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Abstract

With the development of high-throughput technologies, principal component analysis (PCA) in the 

high-dimensional regime is of great interest. Most of the existing theoretical and methodological 

results for high-dimensional PCA are based on the spiked population model in which all the 

population eigenvalues are equal except for a few large ones. Due to the presence of local 

correlation among features, however, this assumption may not be satisfied in many real-world 

datasets. To address this issue, we investigate the asymptotic behavior of PCA under the 

generalized spiked population model. Based on our theoretical results, we propose a series of 

methods for the consistent estimation of population eigenvalues, angles between the sample and 

population eigenvectors, correlation coefficients between the sample and population principal 

component (PC) scores, and the shrinkage bias adjustment for the predicted PC scores. Using 

numerical experiments and real data examples from the genetics literature, we show that our 

methods can greatly reduce bias and improve prediction accuracy.
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1. Introduction

Principal component analysis (PCA) is a very popular tool for analyzing high-dimensional 

biomedical data, where the number p of features is often substantially larger than the number 

n of observations. PCA is widely used to adjust for population stratification in genome-wide 

association studies [21] and to identify overall expression patterns in transcriptome analysis 

[23]. However, the asymptotic properties of PCA in high-dimensional data are profoundly 

different from the properties in low-dimensional (p finite, n → ∞) settings. In high-
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dimensional settings, the sample eigenvalues and eigenvectors are not consistent estimators 

of the population eigenvalues and eigenvectors [12, 20], and the predicted principal 

component (PC) scores based on the sample eigenvectors can be systematically biased 

toward zero [14].

There has been extensive effort to investigate the asymptotic behavior of PCA in high-

dimensional settings. To provide a statistical framework for PCA in these settings, Johnston 

introduced a spiked population model, which assumes that all the eigenvalues are equal 

except for finitely many large ones called the spikes. A spiked population covariance matrix 

is basically a finite-rank perturbation of a scalar multiple of the identity matrix. A typical 

example of a spiked population with two spikes is shown in Figure 1a. This two-spike 

eigenvalue structure arises if the population consists of three sub-populations, and the 

features are largely independent with equal variances. Under this model, convergence of 

sample eigenvalues, eigenvectors and PC scores have been extensively studied [4, 11, 14, 

20].

In many biomedical data, however, the assumption of the equality of non-spiked eigenvalues 

can be violated due to the presence of local correlation among features. In genome-wide 

association studies, for example, the genetic variants are locally correlated due to linkage 

disequilibrium. In gene-expression data, since genes in the same pathway are often 

expressed together, their expression measurements are often correlated. These local 

correlations can cause substantial differences in non-spiked eigenvalues. To illustrate this 

phenomenon, we obtained eigenvalues with an autoregressive within-group correlation 

structure rather than the independent structure of the previous example. Figure 1b shows that 

the equality assumption is clearly violated. Thus, if methods developed under the equality 

assumption are applied to these types of data, we will obtain biased results.

The generalized spiked population model [3] has been proposed to address this problem. 

The condition that the non-spikes have to be equal is removed in this generalization. In this 

model, the set of population eigenvalues consists of finitely many large eigenvalues called 

the generalized spikes, which are well separated from infinitely many small eigenvalues. 

Although the generalized spiked population model has a great potential to provide more 

accurate inference in high-dimensional biomedical data, only limited literature is available 

on the asymptotic properties of PCA under this model and their application to real data. Bai 

and Yao [3] and Ding [8] provided results regarding convergence of eigenvalues and 

eigenvectors. However, their work remained largely theoretical. Moreover, to the best of our 

knowledge, no method has been developed for estimating the correlations between the 

sample and population PC scores, and adjusting biases in the predicted PC scores under the 

generalized spiked population model.

In this paper, we systematically investigate the asymptotic behavior of PCA under the 

generalized spiked population model, and develop methods to estimate the population 

eigenvalues and adjust for the bias in the predicted PC scores. We first propose two different 

approaches to consistently estimate the population eigenvalues, the angles between the 

sample and population eigenvectors, and the correlation coefficients between the sample and 

population PC scores. We compare these two methods and show the asymptotic equivalence 
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of the estimators across them. Finally, we propose a method to reduce the bias in the 

predicted PC scores based on the estimated population eigenvalues.

The paper is organized as follows. We begin in Section 2 by providing the definition of the 

generalized spiked population model and present existing theoretical results. We develop our 

methods to consistently estimate the population spikes in Section 3. In Section 4, we 

construct consistent estimators of the angles between the sample and population 

eigenvectors, and the correlation coefficients between the sample and population PC scores. 

We also propose the bias-reduction technique for the predicted PC scores. Section 5 presents 

the algorithm [9] to estimate the population limiting spectral distribution and the non-spiked 

eigenvalues. In Section 6, we present results from simulation studies and an example from 

the Hapmap project to demonstrate the improved performance of our method over the 

existing one. Finally, we conclude the paper with a discussion.

2. Generalized spiked population model

In order to formally define generalized spiked population model, we require the concept of 

spectral distribution. In the random matrix literature, it is natural to associate a probability 

measure to the set of eigenvalues as the dimension p goes to infinity. More explicitly, if a 

Hermitian matrix Σp has eigenvalues λ1,…, λp, we can define the empirical spectral 

distribution (ESD) of Σp to be Hp based on the probability measure

dHp(x) = 1
p ∑

i = 1

p
δλi(x),

where δλi (x) is unity when x = λi, and otherwise zero. Now, for a sequence (Σp) of 

covariance matrices, if the corresponding sequence (Hp) of ESDs converge weakly to a non-

random probability distribution H as p → ∞ to, then we define H as the limiting spectral 

distribution (LSD) of the sequence (Σp).

The generalized spiked population model [3] is defined as follows. Suppose that Hp is the 

ESD corresponding to the population covariance matrix Σp and that it converges weakly to a 

non-random probability distribution H. Let ΓH be the support of H and d(x, A) = infy∈A |x – 

y| be the distance metric from a point x to a set A. Then the set of eigenvalues of Σp 

comprises of two subsets of eigenvalues α1 ≥ ⋯ ≥ αm and βp,1 ≥ ⋯ ≥ βp,p−m, as follows:

i. there exists δ > 0 such that d(αi, ΓH) > δ for all i ∈ {1,…, m}; α1,…, αm are 

called the generalized spikes.

ii. max1≤i≤p−md(βp,i, ΓH) = ϵp → 0;βp,1,…,βp,p−m are called the non-spikes.

It is obvious from the definition that the generalized spikes are measure zero points of the 

population LSD. For Johnstone’s spiked population model [11], the population LSD is H = 

δ{1} indicating ΓH = {1}. From the definition above, all eigenvalues larger than 1 are spikes. 

Hence, Johnstone’s spiked population model is a special case of the generalized spiked 

population model.
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Suppose that the population covariance matrix Σp has eigenvalues λ1 ≥ ⋯ ≥ λp, and the 

sample covariance matrix Sp = X⊺X/n has eigenvalues d1 ≥ ⋯ > dp, where X is an n × p data 

matrix. Let Σp = EΛpE⊺ and S p = UDpU⊺ be the spectral decompositions of Σp and S p, 

respectively. Further, we will assume the following throughout the paper.

A. p → ∞, n → ∞, p/n → γ< ∞.

B. X = Y Λp
1/2E⊤, where Y is an n × p random matrix with iid elements such that 

E(Yij) = 0, E(|Yij|2) = 1, E(|Yij|4) < ∞.

C. The population eigenvalues follow the generalized spiked population (GSP) 

model with m generalized spikes. Let Hp be the population ESD, H be the 

population LSD, and ΓH be the support of H. Moreover, the sequence (∥Σp∥) of 

spectral norms is bounded.

D. The generalized spikes are larger than sup ΓH.

Even though we will develop our estimation methods based on the asymptotic regime where 

p/n → γ < ∞, we will discuss the applicability of our methods when p is greatly larger than 

n in Section 4.6.

In this paper, we will derive and discuss asymptotic properties of different functions of 

eigenvalues and angles between the sample and population eigenvectors, both of which are 

rotation-invariant, i.e., if we rotate X by some p×p orthogonal matrix P, the eigenvalues 

(both sample and population) and angles between the sample and population eigenvectors 

will remain the same. The new population covariance matrix Σp = P⊤ΣpP  will have the 

same eigenvalues as Σp, and the new sample covariance matrix Sp = P⊤SpP  will also have 

the same eigenvalues as Sp. The angles between the eigenvectors of Sp and Σp will be the 

same as the angles between the eigenvectors of S p and Σp, both given by the elements of the 

matrix E⊺ U. Therefore, without loss of generality, by using P = E, we can assume the 

population covariance matrix to be diagonal.

From the Marčenko-Pastur theorem [16], the sample ESD Fp converges weakly to a non-

random probability distribution F with support ΓF. For α ∉ ΓH, α ≠ 0 and x > 0, we define 

the following two functions:

ψ(α) = α + γα∫ λdH(λ)
α − λ , fF(x) = x/ 1 + γ∫ τdF (τ)

x − τ . (1)

The following result by Bai and Yao [3] provides the almost sure limits of the sample 

eigenvalues corresponding to the population generalized spikes.

Result 1. Suppose assumptions (A)-(D) hold. Let λk be a generalized spike of multiplicity 1 

and the corresponding sample eigenvalue is dk. Moreover, let ψ′ denote the first derivative 

of the function ψ. Then,

i. If ψ′(λk) > 0, then the sample eigenvalue dk converges almost surely to ψ(λk), 

i.e., dk − ψ λk
a . s . 0.
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ii. If ψ′(λk) ≤ 0, then let (uk, vk) ⊂ (sup ΓH, ∞) be the maximal interval on which 
ψ′ > 0. The sample eigenvalue dk converges almost surely to ψ (w) is a 
boundary of [uk, vk] that is nearest to λk.

Given that ψ’(α) is a strictly increasing function for α > sup ΓH, if a generalized spike λk is 

large enough such that ψ’(α) > 0, according to Result 1 the corresponding sample 

eigenvalue will converge almost surely to ψ(λk). However if the generalized spike lies close 

enough, i.e., ψ’(λk) ≤ 0, to the set of non-spikes, then the convergence of the corresponding 

sample eigenvalue is given by the second part of the result. We will denote a generalized 

spike λk as a “distant spike” if ψ’(λk) > 0; otherwise we will call it a “close spike”.

3. Consistent estimation of the generalized spikes

The following theorem provides two different consistent estimators of the distant spikes.

Theorem 1. Let λk be a distant spike of multiplicity 1 and the corresponding sample 

eigenvalue is dk. If the assumptions (A)-(D) hold, then

ψ−1 dk − λk
p 0,

where ψ−1 is the left inverse of ψ. Also, fF dk − λk
p 0.

This theorem shows that for any distant spike λk we have two consistent estimators ψ−1(dk) 

and fF(dk). Notice that the function fF depends only on the sample LSD which can be 

approximated by the sample ESD. Thus, fF(dk) can be approximated directly using the 

sample eigenvalues. More explicitly, fF(dk) can be closely approximated as

fF dk ≈ dk/ 1 + γ
p − m ∑

i = m + 1

p di
dk − di

.

In contrast, the ψ function depends on the population LSD which is unknown. We can 

estimate the ψ function using the algorithm described in Section 5 and then find the inverse 

function ψ−1 using a Newton-Raphson type algorithm.

4. Consistent estimators of the asymptotic shrinkage in predicting the PC 

scores

In this section, we investigate the convergence of sample eigenvectors, PC scores, and 

shrinkage factors in predicting the PC scores. Let ei and Ei be the ith sample and population 

eigenvectors, respectively. In addition to assumptions (A)-(D), we further assume that the 

distant spikes are of multiplicity 1. This assumption is to restrict the dimension of the 

corresponding eigenspaces to 1, as otherwise the angle between sample and population 

eigenvectors, or shrinkage in predicted PC scores cannot be well defined.
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4.1. Angle between sample and population eigenvectors

We first present the following theorem on the convergence of the quadratic forms of the 

sample eigenvectors.

Theorem 2. Let λk be a distant spike of multiplicity 1, and the assumptions (A)-(D) hold. 

Consider the quadratic form ηk = s1
⊤ekek

⊤s2, where s1 and s2 are non-random vectors with 

uniformly bounded norm for all p. Then

ηk − ηk
a . s . 0,

where ηk = λkψ′ λk s1
⊤EkEk

⊤s2/ψ λk .

Mestre [19] showed similar asymptotic properties of the quadratic forms under the 

assumption that the number of spikes increases with the dimension. Theorem 2 shows the 

convergence of the angle between sample and population eigenvectors. Suppose s1 = s2 = Ek. 

Then

ηk = Ek
⊤ekek

⊤Ek = ek, Ek
2,  ηk = λkψ′ λk /ψ λk .

Combining them, we can show

ek, Ek
2 − λkψ′ λk /ψ λk

a . s . 0.

Therefore, {λkψ’(λk)/ψ(λk)}1/2 is a consistent estimator of the cosine of the angle, i.e., the 

absolute value of the inner product, between the kth sample and population eigenvectors. In 

order to obtain this estimator, we first need to estimate the ψ function using the algorithm 

described in Section 5.

The following result by [8] provides another consistent estimator for the angle between the 

kth sample and population eigenvectors. The proof of the asymptotic equivalence of these 

two estimators is given in the Appendix.

Result 2. Let λk be a distant spike of multiplicity 1, and dk be the corresponding sample 

eigenvalue. Assume that (A)-(D) hold. Define,

gF (x) = 1 + γfF (x)∫ τ
(x − τ)2

dF (τ)
−1

.

Then ek, Ek
2 − gF dk

p 0.

Hence gF (dk)1/2 also works as a consistent estimator of |〈ek, Ek〉|. Since the function gF 

depends only on sample LSD, it can be approximated directly using sample eigenvalues. 
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More explicitly, if there are m spikes in the population, the function gF can be closely 

approximated as

gF dk ≈ 1 +
γfF dk

p − m ∑
i = m + 1

p di
dk − di

2

−1
.

The above equation can be used to estimate the angle between the sample and population 

eigenvectors.

4.2. Correlation between sample and population PC scores

The sample and population PC scores are the projections of the data on the sample and 

population eigenvectors, respectively. The correlation between them can be perceived as a 

measure of accuracy of the PCA. The squared correlation can also be interpreted as the 

proportion of variance in the population PC scores that can be explained by corresponding 

sample PC scores. The following theorem provides the consistent estimators of the 

correlation between the sample and population PC scores corresponding to a distant spike.

Theorem 3. Suppose λk is a distant spike of multiplicity 1, dk is the corresponding sample 

eigenvalue, and the assumptions (A)-(D) hold. Let the normalized kth population PC score 

be Pk = XEk/(nλk)1/2 and the normalized kth sample PC score be pk = Xek/(ndk)1/2. Then

Pk, pk
2 − ψ′ λk

p 0

and

Pk, pk
2 − dkgF dk /fF dk

p 0,

where the function gF is as defined in Result 2.

Since Pk and pk are normalized random vectors, the absolute value of the inner product 〈Pk, 

pk〉 is identical to the absolute value of their correlation coefficient. Since correlation is scale 

invariant, this is also the correlation between kth sample and population PC scores. 

Therefore we can consider both ψ’(λk)1/2 and {dkgF(dk)/fF(dk)}1/2 to be consistent 

estimators of the correlation between the kth sample and population PC scores.

4.3. Asymptotic shrinkage factor

Suppose λk is a distant spike. Let the kth sample PC score for the jth observation xj be 

pkj = xj⊤ek, and the kth predicted PC score for a new observation xnew be qk = xnew⊤ ek. Then 

the quantity ρk = limp ∞ E qk
2 /E pkj

2 1/2
 describes the asymptotic shrinkage in the kth 

predicted PC score for a new observation. As both pkj and qk are centered, i.e., E(pkj) = 

E(qk) = 0, ρk represents the limiting ratio of the standard deviations of the predicted PC 

scores and the sample PC scores. Therefore, if we can estimate pk, then the shrinkage bias in 

the kth predicted PC scores can be easily adjusted by rescaling the predicted scores by the 
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factor ρk
−1. The following theorem provides the consistent estimator of the asymptotic 

shrinkage factor pk.

Theorem 4. Suppose λk is a distant spike of multiplicity 1, dk is the corresponding sample 

eigenvalue, and the assumptions (A)-(D) hold. Let pkj and qk be as defined above. Then

E qk
2 /E pkj

2 − λk/dk
p 0.

This is a surprising result in which the asymptotic shrinkage factor is expressed as a simple 

ratio of the population and sample eigenvalues. Recall that we already constructed the 

consistent estimators for population eigenvalues in the previous sections. Using these results, 

the asymptotic shrinkage factor ρk can be consistently estimated by λk/dk, where λk is any 

consistent estimator of λk.

4.4. Comparison of the two different estimators

For each of the quantities discussed above, we proposed two asymptotically equivalent 

estimators. In terms of practical applications, they have their own advantages and 

disadvantages. One of them can be approximated directly based only on the sample 

eigenvalues, while the other one requires to estimate the LSD of the population eigenvalues 

to obtain the ψ function. For ease of discourse, we will call the former “d-estimator” and the 

later “λ-estimator”.

If the number of spikes is known, estimating the d-estimator is computationally more 

efficient than estimating the λ-estimator as it does not involve estimating the population 

LSD. However, by estimating the population LSD the λ-estimation procedure can verify 

whether an estimated eigenvalue is actually a distant spike by checking if ψ’ > 0. Thus it can 

be used to estimate the number of distant spikes when it is unknown; see Section 5. In 

contrast, the d-estimation procedure provides no information on the population LSD and 

thus cannot distinguish among distant spikes, close spikes and non-spikes.

To summarize, when the number of spikes is known or we only want to estimate few of the 

largest eigenvalues which are known to be distant spikes, then the d-estimation procedure 

has the advantage of a faster computation, while the λ-estimation procedure is more useful 

when the number of spikes is unknown or the distribution of the non-spikes is of interest.

4.5. Comparison of the Generalized Spiked Population (GSP) model and the Spiked 
Population (SP) model

As mentioned before, the SP model [11] is a special case of the GSP model. It is easy to 

verify that when the population eigenvalues follow the SP model, our consistent estimators 

for the spiked eigenvalues, the angles between the eigenvectors, the correlation coefficients 

between the PC scores and the shrinkage factors conform to the consistent estimators 

derived by [4, 14, 20]. For an SP model where all the non-spikes are equal to 1, the LSD H 
is a degenerate distribution at 1, and
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ψ(α) = α 1 + γ /(α − 1) ,  ψ′(α) = 1 − γ /(α − 1)2 .

Now, ψ’(α) > 0 if and only if α > 1 + γ1/2. If α > 1 + γ1/2 and d is the corresponding 

sample eigenvalue, then the consistent estimator of α is given by ψ−1 (d), and

αψ′(α)
ψ(α) = 1 − γ /(α − 1)2

1 + γ /(α − 1) ,   α
ψ(α) = α − 1

α + γ − 1,

which show that all our results match with the results from [14].

It is of interest to investigate how closely methods developed under the SP model can 

approximate the consistent estimators for the distant spikes when the population eigenvalues 

actually follow a GSP model. Suppose the population eigenvalues λ1 ≥ ⋯ ≥ λp follow the 

GSP model with m distant spikes. The sample eigenvalues are d1 ≥ ⋯ ≥ dp. Let λk be a 

distant spike with multiplicity 1, and the corresponding sample eigenvalue is dk. Then 

according to Result 1, dk → ψ(λk) almost surely. From the definition of ψ,

ψ λk = λk 1 + γ∫ λ
λk − λdH(λ) = λk + γ∫ λ

1 − λ/λk
dH(λ) .

If H is almost degenerate, i.e., the non-spikes are nearly identical, then

ψ λk ≈ λk + γλ
1 − λ/λk

, (2)

where λ = ∫ λdH(λ) is the mean of the population LSD which can be closely approximated 

by the mean of the nonspikes. By contrast, if the spike λk is very large compared to all the 

non-spikes such that λ/λk ≈ 0 for any λ ∈ ΓH, then

ψ λk ≈ λk + γλ .

Now, suppose that instead of using the GSP assumption, we use the SP assumption to 

estimate the distant spikes. We assume that under the SP model, the population covariance 

matrix is scaled by a factor ζ and the population eigenvalues are β1 ≥⋯≥ βm > ζ = ⋯ = ζ. If 

βk is the population eigenvalue corresponding to dk, then dk → ψ(βk) almost surely, where

ψ βk = βk 1 + γ ζ
βk − ζ = βk + γζ

1 − ζ /βk
.

Here ζ is estimated as the mean of the non-spikes as they are all assumed to be equal to ζ. 

Notice that this expression is approximately equal to the expression in (2) with βk = λk and 

ζ = λ. Therefore, the asymptotic limit of dk under both the GSP and the SP model are 

approximately equal when the non-spikes are nearly identical. In contrast, when the spike βk 

is very large compared to all the non-spikes such that ζ/βk ≈ 0, then ψ(βk) ≈ βk + γζ. In this 
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case also, the asymptotic limit of dk under both the GSP and the SP model are 

approximately equal with βk = λk and ζ = λ. Therefore, if a generalized spike is very far 

away from the support of the population LSD, then the estimate of the spike based on an SP 

model will closely approximate the estimate based on a GSP model. However, the SP model 

will provide potentially biased estimates if the non-spikes are not similar and the ratio 

between the largest non-spike and the spike of interest is substantially larger than zero.

4.6. Comparison with ultra high-dimensional regime-based results when p/n is large

Our methods are developed under the high-dimensional regime p/n → γ < ∞, and do not 

theoretically warrant them to be applied in ultra-high dimensional (UHD) regime where p/n 
→ ∞. However, often times in real-world applications, we only have data with large p and 

large n, but the relative rate of their asymptotic divergence is unknown. Therefore, we do not 

know whether the true asymptotic regime is high-dimensional (p/n → γ < ∞) or ultra high-

dimensional (p/n → ∞).

Suppose that the true asymptotic regime is high-dimensional with γ finite but large 

compared to n, and the eigenvalues follow the GSP model. In such situations, we can either 

correctly assume the high-dimensional regime and apply the results discussed in this paper, 

or we can falsely assume the ultra high-dimensional asymptotic regime and employ the 

theoretical results derived under this regime [15]. In this section, we will investigate whether 

it is prudent to assume the UHD regime in such situations. In other words, we will try to 

answer how large γ can be considered to be diverging to infinity for practical applications.

We first show that for large enough γ, the theoretical results based on the UHD regime 

become nearly identical to the results under the correctly assumed GSP (under high-

dimensional regime) model. The UHD-based results presented in [15] require weaker 

conditions for the non-spiked eigenvalues than those for the spiked population model. 

Instead of assuming that the non-spiked eigenvalues are the same, Lee et al. [15] assumes 

certain conditions on the moments of the non-spiked eigenvalues. Since the population LSD 

has a finite support and all of its central moments are finite, the condition on their moments, 

i.e., Condition 2 in [15] is satisfied with an additional assumption that n3/ p2 = o(1). Without 

loss of generality, we assume that the mean of the non-spikes is unity. Then, under the UHD 

regime,

d/λ p γ /λ + 1 when λ ≥ O(γ),  d/γ p 1 when λ = o(γ), (3)

where λ and d are a spiked population eigenvalue and its corresponding sample eigenvalue, 

respectively. Here λ ≥ O(γ) means λ/γ is bounded away from zero, and λ = o(γ) means λ/

γ → 0. Lee et al. [15] also showed the convergence of sample eigenvectors and PC scores.

Alternatively, under the GSP model, d → ψ(λ) when λ is a distance spike. From Theorem 

1, a distant spike λ must satisfy

1 − γ∫ x2

(λ − x)2
dH(x) > 0,
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where H is the population LSD. Since fλ(x) = x2(λ − x)−2 is a continuous function for λ > 

sup ΓH and x ∈ ΓH, where ΓH is the support of H, there exists x* ∈ (inf ΓH, sup ΓH) such 

that ∫x2(λ − x)−2 dH(x) = x*2 (λ – x*)−2. Then

1 − γx * 2/ λ − x* 2 > 0,

which implies λ > x* + x* γ. Thus, for any λ > x* + x* γ, d/λ − ψ(λ)/λ converges to zero.

Now, under the true asymptotic regime (high-dimensional) λ and γ are both finite and non-

zero, and thus λ = O(γ). However, under the falsely assumed UHD regime, one can further 

assume λ ≥ O(γ) or λ = o(γ) depending on whether λ is large or small compared to γ. If 

one assumes λ ≥ O(γ), then the difference between the convergence of d/λ from the two 

models is

ψ(λ)/λ − γ /λ − 1 = γ
λ ∫ x

1 − x/λ dH(x) − 1 . (4)

Since γ/λ = O(1) and ∫ x (1 – x/λ)−1dH(x) − 1 = O(1/λ) as the mean of the non-spikes is 

unity, (4) becomes almost identical to zero when λ is sufficiently large.

Now, suppose one assumes λ = ο(γ). Let λ ≃ a + bγk for some finite a, b and k ∈ [1/2,1). 

Then, the difference between our result and the UHD result is

ψ(λ)/γ − 1 = λ/γ + λ∫ x
λ − x dH(x) − 1 = O γk − 1 . (5)

Thus, in this case also (5) becomes almost identical to zero when γ is sufficiently large. We 

can also show the similar results for eigenvectors and PC scores.

Although both GSP and UHD eventually provide nearly identical results when γ is 

sufficiently large, the GSP model can provide substantially better estimates. The difference 

can be large when λ is small compare to γ, i.e., k < 1, since the difference in (5) is of the 

order O(γk−1). The difference will be at least as large as O(1/ γ) in such cases. In simulation 

studies, we show this numerically.

One important thing to note here is that the results under the ultra high-dimensional regime 

do not provide any consistent estimators for the spiked eigenvalues, albeit there still can be 

methods to estimate shrinkage. When the spike λ = ο(γ), the limiting behavior of the 

corresponding sample eigenvalue does not depend on λ, and when λ ≥ O(γ), d/λ p γ /λ + 1
does not imply d − γ to be a consistent estimator of λ because λ itself is divergent.

In the simulation studies and real data applications, we further evaluated the performance of 

d − γ as an estimator. Lee et al. [15] also provided an estimator of the asymptotic shrinkage 

which we have evaluated in the simulation studies. A recent paper by Cai et al. [7] provided 

limiting laws for spiked eigenvalues and corresponding eigenvectors when the spikes are 

divergent, under more general assumptions than the ultra high-dimensional assumptions of 

[15]. In terms of eigenvalue estimation, this model will still have the problem of the spikes 
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not being estimable. However, it can be an interesting future research direction to find 

estimators of the shrinkage under this model.

5. Estimation of the population LSD

The λ-estimators rely on ψ, that is a function of the unknown population LSD H. To use the 

λ-estimators, it is thus required to estimate H. Using the Stieltjes transformation and the 

Marčenko-Pastur theorem, El Karoui [9] developed a general algorithm to estimate the 

population LSD from the sample ESD, Fp. We propose to use El Karoui’s method to 

estimate the population LSD H and then use it to estimate ψ.

5.1. El Karoui’s algorithm

Suppose vFp is the Stieltjes transformation of the set of eigenvalues in the sample covariance 

matrix in which

vFp(z) = 1
n ∑

i = 1

n 1
di − z

for any z ∈ ℂ+, ℂ+ = x ∈ ℂ: lm (x) > 0 . According to the Marčenko-Pastur theorem [16], 

when assumptions (A)-(D) hold, vFp converges point-wise almost surely to a non-random 

limit vF, which uniquely satisfies the following equation:

vF (z) = − z − γ∫ λ
1 + λvF (z) dH(λ)

−1
.

El Karoui’s method first calculates vFp for a grid of values z1,…, zJ, and then finds

H = argHminL 1
vFp zj

+ zj − p
n∫ λ

1 + λvFp zj
dH(λ)

j = 1

J
,

where L is any pre-defined convex loss function. In order to approximate the integral inside 

the loss function, the algorithm discretizes H as

dH(λ) ≃ ∑
k = 1

K
wkδtk(λ),

where δtk(λ) = 1 if λ = tk and 0 otherwise, w1 + ⋯ + wK = 1 with wk > 0 for all k ∈ {1,…, 

K}, and t1,…, tK is a grid of points on the support of H. This is basically approximating H 
by a discrete distribution with support t1,…, tK. Then the integral is approximated by

∫ λ
1 + λvF (z)dH(λ) ≃ ∑

k = 1

K
wk

tk
1 + tkvFp zj

,
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and the minimization problem transforms into

H = argHminL 1
vFp zj

+ zj − p
n ∑

k = 1

K
wk

tk
1 + tkvFp zj j = 1

J
. (6)

El Karoui [9] has shown the weak convergence of H to H, i.e., H H.

Some examples of the convex loss function L are

i. L∞(e1,…, eJ) = maxj·max{|Re(ej)|, |Im(ej)|};

ii. L1(e1,…,eJ) = |e1| + ⋯ + |ej|;

iii. L2(el,…, eJ) = |e1|2 + ⋯ + |eJ|2.

For the convex loss functions described above, the estimation of H in (6) reduces to a convex 

optimization problem [6]. El Karoui also provided a translation of this problem into a linear 

programing (LP) problem when the L∞ loss function is used. Further details can be found in 

[9].

5.2. Implementing El Karoui’s algorithm when the number of spikes is known

Since the generalized spikes fall outside the support of the population LSD, El Karoui’s 

algorithm cannot be directly applied to estimate the spikes. Furthermore, Bai and Silverstein 

[2] showed that the probability of a sample eigenvalue falling outside the support of the 

sample LSD will go to zero as p increases, which implies that the sample eigenvalues 

corresponding to the population generalized spikes will be measure zero points in the sample 

LSD. Since the spikes behave like measure zero points (or outliers) when we are concerned 

about estimating the population LSD, we can exclude the sample eigenvalues corresponding 

to the population generalized spikes while calculating vFp and that will lead to a more robust 

estimation of H. Therefore, we will apply El Karoui’s algorithm in the following way:

I. Suppose the population covariance matrix possesses m generalized spikes. We 

exclude the top m sample eigenvalues while calculating vFp, viz.

vFp(z) = 1
n − m ∑

i = 1

n 1
di − z .

II. Apply El Karoui’s algorithm to obtain H. Additionally, if it is reasonable to 

assume that the true population LSD is a continuous or piecewise continuous 

distribution function, suitable kernel smoothing algorithm can be used on H to 

obtain a more continuous approximation of H.

III. The quantiles of H can be considered as the estimators of the non-spikes.

IV. Suppose λm + 1, …, λp are the estimated non-spikes. Then the ψ function is 

estimated by
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ψ(α) = α + γα
p − m ∑

i = m + 1

p λi
α − λi

.

Due to the weak convergence H H, ψ will also converge to ψ point-wise. Thus, all the 

estimates provided in Section 3 and 4 will still be consistent if we replace ψ with ψ.

A computationally challenging part in El Karoui’s algorithm is solving the LP problem, for 

which there are many fast algorithms available that can solve it in polynomial (in K, the grid 

size of w1,…, wK) computation time. An important property of El Karoui’s algorithm is that 

the complexity of the LP step does not depend on p, which is especially useful for estimating 

the LSDs of large covariance matrices. In our implementation, we used the lpSolve R 

package [5] to solve the LP problem.

5.3. Estimating the number of spikes

Our application of El Karoui’s algorithm to the GSP model depends on the number of spikes 

m, which is usually unknown. If we have some knowledge of the underlying structure of the 

data, we can use it to estimate m roughly. Suppose we know that the data are coming from a 

mixture of K subpopulations, and within each subpopulation the observations are iid 

N μk, Σ , where μk represents the mean for the kth subpopulation, and Σ is the common 

within-group population covariance matrix. Then, as the spikes represent the between-group 

differences, the number of spikes should be the same as the rank of the between-group 

covariance matrix which is K − 1. However in real data, it is often hard to accurately assess 

the number of such homogeneous subpopulations. In those cases, we can use the following 

algorithm to estimate m.

I. Start with a reasonable finite upper bound mmax of the number of spikes. The 

upper bound can be selected based on prior information on the subpopulations, 

or by examining the sample eigenvalues. Set m = mmax.

II. Use El Karoui’s algorithm to estimate the population LSD and the non-spikes. 

Suppose the estimated nonspikes are λm + 1 ≥ ⋯ ≥ λp, and the ψ function is 

estimated by

ψ(α) = α + γα
p − m ∑

i = m + 1

p λi
α − λi

.

III. Find Sψ > λm+1 using the Newton-Raphson algorithm such that

ψ′ Sψ = 1 − γ
p − m ∑

i = m + 1

p λi
Sψ − λi

2
= 0.

IV. Since any distant spike must be larger than Sψ, and ψ, ψ′ are both continuous and 

strictly increasing functions on (Sψ, ∞), the equation ψ(λ) − dk = 0 has a root in 

(Sψ, ∞) if and only if ψ Sψ − dk < 0. Therefore, find the smallest index i* ∈ {1,
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…, m} such that di* ≤ ψ Sψ . If all d1,…, dm are larger than ψ Sψ , then stop and 

select m as the number of distant spikes. Otherwise, set m = i* − 1 and repeat 

step (II)-(IV).

Note that the close spikes occur so close to the support of the population LSD that they 

cannot be distinguished separately from the non-spikes when the number of spikes is 

unknown.

The selection of mmax is subjective. It can be selected based on the prior knowledge on the 

number of subpopulations or by investigating the sample eigenvalues. In real data 

applications, we are usually interested in only a few large eigenvalues. In such situations, 

mmax can also be selected to be slightly larger than the number of eigenvalues we are 

interested in. As seen from our simulation studies, this spike selection algorithm can 

overestimate the number of spikes if the upper bound mmax is too large or underestimate the 

number of spikes if there are close spikes present; see the Online Supplement. However, as 

long as mmax is small compared to n and p, the estimation of the true population distant 

spikes will still remain consistent.

6. Simulation studies and real data example

6.1. Simulation studies: Compare GSP and SP-based methods

In this section we will present simulation studies of four different scenarios to compare the 

performances of the proposed GSP-based methods and the existing SP-based method 

proposed by Lee et al. [14]. For each study, we simulated a training dataset with n = 500 

individuals and p = 5000 features. The data were generated from three subpopulations with 

sample sizes 100, 150 and 250. For each subpopulation we first selected a mean vector μi by 

drawing its elements randomly with replacement from {−0.3,0,0.3}. Then samples in the ith 

subpopulation were drawn from Np μi, V  where V is the AR(1) covariance matrix with 

variance σ2 and autocorrelation ρ. The (σ2,ρ) pairs used for the four studies were (4,0.8), 

(1,0.7), (7.5,0.8) and (4,0). The population eigenvalue plots for all the studies are shown in 

Figure 2.

We also generated test datasets for each study with the same settings as the training datasets. 

Then we applied our GSP-based methods and the existing SP-based method to estimate the 

population spikes, the angles between the sample and population eigenvectors, the 

correlations between the sample and population PC scores and the asymptotic shrinkage 

factors. For all of the studies, we used the upper bound mmax = 5 to estimate the number of 

distant spikes using the algorithm described in Section 5.3. We simulated each study 200 

times to calculate the empirical biases and standard errors of the estimates. The results are 

presented in Table 1.

It is clear from Table 1 that for Studies 1, 2 and 3, our methods reduced the bias in all the 

estimates while having similar standard errors as the existing method. The positive empirical 

biases in all the SP estimates suggest that the SP method tends to overestimate all the 

quantities. In Study 4, since the underlying population satisfied the SP assumption, all 

methods provided very similar and almost unbiased estimates (< 1%). The results also verify 
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that the λ-estimates and d-estimates are asymptotically equivalent. The performances of the 

λ-estimates and the d-estimates are nearly identical in all the simulation studies.

In Study 1, the ratio of the largest non-spike with the two spikes are 0.29 and 0.48, which are 

substantially larger than zero. Thus according to the discussion in Section 4, the SP model 

does not closely approximate the GSP model. The results support this assertion as the SP 

model-based estimates are highly biased whereas the estimates based on our methods have 

very little empirical bias. In Study 2, the largest non-spike is very small compared to the 

smallest spike (ratio 0.08). Thus the estimates based on the SP model closely approximate 

the estimates based on the GSP model, and we find very little empirical bias (< 1%) in all of 

the SP model-based estimates. In Study 3, even though there were two spikes present, only 

the largest population eigenvalue was a distant spike. So we presented only the estimates 

corresponding to the largest population eigenvalue. Since the ratio of the largest non-spike 

and the largest spike is substantially larger than zero (0.53) in this study, we observe very 

high empirical bias in the SP model-based estimates. However, our methods provided 

negligible empirical biases even in the presence of a close spike. We also presented the 

estimated number of distant spikes in each of the simulation studies in the Online 

Supplement. Note that in some cases, our algorithm over-estimates the number of distant 

spikes. However, as the over-estimation is only finite, the estimates of the distant spikes still 

remain consistent.

6.2. Simulation studies: Compare GSP and UHD-based methods

In Section 4.6, we compared the asymptotic results under the UHD regime and the results 

based on the highdimensional GSP model when p is greatly larger than n, but p/n is large but 

finite. We theoretically established that the results from the two regimes become almost 

identical when p/n = γ is sufficiently large. However, given large but finite γ in the data, the 

difference can be substantial when the spike is smaller compared to γ.

In this section, we will assess that result by numerically comparing the GSP and UHD-based 

estimates for different values of γ. We considered five different scenarios where the largest 

population eigenvalue λ ∈ γ, 0.6γ, 60 + 0.1γ, 6 γ, 4γ2/3 . For the first three scenarios, under 

the UHD regime, λ/γ can be assumed to be bounded away from zero, and for the last two, 

λ/γ → 0 as γ →∞. To compare the performances as γ increases, we selected six different 

values for γ, viz. γ ∈ {100,200,500,1000,2500,5000}. For each combination of γ and λ, we 

simulated 200 datasets, each with n = 200 samples from a population with only one spike λ, 

and the non-spikes generated from the AR(1) covariance structure with (σ2, ρ) = (1,0.9).

First, we compare the convergence results of the largest sample eigenvalue d from Theorem 

1 and (3). For this purpose, we assume the population eigenvalues and the rate of increment 

of λ are known, and we compare the relative errors ϵGSP = {d − ψ(λ)}/d and ϵUHD = (d − λ 
− γ)/d or (d − γ)/d depending on whether λ/γ is assumed to be bounded away from zero or 

not. Figure 3 shows that for all combinations of (γ, λ), the GSP-based convergence result 

(Theorem 1) has very negligible relative errors. In contrast, the UHD-based convergence 

result (3) has substantially large relative errors even for γ as large as 5000 in Scenarios 3, 4 

and 5. For Scenarios 1 and 2, since λ increases at a faster rate with γ than in other scenarios, 
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the relative errors based on the two results converge much faster. However, for relatively 

smaller values of γ (100, 200, 500), the differences are substantial even though γ is large 

compared to n = 200. This suggests that we need γ to be large in an absolute sense, and not 

only in a relative sense compared to n in order to assume γ → ∞ and apply UHD-based 

results.

Next, we compare the estimates of the spike λ using GSP-based and UHD-based methods 

assuming the population eigenvalues and the rate of increment of the population spike λ to 

be unknown. Among the GSP-based methods, we only used the d-GSP method for this 

purpose due to the computational burden associated with applying the λ-GSP method on 

such a large number of simulated datasets. One thing to note here is that the UHD results do 

not provide any consistent estimators for λ, as it is assumed to be divergent when λ ≥ O(γ), 

and the asymptotic properties of the sample eigenvalues do not depend on λ when λ/γ → 0. 

Thus, in order to compare these methods, we estimate λ by λ = d − γ when considering the 

UHD regime.

From Figure 4 we can see that our proposed d-GSP method provides almost negligible 

biases for all combinations of (γ, λ), whereas the UHD-based estimates have substantial 

biases even for γ as large as 5000 in Scenarios 3, 4 and 5. For Scenarios 1 and 2, both 

methods provide almost unbiased estimates when γ ≥ 1000 and γ ≥ 2000, respectively. 

Further, we compare the estimated shrinkage factors based on these two methods in the 

Online Supplement. They also show very similar patterns as the estimated spikes.

6.3. Application on Hapmap III data

For this demonstration, we used genetic data from the Hapmap Phase III project (http://

hapmap.ncbi.nlm.nih.gov/). Our sample consisted of unrelated individuals sampled from two 

different populations: a) Utah residents with Northern and Western European ancestry 

(CEU) and b) Toscans in Italy (TSI). We only included genomic markers that are on 

chromosome 1–22, have less than 5% missing values, and those with minor allele frequency 

more than 0.05. We also excluded two samples (both from CEU) with outlier PC scores 

(more than six standard deviations away from the mean PC score corresponding to at least 

one distant spike). We then mean-centered and variance-standardized the data for each 

marker. The final sample consisted of 198 individuals (110 from CEU and 88 from TSI). 

Total number of markers selected across chromosome 1–22 was 1,389,511.

To evaluate the performance of the proposed methods with different p, we performed PCA 

on each chromosome separately. The number of markers varied from 19,331 (chromosome 

21) to 116,582 (chromosome 2). The distribution of the number of markers across different 

chromosomes are presented in the Online Supplement. We first estimated the number of 

distant spikes using the algorithm described in Section 5.3. We found no distant spike in 

chromosome 22 and only one distant spike in chromosome 2. Then we applied our GSP-

based methods, the existing SP-based method [14] and the UHD-based method [15] to 

estimate the asymptotic shrinkage factors corresponding to the distant spikes. Figure 5a, 5b 

compares the estimated asymptotic shrinkage factors for the first two PCs across different 

chromosomes. The plots show that for all the chromosomes, λ-GSP and d-GSP methods 

provided almost equal estimates while the SP and UHD estimates are larger than both the 
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GSP estimates. This suggests that the SP method would over-estimate the shrinkage factors 

when the population eigenvalues deviate from the assumption that the non-spiked 

eigenvalues are the same. Moreover, the UHD method over-estimated the shrinkage factors 

even for p/n nearly as large as 600 (chromosome 2).

To investigate whether the proposed shrinkage-bias adjustment can improve the prediction 

accuracy, we performed a leave-one-out cross-validation. In each iteration we removed one 

individual (test sample) and performed PCA on the remaining individuals (training samples) 

to predict the PC score of the test sample. For each predicted PC score, we adjusted the 

shrinkage-bias using the GSP-based, SP-based and UHD-based shrinkage factor estimates.

One important issue with this cross-validation is that the exclusion of one individual can 

substantially change the PC-coordinates, in which the PC score plots from the training 

sample-based and complete sample-based PCA can be substantially different. To circumvent 

this problem, in each iteration we first rescaled the PC scores based on their corresponding 

sample eigenvalues to make the PCs comparable. In addition, we obtained the mean squared 

difference of the training sample PCl-2 scores with and without the exclusion of the test 

sample (for chromosome 2, only PCl is used), and excluded the test sample from the 

prediction error estimation if the mean squared difference was above a threshold ϵ. We used 

four different values 0.5,1,5 and 10 for the threshold parameter ϵ, and for each value of ϵ we 

calculated the mean squared errors (MSE) of the unadjusted and adjusted predicted PC 

scores of the test samples. The sample sizes of the test samples that were finally included in 

the prediction error estimation for different values of ϵ are shown in the Online Supplement.

Figure 5 shows the estimated MSEs for ϵ = 1. It is clear that both the λ-GSP and d-GSP 

methods have much smaller MSEs than the SP method. The UHD-based method had almost 

identical MSEs as the SP-based method for all the chromosomes, hence we omitted the 

UHD-based results in this plot. As expected, the unadjusted predicted PC scores have 

substantially larger MSE than all the proposed adjustments. The plots are very similar for 

the other values of ϵ, and they can be found in the Online Supplement.

Figure 6 illustrates the shrinkage-bias adjustment for the PC1 and PC2 scores of an 

individual based on the markers on chromosome 7. The plot clearly shows that the bias-

adjusted PC score based on the SP model is still biased towards zero, whereas the bias-

adjusted PC score based on the GSP model is very close to the original sample PC score. We 

only showed the d-GSP adjusted score in the plot as the d-GSP and λ-GSP adjusted scores 

were almost equal.

7. Conclusions and discussion

In this paper, we investigated the asymptotic properties of PCA under the Generalized 

Spiked Population model and derived estimators of the population eigenvalues, the angles 

between the sample and population eigenvectors, and the correlation coefficients between 

the sample and population PC scores. We also proposed methods to adjust the shrinkage bias 

in the predicted PC scores. Further, theoretically and using simulation studies, we compared 

our results with the results developed under the ultra-high dimensional regime [15], and 
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showed that our methods provide more accurate results under the high-dimensional regime 

even when p is greatly larger than n. Since the proposed methods do not require the equality 

of the non-spiked eigenvalues, they can be widely used in high-dimensional biomedical data 

analysis. We implemented all our algorithms in the R package hdpca.

We note that Mestre [18, 19] proposed an asymptotic setting similar to the generalized 

spiked population model but with a different assumption on the number of spikes in which 

the number of spikes increases with the dimension. Under this assumption, he provided 

asymptotic properties of sample eigenvalues and eigenvectors. However, in many biomedical 

data, the number of spikes is usually finite as the spikes represent the difference between 

finitely many underlying subpopulations. Therefore we believe that the generalized spiked 

population model is more appropriate in such cases.

In some special cases, even though the features exhibit strong local correlation, one can use 

the spiked population model based methods after some suitable data manipulation. In 

genome-wide association studies, SNP pruning [1] can be used to remove locally correlated 

SNPs to satisfy the spiked population model. For example, Lee et al. [14] reported good 

performance of the spiked population model-based methods with the SNP-pruned Hapmap 

III dataset. This approach, however, can lead to a considerable loss of information; the SNP-

pruning in Hapmap III data removed nearly 90% of the SNPs. Since the proposed approach 

does not require this additional step, it can use most of the information present in the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1. The first part of the proof follows directly from Result 1 along with the 

fact that on the domain of the distant spikes, the ψ function is strictly increasing, and hence 

is left invertible. Since ψ”(α) > 0 for any α > sup ΓH, ψ’(α) is a strictly increasing function 

for α > sup ΓH. Let Sψ > sup ΓH be a solution for ψ’(α) = 0. Then for any α > sup ΓH, ψ’
(α) > 0 if and only if α > Sψ. Therefore the interval (Sψ, ∞) is the domain of the distance 

spikes, and ψ is a strictly increasing function on this interval. The second part follows from 

Lemma B. □

Proof of Theorem 2. The proof closely follows the proof of Theorem 2 in [18]. However, 

contrary to [18], we do not assume that the population LSD contains the generalized spikes. 

Thus, some of the derivation steps and results are substantially different from [18]. We start 

the derivation by first noting that the quadratic forms ηk can be expressed as contour 

integrals of a special class of Stieltjes transforms of the sample covariance matrix. Let us 

define, for all z ∈ ℂ+,
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mp(z) = s1
⊤ Sp − zIp

−1s2 = ∑
j = 1

p
s1
⊤ejej⊤s2/ dj − z ,

where s1 and s2 are non-random vectors with uniformly bounded norms. Girko [10] and 

Mestre [17] showed that under the assumption that the population LSD contains the 

generalized spikes, one has, for all z ∈ ℂ+,

mp(z) − mp(z) a . s . 0, (A.1)

Where

mp(z) = s1
⊤ w(z)Σp − zIp

−1s2 = ∑
j = 1

p s1
⊤EjEj⊤s2

w(z)λj − z .

The function w(z) is defined as w(z) = 1 − γ – γzbF(z), where bF(z) = ∫ (τ − z)−1dF(τ) is 

the Stieltjes transform of the sample LSD. It is easy to check, by the same arguments 

provided in [17], that the result still holds when the generalized spikes are considered lying 

outside the support of the population LSD.

The functions mp, mp and bF can be extended to ℂ− = z ∈ ℂ: lm (z) < 0  by defining 

mp(z) = mp* z* , mp(z) = mp* z*  and z ∈ ℂ−, where z* is the complex conjugate of z.

With this definition, mp(z) − mp(z) a . s . 0 even when z ∈ ℂ−. Now ηk can be expressed as an 

integral of mp, viz.

ηk = 1
2πi∮∂ℝy

− k mp(z)dz,

where i = −1, y > 0 and ∂ℝy
−(k) is the negatively (clockwise) oriented boundary of the 

rectangle

ℝy(k) = z ∈ ℂ:a1 ≤  Re (z) ≤ a2,  lm (z) ≤ y .

The values of a1 and a2 can be arbitrarily chosen provided that ℝy(k) contains only the 

sample eigenvalue dk and no other sample eigenvalue. Then the following lemma gives the 

almost sure limit of ηk.

Lemma A.

1
2πi∮∂ℝy

−(k)mp(z)dz − 1
2πi∮∂ℝy−(k)mp(z)dz a . s . 0,
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where y > 0 and ∂ℝy
−(k) is the negatively (clockwise) oriented boundary of the rectangle

ℝy(k) = z ∈ ℂ:a1 ≤  Re (z) ≤ a2,  lm (z) ≤ y .

The constants a1 and a2 can be arbitrarily chosen so that ψ(λk) ∈ [a1, a2] and [a1, a2] ⊂ 
ψ(Sψ, ∞), where Sψ > sup ΓH, ψ′(Sψ) = 0. Here, ψ(Sψ, ∞) denotes the image of the 

interval (Sψ, ∞) under ψ.

Lemma A implies

ηk − ∑
j = 1

p 1
2πi∮∂ℝy− k

dz
w(z)λj − z s1

⊤EjEj
⊤s2

a . s . 0. (A.2)

Now we need to evaluate the integral in (A.2) in order to get the almost sure limit of the 

random variable ηk. First, we extend the ψ function to ℝy(k) as follows. For all z ∈ ℝy(k),

ψ(z) = z 1 + γ∫ λ
z − λ dH(λ) .

According to [16], for all z ∈ ℂ+, bF(z) = b is the unique solution to the equation

b = ∫ 1
λ(1 − γ − γzb) − z dH(λ) (A.3)

in the set b ∈ ℂ:γb − (1 − γ)/z ∈ ℂ+ . It is easy to see that bF also satisfies (A.3) when 

z ∈ ℂ−. Now we formally define the fF function introduced in (1). For all z ∈ ℂ\ℝ, set

fF(z) = z
w(z) = z

1 − γ − γzbF(z) . (A.4)

Then bF can be expressed in terms of fF as

bF (z) =
(1 − γ)fF (z) − z

γzfF (z) .

By replacing b with {(1 – γ)f − z}γzf in (A.3), we get

f 1 + γ∫ λ
f − λ dH(λ) = z . (A.5)

It is easy to see that bF is a solution to (A.3) if and only if fF is a solution to (A.5). 

Therefore, for all z ∈ ℂ+ (similarly for z ∈ ℂ−, fF(z) = f is the unique solution to (A.5) on ℂ+

(respectively, ℂ−). This implies ψ{fF(z)}=for all z ∈ ℝy(k)\ a1, a2 .

Now we focus on the case when z ∈ ℝ\ 0 . According to [22], we can extend bF to ℝ\ 0  by 

defining bF z = limy 0+bF(z + iy) for any z ∈ ℝ\ 0 . The definition of fF can also be 
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extended in a similar fashion. In Lemma B we have shown that fF is the inverse function of 

ψ on (Sψ, ∞), and there exists Mf > sup ΓF for which f(Sψ, ∞) = (Mf, ∞). Thus, [a1, a2] ⊂ 
ψ(Sψ, ∞) implies ψ{fF(z)} = z for all z ∈ ℝy(k). Furthermore, the function ψ is continuous 

and differentiable on ℝy(k), and the derivative is given by

ψ′(z) = 1 − γ∫ λ
z − λ

2
dH(λ) .

Then the integral in (A.2) can be expressed in terms of ψ and fF as follows:

1
2πi∮∂ℝy−(k)

dz
w(z)λj − z = 1

2πi∮∂ℝy− k
dz

z
fF (z)λj − z

= 1
2πi∮∂ℝy−(k)

1
λj − fF(z) × fF(z)

ψ fF(z) dz .
(A.6)

The integrand in the final expression is holomorphic on ℝy
−(k) when j ≠ k and possesses a 

simple pole ψ(λk) when j = k. Therefore, when j ≠ k the integral in (A.6) is zero. When j = 

k, applying the residue theorem on the final integral, we get

1
2πi∮∂ℝy−(k)

dz
w(z)λk − z = lim

z ψ λk

ψ λk − z
λk − fF (z) ×

fF (z)
ψ fF (z)

= lim
z ψ(k)

ψ λk − ψ fF (z)
λk − fF (z) ×

fF (z)
ψ fF (z) =

λkψ′ λk
ψ λk

.

This implies

1
2πi∮∂ℝy−(k)

dz
w(z)λj − z =

λkψ′ λk /ψ λk  if j = k,
0  if j ≠ k,

and the proof of Theorem 2 is complete. □

Proof of Lemma A. First, we show that a1, a2, a1, a2 can be chosen satisfying a1 a1 and 

a2 a2. This is possible due to the fact that dk
a . s . ψ λk  and ψ(λk) ⊂ ψ(βψ, ∞) = (Mf, 

∞), where Mf > sup ΓF. Therefore, we can choose a neighborhood [a1, a2] around ψ(λk) so 

that [a1, a2] ⊂ (Mf, ∞). Moreover, as Mf is bounded away from the support of the sample 

LSD F and dk
a . s . ψ λk , we can select a neighborhood [a1, a2] around dk which does not 

contain any other eigenvalue for which a1 a1, a2 a2. Then
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1
2πi∮∂ℝy

−(k)mp(z)dz − 1
2πi∮∂ℝy−(k)mp(z)dz

≤ 1
2π sup

z ∈ ∂ℝy
−(k) ∪ ∂ℝy+(k)

mp(z) a1 − a1 + a2 − a2

+ 1
2π∮∂ℝy−(k) mp(z)dz − mp(z) × dz .

(A.7)

From the Cauchy-Schwarz inequality, we can obtain the following upper bound for mp.:

mp(z) ≤ s1 × s2 /d z, ΓFp .

Here, d z, ΓFp = infy ∈ ΓFp z − y . Since Fp → F point-wise and [a1, a2] is bounded away 

from ΓF, d z, ΓFp  is bounded away from zero with probability 1 for large enough p and n. 

Therefore mp(z)  is finite for z ∈ ℝy(k) with probability 1 for large enough p and n. 

Moreover, since a1, a2 a1, a2 , the interval a1, a2  will eventually be bounded away from 

ΓF. Thus, eventually the upper bound for mp(z)  will also be finite for z ∈ ℝy(k). Therefore, 

the first term on the right-hand side of (A.7) will go to zero as a1 a1, a2 a2.

Now, as mp(z) and mp(z) are holomorphic functions on the compact set ∂ℝy
−(k), we have

sup
z ∈ ∂ℝy−(k)

mp(z) − mp(z) < ∞ .

Also from (A.1), mp(z) − mp(z) a . s . 0 point-wise for all z ∈ ℂ\ℝ. Therefore, by Lebesgue’s 

Dominated Convergence Theorem, the second term on the right-hand side of (A.7) also 

converges to zero almost surely. This completes the proof of Lemma A. □

We can show the asymptotic equivalence of the limits derived in Theorem 2 and Result 2 as 

a direct application of the following lemma.

Lemma B. Suppose assumptions (A)-(D) hold. If λk is a distant spike with multiplicity 1, 

and dk is the corresponding sample eigenvalue, then

fF dk
p λk,  

dkgF dk
fF dk

p ψ′ λk .

Proof. We have already established in the proof of Theorem 2 that for all z ∈ ℂ+ (similarly 

for z ∈ ℂ−), fF (z) = f is the unique solution to (A.5) on ℂ+ (respectively, ℂ−). When z is 

restricted to ℂ\ℝ, using (A.4) and the fact that bF (z) = ∫ (τ − z)−1dF(τ), we can write
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fF (z) = z 1 + γ∫ τ
z − τ dF (τ) .

Now suppose z = x ∈ ℝ\ 0 . Then both Eqs. (A.3) and (A.5) will have multiple roots, both 

real and complex valued depending on x and H. If we look at (A.5) closely, we can see for 

real-valued x, it can be represented as ψ{f (x)} = x, where the ψ function is as defined in 

(1). As we have seen in the proof of Theorem 1, ψ is strictly increasing in the interval (Sψ, 

∞), where Sψ > sup ΓH and ψ’(Sψ) = 0. Therefore, any real-valued solution f of ψ{f (x)} = 

x in (Sψ, ∞) has to be the inverse of ψ, which is unique due to the strict monotonicity of ψ 
on (Sψ, ∞). Now suppose ΓF is the support of the sample LSD F. We will show that there 

exists Mf > sup ΓF such that for any x > Mf, the function fF is real-valued and it is a solution 

to (A.5) in the interval (Sψ, ∞). Thus it is also the unique such solution and the inverse of 

the ψ function in (Sψ, ∞).

Let x ∈ ℝ, x > sup ΓF and z = x + iy ∈ ℂ+. Now, as z ∈ ℂ+, fF(z) is the unique solution to 

(A.5) in ℂ+. Therefore, if we express fF(z) as u(z) + iv(z), then v(z) > 0. Also, the imaginary 

part of (A.5) can be written as

v(z) 1 − γ∫ λ2

u(z) − λ 2 + v(z)2
dH(λ) = y .

Both v(z) and y being positive implies that

1 − γ∫ λ2

u(z) − λ 2 + v(z)2 dH(λ) > 0. (A.8)

Due to the continuity of fF on the set z ∈ ℂ+:z = x + iy, x > supΓF ,

fF (x) = lim
y 0+

x + iy
1 + γ∫ τ(x + iy − τ)−1dF (τ)

= x
1 + γ∫ τ(x − τ)−1dF (τ)

,

which is real-valued. Thus u(z) → fF(x) and v(z) → 0 as y ↓ 0. Therefore as y ↓ 0, the 

inequality (A.8) becomes

1 − γ∫ λ2

fF (x) − λ 2 dH(λ) > 0,

which implies ψ’{fF(x)} > 0.

We can see that fF(x) attains zero at sup ΓF and it is strictly and unboundedly increasing for 

x > sup ΓF. This ensures the existence of a threshold MF > sup ΓF such that the function fF 

maps the interval (MF, ∞) to (Sψ, ∞). Therefore, fF and ψ are both strictly increasing, 

continuous and bijective mappings between the intervals (MF, ∞) and (Sψ, ∞). Since fF(z) 
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is the unique solution to (A.5) in ℂ+ when z ∈ ℂ+, fF is also a solution to (A.5) in (Sψ, ∞) 

when x > MF due to the continuity of the left-hand side of (A.5) on the set 

f ∈ ℂ+:f = u + iv, u > Sψ , which further implies that fF is the inverse function of ψ on 

(Sψ, ∞).

The first part of Lemma B is proved as a corollary to Result 1 as ψ−1 = fF on the domain of 

distant spikes, i.e., (Sψ, ∞). For the second part, we first need to derive the expression of 

f′F , and then derive the expression of ψ’ in terms of fF and F, viz.

fF′ (x) = f(x) 1 + γvF (x) /x;  vF (x) = ∫ τ
(x − τ)2

dF (τ) .

For a distant spike λk, using the expression of f′F , we get

λkψ′ λk
ψ λk

=
λk

ψ λk fF′ ψ λk
= 1

1 + γfF ψ λk ∫ τ ψ λk − τ −2dF (τ)
= gF ψ λk .

As ψ(λk) > Mf, gF is continuous at ψ(λ). Since dk
p ψ λk ,

gF dk
p gF ψ λk = λkψ′ λk /ψ λk ,  dkgF dk /fF dk

p ψ′ λk .

This concludes the proof of Lemma B. □

Proof of Theorem 3. We have

Pk, pk
2 = 1

n2λkdk
XEk, Xek

2 = 1
λkdk

Ek
⊤X⊤Xek/n 2 = 1

λkdk
Ek

⊤ ∑
i = 1

p
dieiei⊤ ek

2
=

dk
λk

ek, Ek
2 .

Using the limits derived in Theorem 2 and Result 1, we deduce that

dk
λk

ek, Ek
2 − ψ′ λk

p 0.

Using Lemma B, we conclude that

dk
λk

ek, Ek
2 −

dkgF dk
fF dk

p 0.

Proof of Theorem 4. We show that the denominator E pkj
2  converges to ψ(λk) and the 

numerator E qk
2  converges to λk

2/ψ λk . The proof will be complete using the fact that 

dk
p ψ λk . For the denominator, we have
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E pkj
2 = 1

nE ∑
i = 1

n
pki
2 = 1

nE ∑
i = 1

n
xi⊤ek

2 = E ek
⊤X⊤Xek/n

= E ek
⊤ ∑

i = 1

p
dieiei⊤ ek = E dk ψ λk .

For the numerator, we have

E qk
2 = E xnew⊤ ek

2 = E E xnew⊤ ek
2 ek = E  var  xnew⊤ ek ek = E ek

⊤Σpek .

Now, using the notations in the proof of Theorem 2 and Lemma B, we have bF(z) = ∫ (τ − z)
−1dF(τ) as the Stieltjes transform of the sample LSD and the function fF defined as fF(z) = 

z{1 − γ − γzbF(z)}−1. Therefore,

bF (z) =
(1 − γ)fF (z) − z

γzfF (z) .

The functions bF and fF can be extended to the real axis by defining the extensions as shown 

in the proof of Lemma B. Thus, for the sample eigenvalue dk corresponding to the distant 

spike λk we have

bF dk =
(1 − γ)fF dk − dk

γdkfF dk
.

According to Theorem 4 in [13], the limit of ek
⊤Σpek is given by dk{1 − γ − γdkbF(dk)}−2. 

Replacing the expression of bF (dk) in this limit, we get

ek
⊤Σpek − fF

2 dk /dk
p 0.

Using Result 1 and Lemma B, we have fF
2 dk /dk

p λk
2/ψ λk . Therefore, the limit of the 

numerator is given by

E qk
2 = E ek

⊤Σpek λk
2/ψ λk .

This completes the proof of Theorem 4. □
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Figure 1: 
Eigenvalue structures for SP and GSP models.
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Figure 2: 
Eigenvalue structures in simulation studies comparing GSP-based and SP-based methods.
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Figure 3: 
Relative errors (%) in the convergence results of the largest sample eigenvalue derived under 

GSP and UHD regimes. The population eigenvalues and the rate of increment of the largest 

population eigenvalue are assumed to be known.
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Figure 4: 
Empirical biases (%) in estimating the largest population eigenvalue for GSP-based and 

UHD-based methods. The population eigenvalues and the rate of increment of the largest 

population eigenvalue are assumed to be unknown.
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Figure 5: 
Estimated shrinkage factors for (a) PC1 and (b) PC2 across chromosomes 1–21 based on 

three different methods. (c) Comparison of the mean squared errors (MSE) of the unadjusted 

and adjusted PC scores based on the d-GSP and SP methods with the adjusted PC scores 

based on the λ-GSP method. The ratios of the MSEs are presented for chromosome 1–21 

using the threshold ϵ = 1. The y-axis is presented in a logarithmic scale.
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Figure 6: 
PCl vs PC2 plot of the Hapmap III CEU and TSI samples based on chromosome 7. The 

predicted PC scores for the illustrative individual, and its bias-adjusted PC scores are also 

presented. Since the d-GSP and the λ-GSP adjusted scores are nearly the same, the λ-GSP 

adjusted scores are not presented.
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Table 1:

Simulation results for GSP-based and SP-based methods for estimating the population eigenvalues, cosine of 

the angles between sample and population eigenvectors, correlations between sample and population PC 

scores, and the asymptotic shrinkage factors. Each cell has empirical bias (%) with coefficients of variations 

(%) in parentheses.

Settings Method Eigenvalue Angle Correlation Shrinkage

No. 1 2 1 2 1 2 1 2

1

n = 500
p = 5000
σ2 = 4
ρ = 0.8

SP 5.27
(2.37)

18.27
(3.11)

6.52
(0.32)

34.07
(0.60)

3.83
(0.03)

23.33
(0.08)

5.32
(0.60)

17.88
(1.06)

λ-GSP 0.43
(2.67)

0.95
(5.27)

0.53
(0.77)

3.28
(6.26)

0.33
(0.31)

2.79
(4.69)

0.47
(0.92)

0.58
(3.31)

d-GSP 0.47
(2.67)

0.69
(5.45)

0.47
(0.77)

2.48
(6.70)

0.24
(0.31)

2.11
(5.07)

0.51
(0.92)

0.31
(3.51)

2

n = 500
p = 5000
σ2 = 1
ρ = 0.7

SP 0.10
(0.90)

0.46
(1.27)

0.16
(0.04)

0.44
(0.08)

0.08
(0.001)

0.24
(0.003)

0.18
(0.08)

0.39
(0.16)

λ-GSP −0.04
(0.90)

0.04
(1.28)

0.01
(0.04)

0.004
(0.10)

0.01
(0.03)

0.01
(0.01)

0.03
(0.08)

−0.03
(0.18)

d-GSP −0.004
(0.90)

0.10
(1.28)

0.03
(0.04)

0.03
(0.10)

0.004
(0.03)

0.01
(0.01)

0.07
(0.08)

0.03
(0.18)

3

n = 500
p = 5000
σ2 = 7.5
ρ = 0.8

SP 25.68
(2.54) — 64.06

(0.52) — 46.50
(0.07) — 26.41

(0.90) —

λ-GSP 2.92
(5.7) — 12.62

(11.90) — 10.95
(10.13) — 3.47

(4.20) —

d-GSP 2.45
(5.74) — 12.25

(10.52) — 10.87
(8.58) — 3.00

(4.24) —

4

n = 500
p = 5000
σ2 = 4
ρ = 0

SP 0.05
(1.58)

−0.26
(2.35)

0.06
(0.23)

−0.06
(0.53)

0.03
(0.02)

0.05
(0.08)

0.07
(0.43)

−0.22
(0.90)

λ-GSP 0.03
(1.58)

−0.35
(2.35)

0.02
(0.24)

−0.18
(0.54)

0.01
(0.02)

−0.02
(0.09)

0.04
(0.43)

−0.31
(0.91)

d-GSP 0.16
(1.58)

−0.12
(2.35)

0.10
(0.23)

−0.03
(0.53)

0.01
(0.02)

0.02
(0.09)

0.18
(0.42)

−0.08
(0.90)
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