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Purpose: Multileaf collimator (MLC) tracking is being clinically pioneered to continuously compen-
sate for thoracic and pelvic motion during radiotherapy. The purpose of this work was to characterize
the performance of two MLC leaf-fitting algorithms, direct optimization and piecewise optimization,
for real-time motion compensation with different plan complexity and tumor trajectories.
Methods: To test the algorithms, both in silico and phantom experiments were performed. The phan-
tom experiments were performed on a Trilogy Varian linac and a HexaMotion programmable motion
platform. High and low modulation VMAT plans for lung and prostate cancer cases were used along
with eight patient-measured organ-specific trajectories. For both MLC leaf-fitting algorithms, the
plans were run with their corresponding patient trajectories. To compare algorithms, the average
exposure errors, i.e., the difference in shape between ideal and fitted MLC leaves by the algorithm,
plan complexity and system latency of each experiment were calculated.
Results: Comparison of exposure errors for the in silico and phantom experiments showed minor
differences between the two algorithms. The average exposure errors for in silico experiments with
low/high plan complexity were 0.66/0.88 cm2 for direct optimization and 0.66/0.88 cm2 for piece-
wise optimization, respectively. The average exposure errors for the phantom experiments with low/
high plan complexity were 0.73/1.02 cm2 for direct and 0.73/1.02 cm2 for piecewise optimization,
respectively. The measured latency for the direct optimization was 226 � 10 ms and for the piece-
wise algorithm was 228 � 10 ms. In silico and phantom exposure errors quantified for each treat-
ment plan demonstrated that the exposure errors from the high plan complexity (0.96 cm2 mean,
2.88 cm2 95% percentile) were all significantly different from the low plan complexity (0.70 cm2

mean, 2.18 cm2 95% percentile) (P < 0.001, two-tailed, Mann–Whitney statistical test).
Conclusions: The comparison between the two leaf-fitting algorithms demonstrated no significant dif-
ferences in exposure errors, neither in silico nor with phantom experiments. This study revealed that plan
complexity impacts the overall exposure errors significantly more than the difference between the algo-
rithms. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13425]
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1. INTRODUCTION

One of the main advantages of radiation therapy as
opposed to other types of cancer treatment is that the treat-
ment is noninvasive and highly targeted to the tumor.
Despite strong evidence that the ITV-based planning tech-
nique (Internal Target Volume planning, ICRU 621) pro-
vides safe radical treatment for stage I nonsmall cell lung
carcinoma, there are no guarantees that the tumor will
remain within the planned aperture throughout the entire
treatment.2,3

New delivery approaches have been introduced to improve
the targeting of the tumor during treatment. These techniques
come in various forms, either by shifting the therapeutic beam
to the tumor using a robotic arm CyberKnife,4,5 a gimballed
linear accelerator (Vero),6,7 or the multileaf collimator
(MLC)8–10 or by adjusting the patient couch (couch track-
ing).11

Real-time MLC tracking is a novel technique that opti-
mizes the leaf positions within the head of the linear accelera-
tor to shift the radiation beam multileaf collimator leaves
according to tumor motion. It has been implemented preclini-
cally in several institutions on commercial linear accelera-
tors12–14 or developed into in-house control software and
leaf-fitting algorithms.8,10,12,15–17 Real-time MLC tracking
has been clinically pioneered with three clinical trials leading
to the first MLC tracking treatment for prostate18–20 and
stereotactic lung21 with results reported in previous publica-
tions.19,21

The current clinically used version of MLC tracking
relies on a leaf-fitting optimization algorithm (also known
as “MLC tracking algorithm”) named “direct optimization”
algorithm.22 A recent publication by Moore et al.17 intro-
duced an alternative MLC tracking algorithm named
“piecewise optimization algorithm”. With the current
design of the piecewise algorithm, Moore et al. investigated
its performances in silico using standard tumor motion
(three patients) and intensity-modulated radiation therapy
(IMRT) plans. However, in silico tests do not always reflect
the real-life clinical situation. For that reason, their respec-
tive performances should be tested utilizing a linear accel-
erator with a broad range of tumor motions and MLC plan
complexity.

To allow a thorough performance comparison between
both algorithms in a clinical setting, the piecewise algo-
rithm was implemented in the clinical version of the MLC
tracking software. The aim of this work was to characterize
the performance of two MLC leaf-fitting algorithms used
in real-time motion compensation. This will be done both
in silico and experimentally, spanning a range of tumor
motions and treatment plans with varying degree of MLC
modulation.

The significance of this paper is that it is the first
to investigate and experimentally compare two MLC track-
ing algorithms in the identical clinical setting on a linear
accelerator.

2. METHOD

2.A. Principle of multileaf collimator tracking
algorithms

Multileaf collimator tracking is operated via an optimiza-
tion algorithm tasked with finding the best-fitted leaf posi-
tions given a set of various constraints (finite leaf width and
speed), or constraints setup by the user prior to treatment
delivery, such as prescribing various tolerances or radiobio-
logical properties to the organs-at-risk to avoid excessive
overdosing.

The mechanism for managing these setup constraints dif-
fers between the direct and piecewise optimization algorithm.
The different components of the direct optimization algo-
rithm can be found in Ruan et al.22, while more extensive
explanations on the piecewise algorithm can be found in
Moore et al.17 Although both algorithms allow the MLC leaf
positions to be optimized according to the radio-sensitivity
factor attributed to different OAR (connoted as k and r con-
straints in the respective papers17,22), each algorithm deals
with spatial variance differently. The optimization process is
operated for the direct optimization on a pixel basis within
the beam’s eye view, therefore relying on a two-dimensional
map of the organs.

The main difference between the two algorithms is that the
piecewise algorithm deals with spatial variance by having an
arbitrary number of volumetric ROI (Regions of Interest),
hence accounting for the radio-sensitivity in three dimen-
sions. In both cases, this implies that an a priori knowledge
of the position and volume of OAR is available prior to treat-
ment, or that each OAR is being localized in real-time during
the treatment delivery.

The second difference is the way each algorithm deals
with the quantification of exposure area that is sought to be
minimized. For the direct optimization, the cost function is
integrated both along and perpendicular to the leaf motion, as
opposed to the piecewise algorithm where the algorithm
resolves the integration linearly in one direction, solely along
the leaf motion direction. Linear integral implicates that the
algorithm is expected to converge faster toward a solution
with the piecewise algorithm given equivalent set of con-
straints.

2.B. Experiments to assess and compare the
algorithm performances

To characterize the performances of the algorithms, a
series of in silico simulations and phantom experiments
were performed. Both algorithms were tested under identi-
cal conditions assuming homogenous dose conditions: the
target is considered as a rigid, nondeformable body and the
underdose and overdose weights are set to be equal. Vari-
ables included the tumor motion, treatment site, and plan
complexity. Comparison of algorithm performance was
based on exposure errors, plan complexity, and the system
latency. Figure 1 provides an overview of the method to
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assess the performance of each algorithm both in silico and
experimentally on a linear accelerator. Further details are
provided below.

2.B.1. In silico and phantom experiments

The in silico experiments were performed on a Latitude
E7450 i7 2.60 GHz Dell 16 Gb RAM using an MLC simula-
tor.23 The tumor motion traces were imported into the simula-
tor as text files. The DICOM plan was read by the software
and the treatment delivery was simulated. The simulator leaf
speed was limited to 3.6 cm/s being the leaf speed of the
actual linear accelerator.

The phantom experiments were performed on a Trilogy
(Varian, Palo Alto, CA, USA) linear accelerator. Tumor
motion traces were loaded into the HexaMotion pro-
grammable motion platform (Scandidos, Uppsala, Sweden)
and triggered to start 10 s before the beginning of the beam
delivery to allow training of the prediction algorithm.
Calypso electromagnetic transponders (Varian Medical Sys-
tem, Palo Alto, CA, USA) were embedded into the HexaMo-
tion platform, with a research version of the Calypso system
sending the target position to the MLC tracking system. The
kernel density estimation algorithm24 currently used was clin-
ically used for the lung trajectories.

2.B.2. Tumor motion

To span the type of tumor motion observed during radiation
therapy, thoracic and pelvic tumor motion traces were selected
from published databases to be characteristic three-dimensional
(3D) motion patterns for those sites. Four types of motion were
chosen for the lung25 from a CyberKnife study, and four
motion patterns for the prostate26 obtained from a study with
patients implanted with Calypso electromagnetic transponders.

These tumor motion traces were categorized and named
according to their characteristic pattern in previous study. Tho-
racic motion patterns were categorized as typical tumor motion,
high-frequency breathing, a predominantly lateral motion, and
characterized baseline shift. The represented prostate motion
patterns were continuous drift, high-frequency excursions, erra-
tic tumor motion, and stable tumor position.

2.B.3. Treatment plans

For each clinical site (lung and prostate), a selection of treat-
ment plans used for previous MLC tracking experiments27 were
delivered that differed in MLC modulation to span the plan
complexity expected during clinical practice. Two plans, low
and highly modulated VMAT plan, were selected for each site,
by varying the set of competitive objectives on the target and
OARs. All arcs spanned a 358° revolution with the collimator
set at 90° (i.e., with the leaves parallel to longitudinal target
motion). All plans were prescribed to deliver 2 Gy to 95% of
the Planning Target Volume.

2.B.4. Evaluation of plan complexity

With MLC tracking, the plan complexity is known to
complicate the task of the algorithm for the leaves to reach
the desired positions.28,29 Therefore, for each of the four
plans lung/prostate and modulation high/low modulations,
their complexity needed to be quantified. The plan complex-
ity was evaluated based on four parameters:

1. MUweighted Average adjacent Leaf Distance (ALDw29),
previously shown to correlate with MLC tracking perfor-
mance28

2. The average leaf travel for each plan, considering solely
the leaves that contribute to the open leaves aperture.28

FIG. 1. Performance of each algorithm was characterized by two sets of experiments, in silico and phantom, conducted for two specific target scenarios (lung and
prostate) combining different sets of plan complexities (high and low) and trajectories (baseline shift, high frequency, etc.). The exposure errors were calculated
for each scenario. [Color figure can be viewed at wileyonlinelibrary.com]
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3. The average area over circumference AoC28 with for-
mula AoC ¼ AreaofMLCaperture

Circumference
4. The VMAT modulation score (MCs) by Masi et al.30

2.B.5. Measuring the system latency

Multileaf collimator tracking latency represents the
inherent time delay between the tumor motion and the fin-
ished movement of the leaves to align the beam and the
tumor. While execution of both MLC tracking algorithms
possesses some inherent amount of latency, it is expected
that a faster algorithm will be able to reduce the overall
system latency.

The latency was evaluated using the setup described in
Sawant et al.31 A ball bearing was moving in a superior–infe-
rior direction along the parallel motion of a circular shape
radiation field during which EPID images were acquired at
15 Hz operated on the computer console equipped with a
2.27 GHz Intel Xeon E5520 processor and 4 GB RAM. The
ball bearing was placed onto the HexaMotion platform embed-
ded with the Calypso electromagnetic beacons. For each
optimization algorithm, EPID projections were obtained over
10 periods. Since both the ball bearing and the leaves move in
a sinusoidal motion, the two structures were segmented from
the EPID and a sinusoidal fit was used to calculate the tempo-
ral offset between the centroid of the ball and the MLC aper-
ture. The latency was then calculated as the time delay
between the ball position and the segmented MLC aperture.

2.C. Comparing MLC tracking algorithm
performances based on leaf-fitting exposure errors

To compare both performances, the exposure errors (over-
dose + underdose) were quantified in the beam’s eye view
using a framework developed by Poulsen et al.32

The mismatched area between the actual and planned
MLC aperture represents the total amount of exposure errors
which can be separated into individual sources of errors,
namely the exposure errors due to width of the leaves, their
speed and prediction algorithm errors when in use.

For each experiment, the exposure errors were computed
using the fitted MLC positions obtained from the MLC track-
ing software. The fitted MLC positions corresponded to the
given MLC positions fitted by the algorithm, thereby
accounting for the width of the leaves but regardless of their
physical speed. Focusing solely on the fitted MLC position
dismisses any potential source of uncertainties allowing for a
more direct comparison between the algorithms.

For each paired experiment, the exposure errors through-
out the treatment arc were compared between each other
using the Pearson correlation coefficient and root-mean-
square error to evaluate the differences in exposure errors for
each control point. Figure 2 provides an example of the expo-
sure errors for a “paired experiment”, representing identical
experimental conditions (same plan and tumor). For each
experiment, these exposure errors were computed using the
resulting tumor tracking logs and fitted MLC position
updated at 30 Hz into text files. Exposure error computation
was achieved using MATLAB (R2017a, Math Works).

3. RESULTS

3.A. Quantification of exposure errors for each
optimization algorithm

The average exposure errors for in silico low/high modula-
tion were 0.66/0.88 cm2 for direct optimization and 0.66/
0.88 cm2 for piecewise optimization. For the phantom exper-
iment, it was 0.73/1.02 cm2 for direct and 0.73/1.02 cm2 for
piecewise optimization. The side-by-side exposure errors dis-
played in Fig. 3 suggests that both algorithms performed
equivalently spanning a large range of tumor motion, plan
complexity, and treatment site.

The analysis of the in silico experiments demonstrated that
the Pearson correlation coefficient for both algorithms is
higher than r = 0.96 for all sets of organs and trajectories.
The similar data obtained during linac experiments also
showed strong correlation (r > 0.9) in most cases. The mean
root-mean-square errors (RMSE) between paired algorithms
were 0.10 cm2 for the in silico and 0.18 cm2 for the phantom
experiments. High correlation and small RMSE error suggest

FIG. 2. For each scenario, the exposure errors were compared for each set of paired experiments to compare the piecewise algorithm against the direct
optimization.
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strong relationship between paired experiment results for all
types of trajectory and plan complexity, indicating that both
algorithms performed equivalently.

3.B. Relationship between plan complexity and
exposure errors

The quantified simulated and phantom experiment expo-
sure errors for each treatment plan established that the expo-
sure errors from the high modulation plan (0.96 cm2,
2.88 cm2 95% percentile) were all significantly different
from the low modulation (0.70 cm2, 2.18 cm2 95% per-
centile) (P < 0.001, two-tailed, Mann–Whitney statistical
test). The descriptive metrics used to quantify the plan com-
plexity are summarized in Table I.

The average distance to adjacent leaves and leaf travel dis-
tance was shown to increase with plan complexity while the
modulation score (MCs) and relative area over circumference
decreases with plan complexity. These results provide further
evidence of the impact of treatment complexity on the expo-
sure errors.

3.C. Latency

The latency for the direct optimization was 226 � 10 ms
and for the piecewise algorithm 228 � 10 ms. These physi-
cal latencies can be compared with the fitting latency within
the software. Across all the plans and tumor motion, the in
silico fitting latency for the direct optimization algorithm was
12.2 � 5 ms, compared with the piecewise algorithm com-
puted as 3.1 � 1 ms. Despite these differences, the fitting

time between algorithms did not impact the overall latency of
the experimental setup, only capable of detecting uncertain-
ties within �10 ms.

4. DISCUSSION

The goal of this study was to characterize the performance
of two MLC tracking algorithms for radiotherapy in a realis-
tic simulated and clinical environment. Both algorithms were
tested alternatively in silico and experimentally on a linear
accelerator for the range of organ motion and plan complexity
that may be expected during clinical practice.

This is the first time that two MLC tracking algorithms
were experimentally compared in the identical clinical set-
ting on a linear accelerator. Moore et al.1 tested the

FIG. 3. Leaf-fitting exposure errors for the direct (gray) and piecewise (red) optimization for both in silico and phantom experiment (delivered). The Pearson cor-
relation coefficient (r) and the root-mean-square error are provided for each paired experiment showing that the sum of exposure errors is equivalent given any
tumor motion, organ, and plan complexity.

TABLE I. Summary of the plan metric to assess the plan complexity of each
of the four plans.

Lung Prostate

High
modulation

Low
modulation

High
modulation

Low
modulation

Field MU 596 342 737 422

ALDw 0.71 cm 0.20 cm 1.40 cm 0.70 cm

Leaf travel 0.19 cm 0.04 cm 0.30 cm 0.22 cm

AoC 0.34 0.75 0.49 0.92

MCS 0.07 0.17 0.15 0.28

AoC, Area over Circumference; ALDw, Average adjacent Leaf Distance; MCs,
modulation score; MU weighted.
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performances of the piecewise algorithm in silico with
IMRT plans as a proof of concept. However, leaf-fitting is
one part of the larger MLC tracking framework, and while
in silico validation is a valuable tool to demonstrate proof
of concept, the ultimate test is experimental investigation.
Experimental investigation captures the impact of the leaf-
fitting algorithm with other software and hardware subsys-
tems (e.g., compatibility issues with the Calypso tracking
system, error catching, beam-hold assertion, or constant
rotating gantry during VMAT). For these reasons, this
paper presents the first empirical comparison between the
two algorithms.

We found that the plan complexity and tumor motion pat-
terns have a much larger impact on dosimetric fidelity than
the leaf-fitting algorithms. The implication is that there are
bigger gains to be made by improved planning than develop-
ing more complex or faster algorithms.

The implementation and development of faster MLC
tracking algorithms is therefore potentially marginalized by
the prerequisite to reduce plan complexity or improve the
hardware capabilities. Hardware enhancement has been
investigated under diverse forms. Pommer et al.28 investi-
gated the dosimetric impact of finer leaves by testing alterna-
tively a Varian Novalis Tx with Millennium MLC (5 mm leaf
with) and High-Definition MLC (2.5 mm leaf width). Using
reflective markers and the ExacTrac (Brainlab, Germany) to
provide positional input to the tracking system, they found
that finer leaves improved the tracking accuracy compared
with 5 mm leaf width. The Varian TrueBeam system
equipped with High-Definition MLC also provides MLC
tracking capabilities in developer mode, but no performance
analysis or dosimetric comparisons with other systems have
been published to date.

Falk et al.29 found that leaf position constraints can be
setup within the treatment planning system during planning
optimization to limit the movement of the leaves during plan-
ning. Other hardware enhancement, such as dynamic align-
ment of the collimator angle,33 hybrid couch-MLC tracking
strategies34 improves MLC tracking accuracy by reducing the
exposure errors for both prostate and lung.

Using a 2D time-resolved framework for performance
analysis provides a fast and reliable comparison of exposure
errors. This method offers a point-by-point analysis that con-
ceptually facilitates the search of exposure errors and allows a
straightforward comparison between multiple plan parameters
within a single fixed analysis framework. Also, the analysis
of exposure errors for MLC tracking has been shown to be
correlated with dosimetric errors for lung and prostate32,35

using gamma failure and root-mean-square errors.
An application where MLC tracking is uniquely capable

of motion compensation is tracking deforming targets and
deforming systems, e.g., a primary tumor and regional nodes
for locally advanced lung and prostate cancer radiotherapy.
Preliminary studies using the direct optimization algorithm
have investigated experimental target deformation and
multitarget tracking.36 These experiments have been carried
out on a linear accelerator using phantoms by mapping the

deformation field in the linear accelerator beam’s eye view
and optimizing the fitting process accordingly.

The treatment plans and the tumor motion traces are
included as supplementary materials (Data S1) to allow other
groups to benchmark their algorithms against the results
shown here.

5. CONCLUSION

The performance of two MLC tracking algorithms was
characterized and compared using a 2D time-resolved frame-
work in a clinical realistic scenario. The comparison was
based on the quantification of fitted exposure errors attribu-
ted by the optimization algorithm solely, regardless of the
speed of the leaves. Our results showed that the two algo-
rithms performed similarly and provide equivalent quality-of-
fit for the scenarios evaluated. The main source of error can
be attributed to the complexity of the plan, quantified prior to
plan delivery, which was shown to greatly impact on the
MLC tracking accuracy.
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