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Postbiotics‑parabiotics: the new horizons 
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Abstract 

Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such 
as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, 
the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics 
derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the func-
tional foods field because they impart an array of health-promoting properties. Although, these terms are not well 
defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of 
metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain 
fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are 
the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, 
teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)”. However, in 
many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several 
advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability 
of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes 
Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) 
and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review 
comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of 
paraprobiotic and postbiotic compounds and their potential health benefits.
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Introduction
Food is a paramount basic need of life that clinches the 
nutritional requirement of an individual. The nutrients 
like fats, carbohydrates, and proteins pledge energy for 
growth and maintenance, whereas non-nutrient factors 
(fiber, phytochemicals, antioxidants, vitamins, miner-
als, probiotics, prebiotics, etc.) augment human health 

by positively modulating the host physiology and global 
epigenetic imprints [1–4]. Dietary intake of selected cat-
egories of foods comprising active components regulate 
the disease controlling mechanisms either as prophylac-
tics or therapeutics, and such foods are typically called 
as nutraceuticals or foodiceuticals or functional foods 
or medifoods [5]. An intense innovation in the field of 
functional food has pawed way to generate an extensive 
range of health-promoting bioactive compounds such 
as probiotics, prebiotics, phytochemicals or herbs, natu-
ral antioxidants, bioactive peptides, etc. [6]. The mani-
festations of these active biologicals naturally in food or 
external fortification flag the food functional [7, 8]. Japan 
is the first country to propose legislation for the specific 
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regulatory approval procedures of functional foods that 
were implemented as Food for Specific Health Uses 
(FOSHU) [9, 10]. Thereafter, several other countries have 
also structured their regulatory enforcement actions and 
civil litigations to govern the regulatory issues regard-
ing functional foods such as US Federal Food and Drug 
Administration in the United States (USA), Food Safety 
and Standards Authority of India (FSSAI) in India, China 
Food and Drug Administration (CFDA) in China, Euro-
pean Union (EU) in Europe, National Sanitary Surveil-
lance Agency (NSSA) in Brazil, etc. [11]. The functional 
foods can be defined as “any food that has a positive 
impact on an individual’s health, physical performance, 
or state of mind, in addition to its nutritious value” [9]. 
Also, it should serve to regulate a particular body pro-
cess, such as enhancement of biological defense mecha-
nisms, prevention of specific diseases, control of physical 
and mental disorders, and slowing of the aging process 
[9]. However, these functional foods can be further cat-
egorized as natural, transformed, fortified, and enhanced 
foods [9]. The rapid industrialization and moderniza-
tion coupled with plummeting in the rate of consump-
tion of health-promoting natural foods have witnessed 
the emergence of different health complications at an 
early age of human life [12–14]. Fascinatingly, consumer 
awareness and acceptance of functional foods to counter-
act lifestyle diseases have been recently amplified. This 
consumer interest is indeed driving the global functional 
food sector with an economic momentum of more than 
US$180 billion with the global annual demand for func-
tional foods has anticipated rising at 8% [15].

Probiotics are among the amply studied and applied 
functional food ingredients. Probiotics are defined as 
“live microorganisms that, when administered in ade-
quate amounts, confer a health benefit on the host” [16]. 
Lactobacillus and Bifidobacterium are the most studied 
probiotic genera. However, Bacteroides and Clostridium 
genera are emerging as next-generation probiotics irre-
spective of their safety issues [17]. To address such issues, 
the European Food Safety Authority (EFSA) has granted 
the Qualified Presumption of Safety (QPS) status to only 
a total of 32 Lactobacillus species for human applica-
tions considering their safety perspectives [18]. Hitherto, 
probiotics have been investigated for their ability to sur-
pass gut functioning, alleviation of lactose intolerance, 
enhancement of immune function, anti-carcinogenic, 
anti-diabetic, anti-oxidative, anti-aging, antimicrobial, 
and anti-biofilm actions [19, 20].

Despite several health benefits, investigations on pro-
biotics have highlighted few limitations such as unknown 
molecular mechanisms, strain-specific behaviors, short-
lived, niche-specific action of probiotics (allochthonous 
or autochthonous), developing antibiotic resistance, 

virulence genes transfer, ambiguous beneficial effects, 
issues about the maintenance of viability and stability in 
the production process, a hindrance for colonization of 
commensal gut microflora, ability to cause opportunistic 
infections, inflammatory response infective endocardi-
tis, sepsis, bacterial translocation to tissue or blood, and 
bacteremia in immunocompromised individuals are sig-
nificant bottlenecks [21–23]. The low concentrations of 
probiotic derived biologically active compounds found 
in specific target sites in the course of traditional applica-
tion of live probiotic microorganisms (live biotherapeu-
tics) were found ineffective at in vivo conditions [24, 25]. 
On the other note, live probiotics have been reported to 
be affected by various host-specific factors in the gastro-
intestinal tract (GIT) that subsequently activate several 
bacterial genes for degradation and production of differ-
ent nutrients by various metabolic pathways [26, 27]. To 
address such issues, postbiotic components derived from 
probiotics are probably favorable and promising alterna-
tive supplements for human health and wellness thereof.

Concepts and definition
Several investigators have proposed different terminolo-
gies to describe postbiotics and paraprobiotics such as 
non-viable probiotics, inactivated probiotics, non-biot-
ics, ghost probiotics, and metabiotics [24, 28, 29]. Of 
note, paraprobiotics have been defined alike  the Food 
and Agriculture Organization/World Health Organiza-
tion (FAO/WHO) definition of probiotics with minor 
modifications as “inactivated (non-viable) microbial cells, 
which, when administered in sufficient amounts, confer 
benefits to consumers” [30].

However, the verbal inconsistencies in defining post-
biotics were streamlined by a recent opinion article 
[31]. Accordingly, (i) POSTBIOTICS may be defined as 
“non-viable bacterial products or metabolic products 
from microorganisms that have biological activity in the 
host (ii) PARAPROBIOTICS (also called ghost or inac-
tivated probiotics) that are “non-viable microbial cells 
(either intact or broken) or crude cell extracts which 
when administered (either orally or topically) in adequate 
amounts, confer a benefit on the human or animal con-
sumer”; and (iii) PROBIOCEUTICALS/PROBIOTA-
CEUTICALS which defines probiotic derived factors 
such as reuterin from Lactobacillus reuteri.

Most importantly, the latest scientific literature has 
highlighted the widely accepted definition of para-
probiotics/ghosh probiotics as “the inactivated/dead/
non-viable microbial cells of probiotics (intact or rup-
tured containing probiotic cell components upon lysis) 
or crude cell extracts (i.e. with complex chemical com-
position)” [32]. By contrast, postbiotics are the com-
plex mixture of healthy metabolic products or secreted 
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components of probiotics in cell-free supernatants such 
as enzymes, secreted proteins, short chain fatty acids, 
vitamins, amino acids, peptides, organic acids, etc. [33, 
34]. Although the tentative term postbiotics has been 
widely used so far, hitherto there is no definition recom-
mended by international regulatory bodies or scientific 
associations.

Since the specific action of postbiotics relies on definite 
dosage levels, most studies have failed to fix a specific 
dose of postbiotics/paraprobiotics to ensure the benefi-
cial effects alike probiotics at 109 viable cells. To investi-
gate the effectiveness of postbiotics, currently, there have 
been a handful of comparative studies conducted at the 
in  vitro and in  vivo levels, and such studies suggest the 
similar potentialities of postbiotics over the probiot-
ics in terms of demonstrating various health benefits on 
the host [35–37]. Singh et al. have reported an excellent 
antagonistic knack of paraprobiotics (heat-killed form) 
over the live probiotic bacteria against enteropathogens 
[38]. Moreover, the outcome of a recent literature survey 
by Pique and coworkers [39] underscores that postbiotics 
exert several pharmacodynamic features over live bacte-
ria as enlisted below,

1)	 No risk of bacterial translocation from the gut lumen 
to blood among vulnerable and immunocompro-
mised subjects.

2)	 No chances of acquisition and transfer of antibiotic 
resistance genes.

3)	 More natural to extract, standardize, transport, and 
store.

4)	 Loss of viability by cell lysis can produce further ben-
eficial effects.

5)	 Enhanced interaction of every released molecule 
from the disrupted cells with the epithelial cells more 
directly.

The forms of postbiotics and paraprobiotics
The various postbiotic molecules include metabolic by-
products of live probiotic bacteria such as cell-free super-
natant, vitamins, organic acids, short-chain fatty acids, 
secreted proteins/peptides, bacteriocins, neurotransmit-
ters, secreted biosurfactants, amino acids, flavonoids 
derived postbiotics (desaminotyrosine, equol daidzein, 
daidzein, norathyriol), terpenoids derived postbiotics 
(genipin, paeoniflorin, paeoni lactone glycosides, paeoni-
metabolin I, II, III), phenolic-derived postbiotics (equol, 
urolithins, valerolactones, enterolactone, enterodiol, 
8-prenylnaringenin) etc. [40–42]. Whereas, the parapro-
biotics constitutes inactivated/dead/non-viable microbial 
cells of probiotics as intact or ruptured containing cell 
components of probiotic cells upon lysis such as teichoic 

acids, peptidoglycan-derived muropeptides, surface 
protruding molecules (pili, fimbriae, flagella), polysac-
charides like exopolysaccharides, cell surface-associated 
proteins, cell wall-bound biosurfactants, teichoic acids, 
etc. [24, 43]. The use of purified postbiotic components 
or individual cellular components for therapeutic studies 
targeting a particular disease helps to rule out the spe-
cific underlying molecular mechanisms displayed by each 
molecule. However, to study the same in probiotics may 
results in unclear and multiple outcomes due to complex 
bacterial architecture/morphology. Therefore, various 
postbiotic molecules have drawn attention due to their 
known chemical structure, long storage stability, and 
the ability to trigger the various mechanisms in control-
ling inflammation, adhesion of pathogens to GIT, obesity, 
hypertension, coronary artery diseases (CVD), cancer, 
and oxidative stress (Fig.  1). Fascinatingly, postbiotic 
preparations have also granted patents as bio-therapeu-
tics for a specific health claim “immune-modulation” [44, 
45]. Similarly, metabolites of lactic acid bacteria (post-
biotics) have granted patents as anti-tumour agents and 
feed additives for monogastric animals [46–48].

Non‑viable probiotics
The non-viable probiotics are the inactivated or dead 
cells of probiotics. The inactivation of live bacteria can be 
achieved by various methods viz. heat treatment, chemi-
cals (e.g., formalin), gamma or ultraviolet irradiation, and 
sonication, however, most commonly, heat treatment 
remains the method of choice for inactivation [32]. Nev-
ertheless, the mode of inactivation by different methods, 
their effect on cellular structural components, and their 
influence on biological activities remain non-identical 
[49]. Heat treatments comprise a wide range of time-
temperatures combinations to ensure the complete kill-
ing of bacteria in the suspension (Fig. 2). The inactivation 
can also be achieved by a combination of tyndallization 
and cell freezing process. In a study, the bacterial heat-
killed suspension was prepared by heating cell suspen-
sion (109 CFU/mL) to 100 °C/30 min, and the lethal effect 
was confirmed by pour plating [50]. Regarding the con-
firmation of heat-induced lethal effect and to understand 
the heat-induced changes on structural confirmations 
of various biomolecules, Attenuated Total Reflection- 
Fourier-transform Infrared Spectroscopy (ATR-FTIR) 
technique was successfully employed in a study by con-
sidering the specific peak at 1635 cm−1 (amides of pro-
teins and peptides) [51].

It is important to note that non-viable cells main-
tained their potentiality to deliver beneficial effects on 
the host at the intestinal level in vivo, thus aid the devel-
opment of safer preparations with more optimal phar-
maceutical properties [37, 52]. Heat-killed probiotics 
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revealed anti-adhesion (competition for adhesion sites) 
ability against various enteropathogens on the Caco-2 
experimental model [38]. This promising potential-
ity of heat-killed probiotics may indicate the ability to 
fight against diarrheal and food-borne pathogens in 
terms of their ability to compete for adhesion sites on 
gut enterocytes. Additionally, several heat-killed pro-
biotics strains of Lactobacillus have demonstrated the 
anti-inflammatory (ability to suppress the inflamma-
tory markers like IL-6, TNF- α and to enhance anti-
inflammatory cytokines viz. IL-10) and anti-oxidative 
(ability to scavenge the free radicals) effects at in vitro 
and in vivo experimental models [35, 53]. On the other 
hand, probiotic heat-killed preparation had a substan-
tial influence over serotonin secretion in the gut (gut-
brain axis) [54]. A study by Saito et  al. demonstrated 
that oral administration of heat-killed preparations of 
L. brevis  SBC8803  to rats upregulates the acyl ghre-
lin concentration that in turn increased the ratio of 
acyl to des-acyl (inactive) ghrelin in blood. Apart from 
this, heat-killed cells also enhanced the expression 
of the  Syt3  (synaptotagmin 3) gene related to ghrelin 
exocytosis in primary mouse stomach cells [55]. These 
findings suggest that not only live bacteria but also 
their heat-killed cells have the caliber to modulate host 
physiology. Moreover, there have been several lines of 

evidence currently available to demonstrate the similar 
mode of action of heat-killed probiotics vis-à-vis viable 
cells [36, 52, 56].

Biosurfactants
Biosurfactants (BS) are the diverse polymeric molecules 
synthesized during the late log or early stationary phase 
of the growth cycle of an organism and are secreted 
extracellularly or cell wall-bound. BS assists the own cell 
in (i) nutrient uptake by increasing the surface area (ii) 
hydrophobic substrate metabolism (iii) cellular defense 
mechanism [57, 58]. Amongst the plethora of BS, few 
representatives viz. glycolipids, lipopeptides, phospholip-
ids, neutral lipids, polysaccharide-protein complexes, and 
free fatty acids have been well documented [59, 60]. BS 
are the amphiphilic molecules comprising hydrophobic 
(fatty acids or hydrocarbon chain) and hydrophilic (poly-
saccharide or peptides or acids) moieties to provide sur-
face-active and emulsification properties that reduce the 
interfacial tension at the surface. This amphiphilic prop-
erty of BS assists in the disruption of pre-formed biofilms 
or preventing the onset of biofilm formation by patho-
genic microorganisms. Also, the wetting, foaming, and 
emulsification properties hurdle the bacteria to adhere, 
establish, and subsequently to communicate in the bio-
films [61]. Studies have defined the possible insights on 

Fig. 1  Schematic representation of various health benefits of postbiotic molecules
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antagonistic actions of BS agaisnt bacterial cells which 
include (i) the interaction of hydrophobic moieties of 
BS with membrane lipid to affect membrane integrity by 
pore formation (ii) direct interaction with the membrane 
lipids to trigger inhibition of the membrane-confined 
enzyme to cause outflow of intracellular cytoplasmic 
components [62, 63]. The BS extraction methodology 
involves the solvent extraction principle (Fig. 3). The use 
of chloroform and methanol (2:1, v/v) helps to recover 
both non-polar and polar molecules, respectively, from 
the bacterial fermentate. This method recovers both 
intracellular and cell-wall bound BS [64]. Furthermore, 
the characterization of extracted BS can be achieved by 
FTIR, Nuclear Magnetic Resonance (NMR), and other 
chromatographic techniques like Gas Chromatography-
Mass Spectrometry  (GC–MS), Liquid Chromatography-
Mass Spectrometry (LC–MS). To minimize the cost 
of production, researchers have exploited agricultural 
by-products based medium (substrate) which has mark-
edly hiked the productivity of biosurfactants. Hence, 

technology interventions to scale-up such methodologies 
would perhaps overcome the cost constraint for indus-
trial partners to implement the production process [65].

BS offers several advantages over commercial deter-
gents such as food grade, higher biodegradability, low 
toxicity, stability at various processing parameters like 
pH, temperature, and salt concentrations [66, 67]. How-
ever, few factors like feasibility, low yield, high cost 
of production are currently restricting production at 
commercial scale. Biotechnological intervention in 
strain improvement and optimization of agro-by-prod-
ucts based media may overcome the aforementioned 
drawbacks. Despite such limitations, rhamnolipids, 
sophorolipids, and mannosyl erythritol lipids (MELs) 
have been reported to produce at the commercial scale 
[68]. As far as food, pharmaceutical, and biomedical 
applications are concerned, the properties like emulsion 
stabilization, anti-adhesion, anti-biofilm, anti-cancer, 
anti-viral, immunomodulatory and antimicrobial abilities 
have been exploited [69] (Table 1).

Fig. 2  Process flow line for production and characterization of heat killed cells and cell free supernatant [170]. (* denote that the use of different 
time–temperature combinations to ensure complete lethal effect)



Page 6 of 22Nataraj et al. Microb Cell Fact          (2020) 19:168 

Exopolysaccharides
Exopolysaccharides (EPS) are extracellular biopolymer 
synthesized or secreted by microorganisms during their 
growth; they widely vary in their degree of branching 
from linear molecules to highly branched molecules, and 
in monosaccharide composition [70]. Based on the mon-
osaccharide composition, EPS is further classified into 
homo-polysaccharide having identical monosaccharide 
units (e.g. cellulose and dextran) and hetero-polysaccha-
ride with different monosaccharides (e.g. xanthan) [71]. 

Hitherto, ample lactic cultures (Lactobacillus fermentum, 
L. rhamnosus, Streptococcus thermophilus, Pediococcus 
pentosaceus, L. delbrueckii subsp. bulgaricus, Leuconos-
toc species, etc.) have reported synthesizing EPS [72–74]. 
Nevertheless, the production of EPS is highly strain-
specific behavior and depends on various factors like the 
composition of the medium, age of the cell, pH, and tem-
perature [75]. The EPS of selected strains of dairy starter 
cultures is indeed a boon to the dairy industry as EPS 
has a strong command over the rheological properties 

Fig. 3  Production and characterization flow line of cell wall bound and intracellular biosurfactants [77, 171, 172]
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of fermented dairy products since EPS gets hydrated and 
reduces moisture content [76]. The desired rheology of 
the products can be achieved either by the EPS produc-
tion by starter cultures in situ or via the external addition 
of extracted and purified EPS.

The extraction protocol of EPS includes culturing 
the EPS producing lactic acid bacteria (LAB) (De Man, 
Rogosa, and Sharpe/MRS for lactobacilli) in a suitable 
medium for 12 to 18 h and subsequent deproteinization 
of culture supernatant by trichloroacetic acid (TCA) and 
ethanol precipitation [77]. Since industrial production of 
EPS cannot relay on the MRS medium, investigators have 

optimized dairy whey for the sustainable production 
of EPS from lactic cultures (Fig.  4). On the other hand, 
purification of extracted EPS can be achieved by chroma-
tography methods, and functional group characterization 
can be achieved by GC–MS, FTIR spectroscopy, or NMR 
techniques [78]. The EPS of lactic acid bacteria has also 
reported exhibiting several biofunctional attributes like 
anti-oxidative (ability to scavenge wide range of free radi-
cals), cholesterol-lowering (ability to bind free choles-
terol) effect, immunomodulatory effect, anti-aging effect, 
gut microbiota modulation, anti-toxic effect, anti-biofilm 
effect, and antitumor effects at preclinical trials [78–83].

Fig. 4  An outline on extraction and characterization of EPS from whey-based medium [74]



Page 11 of 22Nataraj et al. Microb Cell Fact          (2020) 19:168 	

Cell surface proteins
The cell surface proteome of bacterial architecture plays a 
crucial role in exhibiting the dynamic molecular mecha-
nism of probiotics. The bacterial surface proteins are 
classified in four categories, which include (i) proteins 
anchored to the cytoplasmic membrane by hydrophobic 
transmembrane domains (integral membrane proteins), 
(ii) lipoproteins (covalently attached to membrane lipids 
after cleavage of a signal peptide by signal peptidase II), 
(iii) proteins containing C-terminal LPXTG-like motif 
and covalently attached to peptidoglycan by sortases, 
and (iv) non-covalently bound proteins associated with 
cell wall by weak interactions (van der Waals forces, 
hydrogen or ion bonds) (LysM proteins, WXL proteins, 
GW proteins, proteins with choline-binding domains) 
[84]. The well-characterized cell surface-associated pro-
teins in probiotic bacteria include surface (S) layer pro-
tein, mucus binding protein, fibronectin-binding protein, 
sortase dependent binding protein, collagen-binding pro-
tein, and so on (Fig.  5). These surface proteins are vital 
in probiotic bacterial adhesion to host econiche. Indeed, 
the probiotic lactobacilli lacking S-layer proteins wit-
nessed the inferior adhesion knack to the gut enterocyte 
[85]. The cell surface-associated proteins constitute the 
first-line of contact during the potential interplay with 
the host which in turn trigger the various cellular pro-
cess (signal transduction mechanisms) in the intestinal 
cells involving nuclear factor-κB (NFκB) and mitogen-
activated protein kinases (MAPKs). This influences the 

regulation of downstream pathways such as the secre-
tion of cytokines (chemokines and cytokines) which are 
responsible for the immunomodulatory action, secretion 
of antibacterial peptides (defensins), mucin secretion, 
expression of tight junctions factors, etc. [86–88].

The enzymes (EDTA-lysozyme) and chemical chao-
tropic agents [lithium chloride, guanidinium hydrochlo-
ride, urea, and sodium dodecyl sulphate (SDS)] have 
been widely reported to shave the surface proteins [84]. 
The gel-based and non-gel based methods have been 
widely employed to characterize the extractable proteins 
(Fig.  6). The gel-based proteomics techniques include 
separation of surface proteins on Sodium Dodecyl Sul-
phate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
or two-dimensional (2D) gel electrophoresis and identi-
fication of bands by Liquid Chromatography-Mass Spec-
trometry (LC–MS) (Matrix-Assisted Laser Desorption/
Ionization-Time of flight, MALDI-TOF; or Quad Time of 
Flight, ESI-Q-TOF) upon tryptic digestion (in gel analy-
sis). However, the gel-free proteome identification consti-
tuted the direct digestion of surface proteins with trypsin 
and analysis of tryptic peptide by LC–MS/MS (short gun 
proteomics) techniques and followed by bio-informatics 
analysis [89].

So far, the surface proteins of probiotic bacteria have 
reported demonstrating anti-inflammatory, anti-adhe-
sion, strengthening the epithelial barrier property, and 
biosorption of toxic heavy metals [90]. The purified sur-
face proteins of L. helveticus significantly hampered the 

Fig. 5  Diagrammatic representation of various cell surface-associated components of lactic acid bacteria. (CM, Cell membrane; PG, Peptidoglycan; 
WTA, Wall teichoic acids; LTA, Lipoteichoic acid; MUBPs, Mucin binding proteins), FnBPs, Fibronectin binding proteins; S-layer, Surface layer)(CM, Cell 
membrane; PG, Peptidoglycan; WTA, Wall teichoic acids; LTA, Lipoteichoic acid; MUBPs, Mucin binding proteins), FnBPs, Fibronectin binding proteins; 
S-layer, Surface layer)
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adhesion of Escherichia coli O157:H7 and enhanced the 
transepithelial epithelial electrical resistance  (TEER) 
which was initially decreased by E. coli infection in Hep-2 
and T84 human epithelial cell lines [91]. In contrast, the 
extractable surface proteins of L. plantarum ameliorated 
the pathogen invasion by signaling the expression of tight 
junction proteins viz. Claudin-1, Occludin, JAM-1, and 
ZO-1, and thus restored the epithelium integrity [88, 92]. 
More recently, the extractable surface proteins of (S-layer 
proteins) of probiotic Enterococcus faecium WEFA23 sig-
nificantly declined the Listeria monocytogenes induced 
apoptosis of Caco-2 [93]. Mucus binding proteins (MUB) 
of L. plantarum hampered the adhesion of E. coli to the 
gastric mucin and HT-29 cell line [94]. Apart from patho-
gen exclusion, the immunomodulation potential of sur-
face proteins is also well documented [95]. The surface 
proteins of L. rhanmosus GG revealed to alleviate the 
inflammatory cytokines and TLR activation at mRNA 
level in the in  vitro cell line model. Moreover, the sur-
face proteins have attenuated lipopolysaccharides (LPS)-
induced MAPK and NF-kB signaling pathways activations 
in the intestinal epithelial cell (IEC) IPEC-J2 [96]. These 
findings suggest that surface proteins of probiotic bacte-
ria may be the better biotherapeutics in the inflammatory 
diseases like inflammatory bowel disease (IBD) or colitis.

Teichoic acids
The surface charge on the peptidoglycan layer of gram-
positive bacteria is pivoted towards the presence of ani-
onic glycopolymers called wall teichoic acids (WTAs). 
These play key roles in determining the cell shape, regu-
lation of cell division, and other fundamental metabolic 
aspects of cell physiology. In addition, teichoic acids 
also confer pathogenesis and antibiotic resistance to 
gram-positive bacteria [97–99]. The teichoic acids are 
chemically the glycopolymers (ribitol) containing phos-
phodiester-linked polyol repeat units. Teichoic acids 
are generally of two kinds, which include lipoteichoic 
acids (LTAs) (anchored in the bacterial membrane via a 
glycolipid), and wall teichoic acids (WTAs) (covalently 
attached to peptidoglycan) [100]. The wall teichoic acid 
polymer can be divided into two components, a disaccha-
ride linkage unit and the main chain polymer composed 
of phosphodiester-linked polyol repeat units. LTA is an 
amphiphilic molecule in which the hydrophilic region is 
made of 1,3-phosphodiester-linked polymer of glycerol-
phosphate or ribitol-phosphate substituted with d-ala-
nine or sugars. In contrast, the hydrophobic region is a 
glycolipid (Glc (β1-6) Glc (β1-3) diacylglycerol) [101].

The extraction protocol of LTA involves the mechani-
cal disruption of the cell wall of bacteria by sonication in 

Fig. 6  Brief overview of the extraction and characterization of surface proteins associated with lactobacilli [173]
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the citrate buffer (0.1 M, pH = 4) to release the teichoic 
acids from the peptidoglycan layer. The lipophilic cell 
contaminants from the LTA can be overcome by solvent 
(n-butanol) extraction. The obtained crude LTA can be 
purified by gradient hydrophobic chromatography using 
octylSepharose CL-4B packed in XK 16/60 column with 
15% to 60% n-propanol in ammonium acetate (0.1  M, 
pH = 4.75) as mobile phase. To achieve further purity, 
the collected fractions can be further analyzed for their 
phosphate content using the phosphomolybdenum test. 
Nevertheless, the Nuclear Magnetic Resonance (NMR) 
technique was also employed to study the structural 
insights of LTA [101].

Ample studies have been conducted to study the 
functional attributes of LTA, out of which, immu-
nomodulatory potential has much underpinned. LTA is 
a microbe-associated molecular pattern (MAMP) rec-
ognized by pattern recognition receptor (TLR-2) on the 
surface of gut enterocytes to transduce cellular signals 
to induce inflammatory cytokines response [102]. On 
the contrary, the administration of LTA extracted from 
L. paracasei D3-5 strain to old mice ameliorated the 
high- fat diet-induced metabolic dysfunctions, decreased 
leaky gut and inflammation, and improved physical and 
cognitive functions. Moreover, LTA also stimulated the 
expression of mucin (Muc2) gene by modulating TLR-2/
p38-MAPK/NF-kB pathway [103]. The LTA from L. 
delbrueckii, L. sakei, and L. rhamnosus  GG suppressed 
the viral double-stranded RNA (poly I:C) induced pro-
inflammatory cytokine (IL-8) in the intestinal epithelial 
cell line. In contrast, the dealanylated or deacylated LTA 
did not show the signs of poly I:C-induced IL-8 produc-
tion, this difference may counsel the role of d-alanine 
and lipid moieties in contributing functional attributes 
to LTA structure [104]. In another study, the LTA from 
the L. rhamnosus GG showed dose-dependent activation 
of NF-κB signaling in HEK293T (intestinal cell line) and 
Caco-2 cells after interaction with TLR2/6, but not with 
TLR2 alone. Besides, the experiments with highly puri-
fied LTA of LGG resulted in the IL-8 (pro-inflammatory 
cytokine) mRNA induction in Caco-2 epithelial cells, 
whereas the process of dealanylation and deacylation of 
LTA reduced IL-8 mRNA expression [101]. A study by 
Ahn et al. demonstrated that LTA extracted from L. plan-
tarum K8 was found to regulate the balance between Th1 
and Th2 response (pro and anti-inflammatory response 
cytokines). The homeostasis was noticed between IL-10 
and TNF- α upon treatment to phorbol-12-myristate-
13-acetate (PMA)-differentiated THP-1 cells (mac-
rophages) with the LTA. Interestingly, this response was 
found to be highly strain-specific, and the authors failed 
to observe the same outcomes with LTA of Staphylo-
coccus aureus or L. sake, hence, therapeutic capabilities 

of LTA can be inferred only after proper examination 
in suitable models to use LTA [105]. Nevertheless, the 
cytokine-induced immunomodulatory activity of LTA is 
further debatable and required a large number of well-
designed experimental models to rule out the specific 
outcome.

On the other hand, LTA of lactobacilli has been also 
studied as biofilm disrupting agents. In this connec-
tion, the purified LTA extracted from probiotic Lacto-
bacillus strains have demonstrated anti-biofilm actions 
against oral and enteric pathogens such as Streptococcus 
mutans, S. aureus, and E. feacalis by preventing the for-
mation of biofilms and disrupting the preformed biofilms 
[106–108]. Likewise, LTA of L. plantarum could curb the 
biofilm formation and aggregation without affecting the 
growth of S. aureus in various in vitro and in vivo mod-
els [109]. However, it is important to note that the same 
effect was not observed upon the removal of d-alanine 
moieties from the LTA structure. Therefore, it is crystal 
clear that the d-alanine structure in LTA is crucial to pro-
vide various functional properties. The in-depth inves-
tigation on the mechanism of antibiofilm action of LTA 
against S. aureus demonstrated the control of LTA over 
ica-operon which is responsible for the production of 
poly-N-acetylglucosamine (the key molecule in S. aureus 
biofilm development). Moreover, LTA increased the 
release of autoinducer-2 from S. aureus, which contrib-
utes to the inhibition of S. aureu biofilm formation. On 
the other side, LTA treatment enhanced the susceptibil-
ity of the biofilm to various antibiotics and macrophages 
[109].

Peptidoglycan
The peptidoglycan (PG) sacculus is an indispensable cell 
wall structural element present most abundantly among 
Gram-positive bacteria. The peptidoglycan is a linear gly-
can strand cross-linked by peptides. The peptidoglycan 
strands are constructed by bonding N-acetylglucosamine 
(GlcNAc) and N-acetylmuramic acid (MurNAc) resi-
dues via beta 1-4 linkages. The peptide chains are linked 
covalently through their N-terminus to the lactyl group 
of MurNAc [110]. In contrast, the peptidoglycan struc-
ture in LAB is quite peculiar; the amino acid sequence 
of the stem peptide is L-Ala-g-D-Glu-y-D-Ala, while the 
third amino acid (y) is a di-amino acid. In some cases, 
it is often L-Lys (e.g., in Lactococcus lactis and most 
lactobacilli) but can also be mesodiaminopimelic acid 
(mDAP) (e.g., in L. plantarum) or l-ornithine (e.g., in L. 
fermentum). D-Lac, however, replaces D-Ala present at 
the position fifth position in the newly synthesized PG 
in a few LAB such as L. casei, L. plantarum, and Leu-
conostoc spp. that provide innate resistance to vanco-
mycin [111]. Peptidoglycan extraction from probiotic 



Page 14 of 22Nataraj et al. Microb Cell Fact          (2020) 19:168 

lactobacilli is a multistep process that includes both 
mechanical and enzymatic separation. The obtained 
cell wall has to be delipidated by the successive solvent 
extraction method (methanol–chloroform (1:1)). Con-
sequently, delipidated crude preparations should be 
enzymatically purified by treating with a cocktail of pro-
teases and nucleases [112, 113]. Further, amino acids can 
be confirmed by SDS-PAGE and carbohydrates can be 
profiled by chromatographic or NMR techniques. The 
peptidoglycan extracted from probiotic bacteria dem-
onstrated in  vitro and in  vivo anti-cancer effect [114, 
115], in  vivo immunomodulatory activity (peptidogly-
can from L. rhamnosus CRL1505 significantly improved 
lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+  T cells 
as well as CD11c+SiglecF+IFN-β+ alveolar macrophages 
with the consequent increases of IFN-γ, IL-10, and IFN-β 
in the respiratory tract) [112, 116], in vivo anti-inflamma-
tory effect in a colitis mouse model [117]. To date, only 
the immunomodulatory and anti-proliferative or anti-
tumour effects of probiotics mediated peptidoglycan 
have explored yet.

Cell‑free supernatant and soluble factors
A unique compositional profile of lactic acid bacteria 
(LAB) derived cell-free supernatant (CFS) is driving the 
critical interest among researchers looking at various bio-
molecules targeting to seek health-promoting properties. 
CFS of LAB is a consortium of low molecular weight (i.e. 
hydrogen peroxide, reuterin, organic acids, carbon diox-
ide, and di-acetylene) and high molecular weight (i.e. bac-
teriocins and bacteriocins-like substances) compounds 
which are generally known as metabolites [118–120]. 
However, the composition of postbiotic metabolites was 
found to be affected by individual nutrients in the growth 
medium [121]. The separation of CFS is a lucid tech-
nique (Fig. 2) that involves centrifugation (10,000×g  for 
10 min @ 4  °C) and membrane filtration (0.22 μm poly-
ethersulfone membrane) of 24 h grown culture medium 
[122, 123]. However, the lyophilization or freeze-drying 
of sterile CFS remains the optional step [124].

The characterization of CFS of L. salivarius, L. casei 
431, and L. acidophilus LA5 resulted in various meta-
bolic byproducts like short-chain fatty acids, organic 
acids, hydrocarbons, phenol, amino acids, benzoic acids, 
alcohol, sugars, peptides, etc. [124]. The CFS of the afore-
mentioned probiotic strains revealed anti-microbial and 
anti-biofilm caliber against Listeria monocytogenus, a zero-
tolerance pathogen [124]. On the other hand, the other 
metabolites like phenyllactic acid and lactic acid extracted 
from L. plantarum CECT-221 revealed inhibitory activity 
against Carnobacterium piscicola, S. aureus, Pseudomonas 
aeruginosa, Listeria monocytogenes, and Salmonella enter-
ica. Moreover, the volatiles profiling of CFS of the same 

probiotic strain revealed natural aromas, such as aceto-
phenone, with a high price in the market [125]. CFS of L. 
rhamnosus GG modulated the mucin expression and anti‐
inflammatory cytokines such as interleukin (IL)‐4, IL‐5, 
and IL‐10 in HT-29 cell line [126]. Additionally, the CFS 
of L. acidophilus, L. casei, L. lactis, L. reuteri, and Saccha-
romyces boulardii appeared to unveil the signs of anti-oxi-
dative knack [127]. More interestingly, the cell-free soluble 
factors of E. coli Nissle 1917 demonstrated the protective 
effect against enteropathogenic E. coli induced intestinal 
epithelial barrier dysfunctioning by triggering the expres-
sion of tight junction (ZO-1, claudin-14, and claudin-2) 
gene expression in Caco-2 cellular model [128]. The CFS of 
the three strains (L. rhamnosus strains SHA111, SHA112, 
and SHA113 isolated from human breast milk) showed 
excellent antioxidant activity against DPPH free radicals, 
superoxide anion radicals, and hydroxyl radicals) and anti-
cancer activity on cervix cancer cells (HeLa) via cytotox-
icity and induction of apoptosis through up-regulation of 
BAD, BAX, Caspase 3, Caspase 8, Caspase 9, and down-
regulation of BCL-2 genes in HeLa cells [129]. In another 
study, a soluble protein of 12 kDa in CFS of L. acidophilus 
ATCC 43121 exhibited cholesterol-binding activity and 
thus indicating the cholesterol-lowering activity of postbi-
otics [130]. On the other hand, CFS of L. acidophilus, L. 
casei, L. reuteri, and S. boulardii were able to downregulate 
the expression of PGE-2 and IL-8 in human colon epithe-
lial HT-29 cells. Moreover, probiotic supernatant differ-
ently modulate IL-1β, IL-6, TNF-α, and IL-10 production 
by human macrophages, suggesting a typical anti-inflam-
matory activity [131].

The biofilms of pathogenic bacteria are one of the sig-
nificant threats to the medical fraternity. The encased 
bacteria in the biofilm matrix are resistant to different 
antimicrobials, and thus biofilm seems to be the foremost 
aspect of pathogenesis and therapeutic failure. In this 
aspect, several investigators have focused on exploring 
CFS as an anti-biofilm agent due to its amphiphilic chem-
ical profile. The CFS extracted from Lactobacillus  spp. 
could able to prohibit the onset of biofilm formation and 
also able to disrupt the preformed biofilms of Cronobac-
ter sakazakii and L. monocytogenes [132]. Similarly, the 
pH neutralized CFS of L. plantarum, L. helveticus, Pro-
pionibacterium acidilactici, and E. faecium revealed a 
substantial reduction in biofilm formation of S. aureus 
CMCC26003 and E. coli CVCC230 [133]. To overcome 
biofilm-forming multi-drug resistant superbugs (P. aer-
uginosa, S. aureus, and E. coli), investigators have used 
CFS of LAB for the successful mitigation of pathological 
conditions [134, 135]. Therefore, these findings suggested 
that the CFS of LAB may act as bio-liquid-detergent that 
reduces the adhesion and biofilm formation of pathogens 
to the various surfaces (biotic and abiotic surfaces).
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Bacteriocins
Lactic acid bacteria (LAB) produce an array of extracel-
lular antimicrobials that inhibit both pathogenic and 
spoilage causing microorganisms. In  situ production of 
antimicrobials by protective lactic cultures made their 
food exploitations more compatible [136]. Although a 
wide range of microorganisms produces bacteriocins, 
those produced by LAB have attracted to a greater extent 
due to their extensive applications in food processing 
and food fermentations as natural bio-preservatives. For 
instance, they have been extensively used in the preser-
vation of ample food products like cheese, paneer, meat, 
and vegetables [137]. Since the bacteriocins are secreted 
extracellularly, the CFS is used for isolation and purifica-
tion of proteinous bacteriocins. Briefly, the proteinaceous 
CFS is precipitated with ammonium sulphate (60–80%), 
antagonism can be assayed by native PAGE and peptide 
sequence is identified by LC–MS/MS [138].

Bacteriocins are ribosomally synthesized antimicrobial 
peptides produced by both Gram-positive bacteria and 
Gram-negative bacteria that inhibit closely related species. 
Few authors classify bacteriocins into two broad categories 
viz; Class I bacteriocins that are RiPPs (Ribosomally Pro-
duced and Post-translationally modified Peptides) hav-
ing unusual amino acids like lanthionine and β-methyl 
lanthionine; Class II that do not contain unusual modifi-
cations [139]. On the contrary, there have been several 
reports classifies the five different classes of bacteriocins. 
Class I: RiPPs (lantibiotics) having unusual amino acids, 
Class II: Unmodified bacteriocins (small heat-stable with 
less than 10  kDa), Class III: These are unmodified and 
larger than 30  kDa, Class IV: complex bacteriocins hav-
ing lipid or carbohydrate moieties, Class V: circular bac-
teriocins [140, 141]. The bacteriocins produced by LAB 
are generally cationic peptides, which act on cytoplas-
mic membranes by forming pores [142]. This triggers 
the leakage of intracellular vital components. However, 
mechanism of action of lantibiotic (Class A) nisin and 
pediocin-like bacteriocins is on lipid-bound cell wall pre-
cursor lipid II as a docking molecule for subsequent inhi-
bition of peptidoglycan layer. Nisin (US Food and Drug 
Agency approved bacteriocin) produced by L. lactis subsp. 
lactis marketed as Nisaplin by Danisco has found to have 
inhibitory actions against foodborne enteropathogens 
including Clostridium difficile [143, 144]. Similarly, Micro-
GARD is another FDA approved commercial preparations 
by Danisco (skim milk fermentate of Propionibacterium 
freudenreichii subsp. Shermanii) used as an eminent bio-
preservative in various dairy and food matrices [145]. Bac-
teriocins of LAB not only have their potential applications 
in food preservations but also in the clinical sector as they 
revealed the inhibitory potential against various urogenital 
and antibiotic-resistant pathogens [146, 147].

Short chain fatty acids
The dietary carbohydrate in the food gets digested by the 
action of various enzymatic actions and absorbed in the 
intestine. The food contains not only digestible carbohy-
drates but also the non-digestible fibers which have got a 
crucial role to play in human health and nutrition such as 
providing bulkiness to food, assisting the smooth passage 
of food in GIT, prebiotics action, and so on. Prebiotics are 
defined as substrates that are selectively utilized by host 
microorganisms conferring a health benefit [148]. These 
non-digestible carbohydrates (prebiotics) are selectively 
get fermented by commensals and probiotic bacteria in 
the gut to produces various end products such as carbon-
di-oxide, hydrogen, methane, and short-chain fatty acids 
(SCFAs), primarily acetate, propionate, and butyrate. 
Lactobacilli synthesize SCFAs from (i) fermentation of 
carbohydrates to produce as pyruvate by glycolytic path-
way (ii) phosphoketolase pathway for heterofermenta-
tive bacteria. However, bifidobacteria use fermentation 
(Bifidus) pathway to produce majorly the acetate and 
formate under carbohydrates limited condition, whereas, 
the acetate and lactate during the existence of carbohy-
drates in excess. The metabolic fate of acetate is that it 
enters the peripheral circulation and later metabolized by 
muscles and other tissues, while the liver takes up lefto-
ver propionate [149]. By contrast, the butyrate acts as 
the primary energy source (70% of their energy) of colo-
nocytes (monocarboxylate transporter-1 pathway) and 
also regulates the colonic microbiome, cellular apoptosis, 
proliferation, and differentiation of the gut enterocytes 
[150]. It was earlier investigated that the lower concen-
trations (< 0.5 mM) of butyrate acts as the energy source 
to the cells (constructive manner), however, in contrast, 
higher concentrations of butyrate (0.5–5 mM) was found 
to inhibit histone deacetylase (HDACi) and arrest the cell 
cycle with apoptosis by p53-dependent and -independent 
manner (destructive manner) [151]. Although few stud-
ies indicate probiotic LAB does not primarily produce 
butyrate [152], there have been sufficient findings that 
showcases the supplementation of probiotics cocktail 
has significantly enhanced the propionate and butyrate 
by modulating the gut microbiota [153]. For example, 
the consortium of acetate, propionate, and butyrate was 
found effective against the growth of gastro-intestinal 
pathogens like Clostridium difficile (involved in antibi-
otic-associated diarrhea) and E. coli [154]. The extraction 
and identification of SCFAs rely on solvent extraction 
and HPLC techniques. Nevertheless, the use of GC–MS 
is more analytical rather preparative. However, GC–MS 
provides overall insights on fatty acids in the mixture 
[153, 155].

In recent days, there has been increasing evidence on 
the therapeutic approaches of short-chain fatty acids in 
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the management of IBD and colorectal cancer due to 
their potentiality to overcome the inflammation and 
proliferation of cancerous cells respectively [156]. The 
findings of a randomized clinical trial by Cremon et  al. 
indicate a considerable increase in the SCFAs viz. ace-
tate and butyrate and reduction in the pro-inflammatory 
cytokine IL-15 upon supplementation of L. paracasei 
CNCM I-1572 to the irritable bowel syndrome (IBS) 
patients [157]. Additionally, SCFAs modulate the Caco-2 
trans permeability by enhancing TEER values and tight 
junction proteins genes expression [158–162], thus sug-
gested the possible influence of SCFAs in modulating the 
intestinal barrier property and may be relevant for seg-
mented or targeted consumers of different phases of life.

Vitamins
Vitamins are the organic molecules that are supple-
mented in the diet in a small amount to facilitate various 
biological processes in the body. Most B-complex group 
vitamins are directly involved as coenzymes in several 
energy metabolism reactions [162]. In contrast, Vita-
min K is the only fat-soluble vitamin that acts as a co-
enzyme. Humans are incapable of biosynthesizing most 
of the vitamins, and therefore they subsequently have 
to be supplemented exogenously. Most of the vitamins 
have to be supplemented through the diet (vitamin A, D, 
E, etc.), however, limited vitamins (folic acid-B9, cobal-
amin-B12, Riboflavin-B2) are even synthesized by com-
mensal gut bacteria and some probiotic bacteria [163]. 
Although most of the vitamins exist in natural food sys-
tems, vitamin deficiency is still a significant challenge for 
the medical fraternity, majorly due to the malnutrition, 

unbalanced diets, and altered food habits. B-group 
vitamins, normally present in many foods, are easily 
destroyed during the thermal processing of foods. For 
this reason, the fortification of certain foods with specific 
vitamins is necessary. In contrast, the dietary interven-
tion of various in situ vitamins producing LAB (Table 2) 
is also a benign approach to overcome such deficiency. 
The use of such microorganisms is also an economically 
viable alternative than fortification with chemically syn-
thesized pseudo-vitamins. This indeed allows the pro-
duction of foods with enhanced levels of vitamins that 
are rare to cause side effects. Cobalamin is most prefer-
ably produced by industrial microbial fermentation, as 
chemical synthesis is very costly. However, cheap agro-
byproducts are most preferable as a raw material for such 
fermentations. In this connection, Deptula et al. utilized 
a whey-based liquid medium for the production of vita-
min B12 from Propionibacterium freudenreichii 2067 
[164]. The identification of biosynthesized vitamins from 
natural or over-expressed LAB strains can assess by spec-
trophotometrically and chromatographic (HPLC) tech-
niques depending on the type of vitamins [164, 165].

The genome annotation of 256 human gut bacteria 
revealed the enzymes for biosynthesis pathways for eight 
B-vitamins (biotin, cobalamin, folate, niacin, pantothen-
ate, pyridoxine, riboflavin, and thiamin) [166]. Amongst 
LAB, lactococci and Lactobacillus (brevis, fermentum, 
reuteri, salivarius) displayed the complete genes (ribA, 
ribB, ribG, and ribH) for riboflavin synthesis [167, 168]. 
In a clinical trial, the supplementation of probiotic strain 
B. animalis subsp. lactis HNO19 (DR10™)  among preg-
nant women resulted in a significant increase in vitamin 

Table 2  Vitamins and short chain fatty acids producing LAB and other adjunct cultures

Organisms Components References

Streptococcus gallolyticus subsp. macedonicus (S. macedonicus) 
CRL415

Folate [203]

Propionibacterium freudenreichii DSM 20271 Vitamin B12 [204]

E. faecalis, L. helveticus, and L. acidophilus Formic acid, acetic acid, vitamin B1 [205]

L. brevis, L. plantarum, and L.pentosus Acetic, propionic butyric, isobutyric isovaleric [206]

Propionibacterium freudenreichii Vitamin B12 [207]

L. pentosus var. plantarum BFP32 Acetic, butyric, and propionic acid [208]

L. pentosus var. plantarum BFP32 Vitamins B1 and B2 [208]

Lactobacillus spp. Vitamin B12 [209]

L. sakei, L. plantarum Folate [210]

L. plantarum and L. coryniformis Vitamin B12 [210]

L. delbrueckii subsp. bulgaricus CRL 863, S. thermophilus CRL 415, and 
CRL 803

Folate [203]

Propionibacterium freudenreichii DF15 Vitamin B12 [211]

L. plantarum, L. reuteri, L. brevis, and L. fermentum Folate [211]

B. breve M-16 V Acetate [212]
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B6 in the blood concentration and vitamin B12 in the 
second and third trimester [169]. Such evidence suggests 
the significance of fermented products in overcoming 
micronutrients (vitamins) deficiency.

Concluding remarks
To summarize, ‘paraprobiotics’ (dead/inactive cells of 
probiotics) and ‘postbiotics’ (healthful metabolites of 
probiotics) are the evolving concepts in the functional 
biotics arena. These have several advantages over the tra-
ditional probiotics like known molecular structure, use in 
purified forms, the specific mechanism of action, better 
accessibility of MAMP-PRR interaction in triggering a 
specific downstream pathway, better availability of pro-
duction process for industrial scale-up, ease in produc-
tion and storage, etc. The various beneficial properties of 
parprobiotics and postbiotics include antiinflammatory, 
gut barrier property, anti-adhesion, anti-biofilm, anti-
viral, immunomodulatory, antihypertensive, hypocholes-
terolemic, anti-proliferative, antioxidant, etc. attributes 
have documented yet. These attributes suggest the 
potentiality of paraprobiotic and postbiotic molecules to 
enhance the host health by modulating the host physiol-
ogy (ameliorating the disease condition or preventing the 
onset of disease condition). But, there is a high need for 
human/clinical trials focusing on the validation of health 
claims of these bioactive molecules. The trials in immu-
nocompromised subjects would be further augmentable 
to investigate the tolerance of immunocompromised sub-
jects on these biomolecules. On the other hand, we do 
lack of knowledge about the stability of paraprobiotics 
and postbiotics under in vitro and in vivo digestive con-
ditions to comprehend specific mechanistic actions by 
interacting with the ligands.
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