worse than that of patients with low-risk in the 
four cohorts (p < 0.001, Fig. 3a–d). The Receiver Operat-
ing Characteristic (ROC) curves of the four cohorts were 
drawn: the 1/3/5 year Area Under the Curve (AUC) val-
ues for the TCGA-BLCA cohort were 0.686, 0.665, and 
0.666, respectively (Fig.  3e); those for the GSE13507 
cohort were 0.800, 0.742, and 0.697, respectively (Fig. 3f ); 
those for the GSE32548 cohort were 0.826, 0.792, and 
0.763, respectively (Fig. 3g); and those for the GSE32894 
group were 0.781, 0.831 and 0.839 (Fig.  3h). Additional 
file  5: Figure S2 shows the risk score distribution, gene 
expression values, and survival status of patients in both 
the high-risk group and the low-risk group.

The clinical factors and risk scores of the four 
cohorts were analyzed by univariate Cox and multi-
variate Cox regression analysis (Table 2). The results of 
univariate analysis showed that T stage was more effec-
tive in predicting prognosis among the clinical factors, 

Fig. 1  Flow chart of analysis
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and three cohorts had statistical significance. The risk 
scores were statistically significant in all four cohorts, 
and the p value of three cohorts was lower than that 
of the T stage. In multivariate Cox analysis, risk scores 
were statistically significant in three cohorts, indicat-
ing that the three cohorts were independent of other 

clinical factors in predicting prognosis. In this analysis, 
only two cohorts of T stage had statistical significance, 
so it is obvious that T stage is not as strong as risk 
score to predict the prognosis. Finally, we compared 
the risk scores for different grades and T stage in the 
four cohorts, and found that the risk scores increased 

Fig. 2  Lasso Cox and Kaplan–Meier analysis. a Lines of different colors represent different genes. With the increase of lambda value, the coef of 
some genes become zero, indicating that they do not affect the model. b The deviance of the cross validation. When the partial likelihood deviance 
is minimum, the corresponding model is the best. c The co-expression heat map of 11 genes. Red indicates a positive correlation, blue indicates 
a negative correlation, and the cross indicates no statistical significance. d The heatmap of Kaplan–Meier analysis results of 11 genes. Red means 
high expression of the gene lead to worse prognosis, blue means low expression of the gene lead to worse prognosis, grey means there are no 
significance of the analysis, p < 0.05 means it is statistically significant. The darker of the color shows the smaller of the p-value. e Kaplan–Meier 
analysis of ELOVL4 in TCGA-BLCA. f Kaplan–Meier analysis of FABP6 in TCGA-BLCA
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with the increase of grade and T stage (p < 0.001, Addi-
tional file  6: Figure S3a, b). In the GSE32548 cohort, 
we compared the risk scores of FGFR3, and TP53 (or 
with the MDM2 alteration) for wild type and mutant 
type. Additional file  6: Figure S3c shows that a lower 
risk score of mutant type than that of wild type for the 
FGFR3 groups (p < 0.001). In TP53 (or with the MDM2 
alteration), the score of mutant type was higher than 
that of wild type (p < 0.001, Additional file  6: Figure 
S3c).

Seven genes and model were successfully verified 
in GSE48705
We evaluated the prognostic ability of 11 genes and 
models in GSE48075 (n = 73). The results showed that 
SERPINE2, RTKN, PRR11, MAPK12, ELOVL4, DSEL, 
and COMP were statistically significant (p < 0.05, Addi-
tional file 7: Figure S4), and the prognosis was worse in 
the high expression group which was consistent with 
the analysis result of the previous four cohorts. The risk 
score of patients was calculated according to the model, 

Fig. 3  The Kaplan–Meier analysis and ROC curves of the risk score. Kaplan–Meier curves of TCGA-BLCA (a), GSE13507 (b), GSE32548 (c), and 
GSE32894 (d). Red indicates high-risk group and blue indicates low-risk group. p < 0.05 means it is statistically significant. CI: confidence interval. 
ROC curves of TCGA-BLCA (e), GSE13507 (f), GSE32548 (g), and GSE32894 (h) in 1/3/5 years, and their corresponding AUC values
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and the risk score was analyzed by Kaplan–Meier 
analysis. The prognosis of the high risk-score group 
was worse, and the difference was statistically signifi-
cant (p = 0.0028, Fig. 4a). We drew the ROC curves of 
the risk score, and the AUC value of 1/3/5  year was 
0.676/0.630/0.755 (Fig.  4b). Figure  4c showed the risk 
score distribution, gene expression values, and survival 
status of patients between high and low-risk groups.

Weighted co‑expression network analysis and enrichment 
analysis
The co-expression network was constructed with 3844 
coding genes and 403 samples in TCGA-BLCA cohort. 
First, the expression matrix was transformed into a 
topological overlap matrix according to β = 4. Then, 
the genes were divided into different modules (Fig. 5a) 
using the dynamic pruning tree method. Next, the asso-
ciation analysis of clinical traits and modules (Fig. 5b) 
showed a high correlation between the turquoise mod-
ule and risk score (cor = 0.76, p = 2E−74). There was 
also a high correlation between the turquoise mod-
ule and survival status (cor = 0.25, p = 9E−07)/grade 
(cor = 0.3, p = 1E−09)/stage (cor = 0.32, p = 1E−10). 
We selected 128 key genes (Fig.  5c) in the turquoise 
module according to the standard. To explore the 
potential function of these key genes, pathway and 
process enrichment analysis of these key genes were 
performed, as shown in Fig. 5d. The three most highly 
significantly enriched terms were extracellular matrix 
organization, collagen fibril organization, and ECM 
proteoglycans, all related to the tumor microenviron-
ment (TME).

Immune cells can be combined with risk scores 
for prognostic analysis
We used CIBERSORT to calculate the infiltration ratio of 
22 immune cells in TCGA-BLCA samples and used a bar 
chart to show the infiltration of high and low-risk groups 
(Fig.  6a). Then, the Wilcoxon test was used to compare 
the difference between high and low-risk groups. The 
results showed that B cells naive, Macrophages M0, and 
Macrophages M1 showed high infiltration in the high-
risk group; B cells memory, Dendritic cells resting, and 
Dendritic cells activated showed high infiltration in the 
low-risk group (p < 0.001, Fig. 6b). Furthermore, we took 
the risk score and the infiltration degree of these six 
kinds of immune cells for joint prognostic analysis. The 
samples were divided into four clusters for Kaplan–Meier 
analysis according to the median value of the risk score 
and immune cell infiltration degree. The results showed 
that these groups could also be used for prognostic analy-
sis (p < 0.05, Fig. 6c–h). Among them, the prognostic abil-
ity of B cells memory is the best. When the degree of B 
cells memory infiltration is low, and the risk score is high, 
the prognosis of this cluster is significantly worse than 
that of other clusters. We used ESTIMATE to calculate 
the TCGA-BLCA cohort’s immune score and then com-
bined with the risk score for Kaplan–Meier analysis. The 
results showed that the cluster with low immune-score 
and high risk-score had the worst prognosis (Additional 
file 8: Figure S5).

Table 2  Univariate and  multivariate Cox regression 
analysis of  clinical-factors/risk-score with  overall survival 
rate in patients

Italic font means statistically significant

HR hazard ratio, CI confidence interval, Inf infinity

Variables Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

TCGA-BLCA

 Age 1.04 (1.02–1.06) 1.20E−05 1.02 (0.99–1.05) 2.69E−01

 Gender 1.11 (0.78-1.58) 5.56E−01 1.44 (0.81–2.54) 2.14E−01

 Grade 9,608,547.45 
(0-Inf )

9.91E−01 5,878,954.98 
(0-Inf )

9.96E−01

 Stage 1.81 (1.47-2.23) 2.62E−08 0.89 (0.42–1.88) 7.63E−01

 T stage 1.75 (1.37-2.24) 6.57E−06 1.38 (0.82–2.34) 2.23E−01

 Node 1.61 (1.35-1.91) 8.06E−08 1.44(0.86-2.41) 1.64E−01

 Metastasis 3.06 (1.39-6.73) 5.44E−03 0.88(0.28-2.72) 8.24E−01

 Risk score 3.75 (2.43-5.79) 2.46E−09 4.1(1.89-8.91) 3.67E−04

GSE13507

 Age 1.07 (1.04–1.1) 4.53E−08 1.07 (1.04–1.1) 8.71E−06

 Gender 1.56 (0.88–2.77) 1.29E−01 1.57 (0.81–3.03) 1.81E−01

 Grade 1.9 (1.49–2.42) 2.46E−07 1 (0.54–1.86) 9.97E−01

 Stage 2.74 (1.69–4.43) 4.00E−05 1.06 (0.52–2.14) 8.70E−01

 T stage 2.05 (1.64–2.58) 5.06E−10 1.51 (0.82–2.79) 1.83E−01

 Node 3.32 (2.23–4.94) 3.88E−09 2.21 (1.09–4.46) 2.71E−02

 Metastasis 9.9 (4.38–22.37) 3.64E−08 3.61 (1.2–10.86) 2.21E−02

 Risk score 11.16 (4.22–29.47) 1.14E−06 1.33 (0.26–6.87) 7.37E−01

GSE32548

 Age 1.04 (0.99–1.08) 9.34E−02 1.06 (1.01–1.1) 2.00E−02

 Gender 0.78 (0.29–2.07) 6.13E−01 0.66 (0.23–1.85) 4.27E−01

 Grade 2.26 (1.07–4.77) 3.26E−02 0.46 (0.15–1.44) 1.83E−01

 T stage 3.53 (1.89–6.6) 7.42E−05 3.97 (1.58–9.99) 3.41E−03

 Risk score 43.5 (6.85–276.49) 6.37E−05 12.81 (1.06–
154.42)

4.46E−02

GSE32894

 Age 0.98 (0.95–1.01) 1.79E−01 0.97 (0.92–1.01) 1.63E−01

 Gender 1.47 (0.55–3.93) 4.45E−01 1.35 (0.49–3.74) 5.61E−01

 Grade 7.59 (2.45–23.52) 4.45E−04 3.58 (1.05–12.13) 4.08E−02

 T stage 0.98 (0.62–1.56) 9.42E−01 1 (0.58–1.7) 9.86E−01

 Risk score 140.69 (25.35–
780.79)

1.54E−08 31.03 (3.79–
253.97)

1.36E−03
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Discussion
Bladder cancer is a heterogeneous disease with a high 
incidence and recurrence rate, but there is no robust pre-
dictive tool to guide clinical treatment [5]. Some recent 
studies have also constructed a new model for bladder 
cancer, such as DNA methylation-driven genes related 
model [23] and immune genes related model [10]. These 
models prefer to take a kind of gene set to build the 
model, rather than the whole genome into the screening. 
In this study, prognostic genes were screened from four 
cohorts with the whole transcriptome, and the common 
prognostic genes were selected to construct the model. 
The model successfully predicted the overall survival of 
five cohorts about 1000 bladder cancer patients, and it is 
the research with the largest cohort size in the same type 
of research.

A variety of regional source cohorts are used to jointly 
develop the model, which makes the model have higher 
credibility and broader applicability. In our study, all 
genes in all cohorts were then analyzed by univariate 
Cox proportional hazard analysis to screen common 

prognostic genes in four cohorts. After further screen-
ing, a prognostic model was constructed using the data 
from the TCGA-BLCA cohort. Instead of using the genes 
obtained by analysis of a single cohort to construct a 
prognostic model, the prognostic genes common to mul-
tiple cohorts were used to make the model more stable 
and reliable. The patients in the TCGA-BLCA cohort 
were from North America, GSE13507 was from Asia, and 
GSE32548 and GSE32894 were from Europe. It is con-
cluded that this model has a wide range of applicability.

The main finding of this study is that the 11-gene 
model we developed has a robust prognostic ability and 
successfully predicted the prognosis of five cohorts. 
Kaplan–Meier analysis showed that the prognosis of 
the high-risk group was worse in all the four cohorts 
(p < 0.001). The 1-year AUC values of the TCGA-BLCA, 
GSE13507, GSE32548, and GSE32894 cohorts were 
0.686, 0.800, 0.826 and 0.781 respectively, indicating that 
the risk score has the ability to predict prognosis. Uni-
variate and multivariate Cox analysis of clinical factors 
and risk scores showed that the ability of risk scores to 

Fig. 4  Validation of the model in GSE48075. a Kaplan–Meier analysis of the risk-score. b ROC curves of risk-score in 1/3/5 years. c The risk score 
analysis, from top to bottom: patient’s risk distribution, gene expression profile and survival status map
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predict prognosis was better than age, gender, grade, and 
T stage. We also analyzed the relationship between risk 
score and different clinical status, and found increased 
risk score with the increase of bladder cancer T stage 
and grade (p < 0.001). There are also significant differ-
ences in risk scores between wild type and mutant types 
of different genes. We analyzed the GSE32548 mutation 
data and found lower risk score in the group of FGFR3 
mutation. In contrast, in the presence of a TP53 mutation 
(or with MDM2 alteration), the risk score was higher. 
According to previous reports, mutations in FGFR3 
[24] is associated with better prognosis, but TP53 muta-
tion (or with MDM2 alteration) is associated with worse 
prognosis [25, 26]. These conclusions indirectly verify the 

prognostic ability of the risk model. Finally, the 11-gene 
model was successfully verified in independent cohort 
GSE48075. The model is verified by four internal cohorts 
and one external cohort, which shows that the model has 
the potential to be used in the clinic.

Eleven genes are potential prognostic markers and 
therapeutic targets for bladder cancer. These 11 genes 
have a stable prognostic ability in TCGA-BLCA, 
GSE13507, GSE32548, and GSE32894 cohorts. And 
Kaplan–Meier analysis showed that SERPINE2, RTKN, 
PRR11, MAPK12, ELOVL4, DSEL, and COMP was suc-
cessfully verified in GSE48075. Besides, the methylation 
level of TNK1 and C16orf74 can also predict the prog-
nosis of bladder cancer. Among them, only C16orf74 and 

Fig. 5  Weighted co-expression network and enrichment analysis. a Genes were divided into different modules according to the dynamic cutting 
tree method, and different colors represent different modules. b The heatmap of the correlation between the gene module and clinical traits, 
p < 0.05 indicates statistical significance. c Gene significance and module membership scatter diagrams of the turquoise module. The dots in 
the red box are represented as key genes. d The left side of the picture shows the interaction network map of enriched proteins, and the same 
color indicates the same enrichment. The right side of picture shows the enriched terms decreasing from top to bottom by the significance of 
enrichment
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Fig. 6  Combined analysis of risk score and immune infiltrating cells. a The bar chart of the infiltration of 22 kinds of immune cells in the samples 
of high and low-risk groups. b The difference of 22 kinds of immune cells between the low-risk group and the high-risk group was analyzed and 
shown by violin chart. p < 0.05 indicated that it was statistically significant. c–h Combined Kaplan–Meier analysis of 6 kinds of immune cells and risk 
scores
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RTKN were previously reported to be associated with 
bladder cancer, while other genes were not reported and 
are worthy of future research for bladder cancer. SER-
PINE2 can enhance the tumor-promoting effect of ERK 
signal transduction in intestinal epithelial cells and is a 
potential therapeutic target for colorectal cancer [27]. 
This gene can also drive distant metastasis of breast can-
cer [28]. PRR11 is overexpressed in ovarian cancer [29], 
and has the potential to be used as a molecular marker. 
FABP6 is overexpressed in colon cancer and may play an 
important role in early carcinogenesis [30]. Decreased 
expression of C16orf74 is closely related to the progres-
sion of non-muscular invasive bladder cancer [31], and it 
may also be a potential therapeutic target for pancreatic 
cancer [32]. Most of the studies of DSEL are studies of 
congenital diseases, such as diaphragmatic defect [33] 
and Ehlers-Danlos syndrome [34], but there have been 
very few studies related to cancer. DNM1 is a kinetin-
related protein that plays an important role in mitochon-
drial division [35]. COMP is a cartilage biomarker [36], 
and COMP mutation can cause pseudochondrodysplasia 
[37]. TNK1 is a tumor suppressor that can down-regulate 
the activity of Ras [38]. Studies have shown that RTKN is 
highly expressed in bladder cancer [39], and some experi-
ments have shown that some miRNA can inhibit tumor 
growth by targeting RTKN [40]. MAPK12, one of four 
types of p38 MAPK, is a potential therapeutic target for 
colon cancer [41]. ELOVL4 is a member of the fatty acid 
elongation enzyme ELOVL family and is highly methyl-
ated in cancers such as hepatocellular carcinoma [42]. 
These genes may be involved in the essential biological 
process of bladder cancer and have great research value.

The combination of risk score and B cell memory 
can be used to analyze the prognosis of patients with 
bladder cancer. In the present study, the key genes 
positively related to the risk score were identified by 
WGCNA. The enrichment analysis of these genes 
showed that these genes were related to TME, s indi-
cating that the patients’ risk core was closely related to 
TME. To further explore the relationship between risk 
score and TME, we calculated the infiltration degree of 
22 kinds of immune cells in the sample. We found that 
there were differences in the infiltration degree of many 
immune cells between high and low risk. B cells mem-
ory stands out in the evaluation of combined immune 
cell and risk prognostic analysis, and the prognosis of 
patients is the worst in the case of low infiltration and 
high risk. Tumor-infiltrating lymphocytes have been 
reported as a useful prognostic factor for patients with 
bladder cancer [43], and B cells are a significant compo-
nent of infiltration in these cells. B cell is a prognostic 
factor in many cancers (such as high grade serous ovar-
ian cancer) [44]. CD20 B cells have also been reported 

to be associated with longer survival in bladder can-
cer [45]. Bladder cancer has a certain response to 
immunotherapy, but there is a lack of unique immune 
prognostic biomarker to guide treatment [46]. We 
combine B cell memory and risk score for prognostic 
analysis, which has prognostic ability and potential for 
immunotherapy.

Although this 11-gene risk prognostic model can pre-
dict the prognosis of bladder cancer, there are still several 
limitations to our conclusions. We used pre-existing data 
from available databases and did not verify the model 
with additional data. We did not find the general cut-off 
value of the model, so when the model is applied to the 
clinic, it needs to conduct a large local sample study to 
find the best cut-off for the cohort.

Conclusions
The 11-genes model is a robust biomarker for the prog-
nosis of bladder cancer, which can be used to predict 
patients’ survival outcomes. Future studies need to verify 
the accuracy of its prediction and clinical application in 
the individualized treatment of bladder cancer.
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