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ABSTRACT
The coronavirus disease-2019 caused by a novel SARS CoV-2 virus has emerged as a global threat.
Still, no drugs are available for its treatment. The main protease is the most conserved structure
responsible for the posttranslational processing of non-structural polyproteins of this virus. Therefore,
it can be the potential target for drug discovery against SARS CoV-2. Twenty-one thousand two hun-
dred and seven chemical compounds used for sequential virtual screening studies including corona-
virus screening compounds (Life Chemical database) and antiviral compounds (Asinex database). The
Schrodinger suite 2019 employed for high throughput screening, molecular docking and MM-GBSA
through the Glide module. Subsequently, 23 compounds were selected in the phase first selection cri-
teria for re-docking with AutoDock and iDock followed by ADMET prediction. The drug-likeness pre-
dicted through Lipinski’s rule of five, Veber’s rule and Muegge’s rule. Finally, three ligands were
selected for molecular dynamics simulation studies over 150ns against the main protease of the SARS
CoV-2. They showed promising docking scores on Glide, iDock and AutoDock Vina algorithms (ligand
F2679-0163: �10.75, �10.29 and �9.2; ligand F6355-0442: �9.38, �8.61 and �7.6; ligand 8250:
�9.795, �7.94 and �7.5), respectively. The RMSD parameter remained stable at 2.5 Å for all the three
ligands for 150ns. The high RMSF fluctuations, RoG of around 22Å and the binding free energy were
favorable in each case. The hydrogen bond interactions of 8250, F6355-0442 and F2679-0163 were six,
five and three, respectively. These compounds can be further explored for in vitro experimental valid-
ation against SARS-CoV-2.

Abbreviations: CoV: coronavirus; COVID–19: coronavirus disease 2019; FDA: food and drug administra-
tion; HB: hydrogen bond; MDS: molecular dynamics simulation; MERS: middle east respiratory syn-
drome; PDB: Protein Data Bank; SARS: severe acute respiratory syndrome; SP: standard precision; WHO:
World Health Organization; XP: extra precision
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1. Introduction

The COVID-19 has been an extremely contagious and patho-
genic viral infection first observed in the Wuhan city of
China (Singhal, 2020). The causative agent was found to be a
novel virus belonging to the coronavirus family, particularly
from the beta subfamily (Cascella et al., 2020). The virus has
been designated as SARS CoV-2, as it causes severe acute
respiratory syndrome and pneumonia (Pal et al., 2020). The
earlier viruses from the same family such as SARS and MERS
have shown 10% to 36% mortality (da Costa et al., 2020;
Paules et al., 2020) which was much higher than 2–4% by
SARS CoV-2 (Roussel et al., 2020), but attack rate of this virus
is said to be very high, and therefore, it has been declared
as a global pandemic by World Health Organization
(Zarocostas, 2020).

The coronaviruses are positive-stranded spherical envel-
oped RNA viruses that infect a variety of animals and human

beings (Fehr & Perlman, 2015; Ye et al., 2020). They measure
from 60 to 80 nm with 26 to 32 kb genome size (Lu et al.,
2020). The majority of the portion of RNA encodes RNA
dependent RNA polymerase and two overlapping non-struc-
tural proteins (NSPs) called polyproteins (pp1a and pp1ab;
Elfiky, 2020a, 2020b; Gao et al., 2020), the remaining genomic
portion codes for four structural proteins. The functional pol-
ypeptides are produced by the proteolysis of these polypro-
teins (Krichel et al., 2020). The structural proteins are namely
Spike (S), Envelope (E), Membrane (M) and Nucleocapsid (N;
Hasan et al., 2020; McBride et al., 2014; Yadav et al., 2020).
The latest SARS CoV-2 virus is a beta virus (Xie & Chen,
2020). It has been predicted that spike protein interacts with
the ACE2 receptors on the human cells (Ortega et al., 2020),
and it takeovers the host machinery for synthesis and repli-
cation of new viruses (Xu et al., 2011).

The highly conserved main proteases (Mpro) named as 3-
C-like protease (3CLpro) is predominantly responsible for the
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posttranslational processing of various viral proteins
(Boopathi et al., 2020; Chen et al., 2020; Stobart et al., 2013).
However, papain-like protease (PLpro) also cleaves the large
polyproteins into NSPs (B�aez-Santos et al., 2015). These NSP
play an essential role in viral genomic expression and replica-
tion (Snijder et al., 2016). Both of them have been used as
targets for potential drug therapy for SARS CoV-2 infections
(Lindner et al., 2005; Wu et al., 2020).

Some compounds have been found as a potential treat-
ment against SARS CoV-2 in many studies (Caly et al., 2020;
Elmezayen et al., 2020; Hendaus, 2020; Zhou et al., 2020).
There are studies in which antiviral drugs such as Anti-HIV,
Anti-HCV, Anti-HBV and drugs for other infectious diseases
have been suggested as therapies (Barlow et al., 2020;
Bhatnagar et al., 2020; Cherian et al., 2020; Fan et al., 2020;
Sayad et al., 2020). Some of them have suggested that com-
binations of drugs may provide rapid viral clearance than the
single agent alone (Cao et al., 2020; Sheahan et al., 2020).
Additionally, many studies have ventured into finding the
treatment in the phytochemicals as well (Elfiky, 2020a,
2020b; Islam et al., 2020). Several studies have shown the
drugs that can be suitably explored as inhibitors of Mpro as
well (Aanouz et al., 2020; Bhardwaj et al., 2020; Das et al.,
2020; Enmozhi et al., 2020; Gupta et al., 2020; Havranek &
Islam, 2020; Kumar et al., 2020; Umesh et al., 2020). Even
after so many studies, there is no approved drug yet against
this virus. Therefore, there is an urgent need to conduct
basic research to identify the drugs against the SARS CoV-2.
Therefore, this study was conducted with the newly catego-
rized coronavirus screening compounds by the Life
Chemicals database and other antiviral drug-like chemical
compounds to find the potential treatment through molecu-
lar docking, molecular dynamics simulations (MDS) and
ADME/T (absorption, distribution, metabolism, elimination
and toxicity [ADME/T]) studies.

2. Material and methods

2.1. Chemical compounds library preparation and
target selection

Figure 1 shows the virtual screening flow of the study,
wherein three separate databases were used for the compu-
tational screening of 21,207 ligands against the target pro-
tein of SARS CoV-2. One was a very new group placed in the
Life Chemical database (https://lifechemicals.com/) as corona-
virus screening (Anti-nCoV2) compound library (Lib-A), and
second, from the same database was taken as Antiviral drugs
(Lib-B). The third library of chemical compounds with anti-
viral properties was taken from the Asinex database (Lib-C;
http://www.asinex.com/antiviral/). Out of the total 21,207
compounds, the Lib-A had 2327 Anti-nCoV2 screening
ligands, Lib-B had 10,158 compounds with antiviral activity
and Lib-C had 8722 chemical moieties with anti-
viral properties.

The main protease target protein of SARS CoV-2 (PBD IDs:
7BRP) was used in this study as it is the recently released
crystal structure and is highly conserved in nature. The
three-dimensional structure of the target protein was

retrieved from the protein data bank (https://www.rcsb.org/
structure/7BRP). This protein structure was selected because
of its high resolution (1.8 Å) and recognized by the X-ray dif-
fraction technique. The three-dimensional structure of Mpro

and its interactive co-crystallized ligand site on its structure
is represented in Figure 2(A–C).

2.2. Protein preparation and ligand preparation

The target protein was prepared before starting the docking
processes. It was done with the help of Schrodinger’s protein
preparation wizard tool (Madhavi Sastry et al., 2013). The
three-dimensional structure of the target protein (PDB IDs:
7BRP) was prepared. This was done by correcting bonds,
removing unrelated chemical complexes, eliminating water
molecules from het groups, creating zero-order bonds to
metal atoms, the addition of hydrogen bonds, conversion of
selenomethionine to methionine, filling in missing side
chains and generating het states utilizing EpikPh 7 to þ2.
The OPLS3e was used for the optimization of protein HBs
through overlying and minimizing hydrogen utilization. The
molecular modeling package of the ligand preparation mod-
ule in OPLS3e was used to prepare ligands with appropriate
parameters such as optimization, determination of pro-
moters, tautomers, ionization state at pH 7.0, ring confirm-
ation, two dimensional to three-dimensional conversion and
correction of partial atomic charges (Madhavi Sastry
et al., 2013).

2.3. Active site prediction and receptor grid generation

One of the most crucial aspect in designing a drug via com-
putational docking or digital screening was recognizing the
suitable active site for binding the ligand molecules. The grid
generation was the next step with the selection of co-crystal
ligand of the target protein (Figure 2). The OPLS3e force field
was used to generate partial cut off charge of 0.25 Å and
mounting of the protein atoms through default parameters
of 1 Å radii of Van der Waal’s scaling factor. The dimensions
of the grid box and receptor setup were x¼ 20Å, y¼ 20Å,
z¼ 20Å and x¼ 10Å, y¼ 10Å, z¼ 10Å during docking study,
respectively, with a grid space of 1 Å (Halgren et al., 2004).

2.4. Molecular docking

2.4.1. Glide
The sequential molecular docking study of the selected
ligands (Lib-A: 2327 Anti-nCoV2 screening compounds from
Life Chemicals, Lib-B: 10,158 antiviral drugs like compounds
from Life Chemicals, and Lib-C: 8722 antiviral compounds
from Asinex database) was done against the main protease
of SARS CoV-2. High throughput virtual screening of the
selected chemical compounds from Lib-A, B and C was per-
formed against target protein using Schrodinger’s Ligand
docking module with a flexible docking parameter. The flow
of the docking study has been described in Figure 1 wherein
10% of the ligands (300 Ligands from Lib-A, 1000 from Lib-B
and 870 Ligands from Lib-C) were selected for the standard
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precision (SP) docking. After that, 10% of the compounds (30
from Lib-A, 100 from Lib-B and 87 from Lib-C) from SP dock-
ing underwent extra precision (XP) docking (Kesharwani
et al., 2016). Subsequently, to get more insights into these
docking results, the iDock and AutoDock Vina docking pro-
gram were also employed. Thus, compounds with docking
scores more negative than �8 were selected for docking
with iDock and AutoDock Vina (see 2.7 Lead compounds
selection criteria). The molecular mechanics generalized born

surface area (MM-GBSA) methods were used for binding free
energy (DG bind) calculation of these selected lig-
and molecules.

2.4.2. AutoDock Vina and iDock
The AutoDock Vina (Trott & Olson, 2009) and iDock (Li et al.,
2012) programs were used for further validating the findings
of Glide docking analysis of selected 23 ligands (8 from Lib-

Figure 1. Virtual screening flow of the study.
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A, six from Lib-B and nine from Lib-C). All the ligands were
converted into ‘pdbqt’ format using the AutoDock tools. The
dimensions of the grid box and receptor setup were similar
to the Glide docking grid box edges.

2.5. MM-GBSA and binding free energies

The OPLS 3e Force field of Schrodinger suite module was
used for prime MM/GBSA calculation with DG bind between
protein and ligand complexes (Genheden & Ryde, 2015). The
prime MM-GBSA strategy was used to calculate the DG bind
of every selected ligand. Thus, the top three compounds
extracted after the docking process underwent the DG
scores. Therefore, the final prioritization of the optimized
lead compound was based on docking scores, ADME/T stud-
ies and DG bind, which were further followed up by the
molecular dynamic studies.

2.6. ADME/T screening

The drug likeliness properties of the final 23 compounds
from Lib-A, B and C, were calculated by using SwissADME
(Daina et al., 2017) and admetSAR-2.0 online tools (http://
lmmd.ecust.edu.cn/admetsar2/). The predicted result consists
of physiochemical properties, lipophilicity, water-solubility,
pharmacokinetics, drug-likeness and toxicity studies.

The physicochemical properties include molecular weight
(MW), number of the rotatable bonds (NRB), hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), molar refractiv-
ity (MR) and topological surface area (TSA). The other two
significant determinant are lipophilicity and solubility that
are monitored for favorable drug development. The preced-
ing parameter is predicted by using an average of five loga-
rithmic predictions of the octanol-water coefficient (Po/w).
They include consensus of values based on atomistic and
knowledge Log Po/w (XLOGP3), physics Log Po/w (iLOGP),
atomistic Log Po/w (WLOGP), topological Log Po/w (MLOGP)

and hybrid fragmental/topological Log Po/w (SILICOS-IT). The
latter property is also based on logarithmic solubility (Log S)
predicted values scale. The solubility characteristic of the
compounds as per this scale is defined as insoluble if more
negative than �10. The solubility ranges from poorly soluble
to highly soluble corresponding to the value of �10 to
greater than zero, respectively. The values of the poorly sol-
uble compounds lie in between �10 and � 6. The higher
than �6 and less than �4 is classified as moderately soluble.
The soluble compounds are in between �4 and �2. The val-
ues between �2 and 0 are very soluble, while higher than
zero are highly soluble.

The estimation of different pharmacokinetic properties
such as ADME/T along with drug likeliness was done for
these compounds by applying three established methods
such as Lipinski’s rule of 5 (Lipinski, 2004), Veber’s rule and
Muegge’s rule (Muegge, 2003).

The Lipinski’s rule defines an orally active drug, which
confirms to the number of hydrogen bonds acceptor � 10,
HBD � 5, MW < 500Da and LogP (The logarithm of Octanol-
water partition coefficient) � 5. However, Veber’s rule takes
two parameters to determine the good oral bioavailability in
the majority of the compounds, such as < 10 rotatable
bonds (ROTB) and polar surface area (PSA) less than 140Å.
Moreover, according to the Muegge’s rule, for a drug like
chemical compound to become a successful drug molecule,
it has to pass a pharmacophore point filter such as MW
between 200 and 600Da, XLogP �2 to 5, TPSA less than
150, number of rings less than 7, number of carbon less than
4, number of heteroatoms less than 1, number of rotatable
bonds less than 15, HBA less than 10, HBD less than 5.

The prediction of toxicity was made by a new online
admetSAR-2.0 webserver. The parameters such as human
ether-a-go-go-related gene inhibition, AMES toxicity, acute
oral toxicity (c) and carcinogenicity (Class-3) were deter-
mined. The US EPA based criteria were used to categorize
predicted LD50 values into four classes. The Class I comprises

Figure 2. (A) Three-dimensional structure of main protease of SARS CoV-2 (PDB ID: 7BRP) Chains A and B associated with co-crystal ligand (a). (B) Three-dimen-
sional structure of Chain A associated with co-crystal ligand (a). (C) Three-dimensional structure of Chain A after protein preparation.
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compounds with LD50 lower than or equal to 50mg/kg.
Class II includes the compounds with LD50 values higher
than 50mg/kg but lower than 500mg/kg. The Class III com-
pounds have values more than 500mg/kg but lower than
5000mg/kg. The compounds with values higher than
5000mg/kg are classified as Class IV. However, the rat car-
cinogenicity is classified as per the Carcinogenicity Potency
Database of TD 50 values as ‘Danger’, Warning’ and ‘Non-
required’. The ’Danger’ compounds have TD50 value of �
10mg/kg body wt./day. The ’Warning’ compounds have
TD50> 10mg/kg body wt./day. However, non-carcinogenic
compounds are assigned as ’Non-required’.

2.7. Lead compounds selection criteria

The selection of the final lead compounds was made with
two sets of selection criteria extends over two phases of the
process based on criteria such as the protein-ligand binding
affinity, binding free energy, drug likeliness properties,
physiochemical interactions between ligand and the target
protein. The Glide docking score less than �8 was taken for
the selection of ligands in the phase one- selection criteria.
The further selection of the potential compounds in the
second phase involves consideration of four parameters.
These were docking score lower than or equal to the co-crys-
tal ligand docking scores with respective docking tools, bind-
ing fee energy less than �60 (kcal/mol), ability to interact
with a minimum of four amino acids implicated in position-
ing the acceptor substrate and drug likeliness properties
through Lipinski’s rule of five, Veber’s rules criteria, Muegge’s
rules and toxicities study. These filtering criteria would lead
us to conclude the potential compounds for the MDSs and
drug designing against SARS CoV-2.

2.8. Molecular dynamics simulations

The MDS studies were performed to analyze the stability of
ligand-protein interactions with respect to the physical tran-
sition of the structural aspect of macromolecules to the func-
tional relevance of the complex. Additionally, it demonstrates
strength, pattern, dynamic conformational changes and inter-
molecular properties of the interactions. The selected com-
plex then underwent MDS for 150 ns using AMBER 18
software used for the MDSs of ligand-protein complexes. It
evaluates the root mean square deviation (RMSD), root mean
square fluctuation (RMSF), intermolecular hydrogen bonds
interactions, binding free energy and radius of gyration
(RoG) for the elucidation of conformational, structural and
compactness of the protein-ligand (Nandekar et al., 2013).

The Leap module of the software created the molecular
receptor topology. The ligand-protein complex obtained
from molecular docking was the starting structure of each
MD simulations. Subsequently, followed established protocol
such as neutralization and submerging complex into the
water molecule rectangular box (TIP3P) where the protein
atoms were 10 Å away from the nearest edge of the box.
The minimization of the solvent system was achieved by
freezing the protein and removing the bad contact with

restraint on the heavy atoms, first through 2500 steepest
descent method and then conjugation gradient for 2000 fur-
ther steps. The system was gradually heated from 0 to 300 K
temperature at 1 atm pressure (NPT conditions). It was
achieved for 50 ps followed by 50ps of density equilibrium
and 1ns of constant equilibrium to exchange potential and
kinetic energies. Afterward, the temperature was kept con-
stant by using the Berendsen algorithm.

The MDS was run for 150 ns to evaluate the stability of
the docked ligand-receptor complexes preceded by the sys-
tem equilibration for 500ps on the canonical NPT ensemble.
The covalently bound hydrogen atoms were constrained by
the SHAKE algorithm with 2 fs time and temperature control
by Langevin dynamics. Finally, the recording was made for
every 5ps using the particle-mesh Ewald summation method
for treating electrostatic interaction. The CPPTRAJ module of
the Amber18 software was used to analyze the MD trajecto-
ries for every 20 ns. The MM-GBSA binding free energy was
calculated by inbuilt Amber Tools. The RMSD, RMSF and RoG
values were recorded for 150 ns.

3. Result and discussion

3.1. Reliability of protein structure and grid generation

The process of drug designing necessitates the accuracy of
the quality and reliability of the three-dimensional structure
of the target protein. That can be judged by using the
PROCHECK server to develop Ramachandran plot, which dis-
plays allowed, and the disallowed regions regarding back-
bone dihedrals of protein residues. The essential condition of
being a model of good quality having more than 90% of res-
idues in favored regions. This determines a good worth of
stereo-chemical quality of three-dimensional protein struc-
ture with minimum steric interaction concerning the forbid-
den psi and phi angles. Figure 3 and Table 1 show that
91.2% residues lie in the most favored region, and only 0.6%
lie in the disallowed region of the three-dimensional struc-
ture of target protein (PDB ID: 7BRP). The active site was pre-
dicted after the selection of the co-crystal ligand of the
target protein. The receptor grid of the protein was done
similarly to the co-crystal ligands of the protein. Their identi-
fication helps in designing potent protein inhibitors through
their binding sites.

3.2. Virtual screening and molecular docking, binding
free energy calculation

Identification of active site residues and location of the tar-
get structures help in designing potent drug molecules via
ligand-protein docking. The active site was predicted after
the selection of the three-dimensional structure of the target
protein. Twenty-one thousand two hundred seven com-
pounds were screened and docked against the target protein
(Figure 4(A)). After virtual screening and molecular docking,
23 compounds were finalized (eight from Lib-A, six from Lib-
B and nine from Lib-C) in first phase selection criteria based
on their Glide docking scores (less than �8 docking score)
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with the target proteins. These 23 ligand molecules were
selected for ADMET prediction, DG bind calculation and
docking with AutoDock Vina and iDock. Three ligand mole-
cules (two compounds from Lib-B and one compound from
Lib-C) were found to be potential hit candidates for further
exploration after the second phase (see lead compounds
selection criteria in the Material and Methods section). The
comparative docking score of these three compounds shown
in Figure 4(B) with respect to the reference ligands.

3.2.1. Docking score (glide, iDock and AutoDock vina) and
binding free energy (DG bind) calculation by prime
MM-GBSA of top eight compounds from Library-A

Table 2 (A-1 to A-8) shows the two-dimensional structures,
free binding energy, docking scores, number of hydrogen
bonds and interactive residues of best eight ligand mole-
cules from Library-A. These eight ligand molecules had less
than �8 docking scores with glide docking in phase one.
Their free binding energies and docking scores, such as
Glide, iDock and AutoDock Vina scores were recorded.

The range of DG bind lies between �60.87 and �67.88 of
the most notable top eight compounds. The docking scores

of these eight compounds are between �8.0 and �8.81 with
Glide; �7.68 to �10.46 with iDock and �6.5 to �8.5 with
AutoDock Vina methodology. The F0015-0201 compound
had good docking scores of �8.817, �10.46 and �8.5 with
Glide, iDock and AutoDock Vina, respectively, but it was not
proceeded for further MDS study because of unfavorable
AMES toxicity results. The number of hydrogen bonds made
and interactions with amino acid residues are shown in Table 2.
Out of the total eight compounds, one interacted with five
hydrogen bonds, five of them formed four hydrogen bonds,
and the rest two compounds interaction with three hydrogen
bonds. All hydrogen bond interactive amino acids are HIS164,
LEU141, GLY143, SER144, CYS145, GLU166, ARG188, but inter-
estingly, all compounds interaction was shown mainly with two
common amino acids GLY143, CYS145.

3.2.2. Docking score (glide, iDock and AutoDock vina) and
binding free energy (DG bind) calculation by prime
MM-GBSA of top-six compounds from Library-B

Table 2 (B-9 to B-14) shows two-dimensional structures, bind-
ing free energy, docking score, hydrogen bond and hydro-
gen bond interactive residues of best six compounds
selected from Lib-B. Their range of DG bind lies between
�56.87 and �68.78 of most notable top six compounds. The
docking scores of these six compounds are between �8.46
and �10.75 with Glide, �8.46 to �10.75 with iDock and 6.8
to �9.2 with AutoDock Vina. Programs.

One compound forms five hydrogen bond interactions
while the other five compounds have shown four hydrogen
bond interactions with the target protein. All hydrogen bond
interactive amino acids are LEU141, GLU166, THR190,
GLN192, GLY143, SER144 and CYS145. All six compounds
have shown interaction with two common residues GLY143,
CYS145, similar to Lib-A. Finally, two compounds were
selected for further MDS from Lib-B as they pass all the
selection criteria (see lead compounds selection criteria in
the Material and Methods section).

The first compound (F2679-0163) has a good docking
score of �10.75, �10.29 and 9.2 with Glide, iDock and
AutoDock Vina, respectively. Its binding free energy is
�61.37 and forms four hydrogen bond interactions with
LEU141, GLY143, CYS145 and GLU166 (Figure 5). Docking
scores of second compounds with Glide, iDock, AutoDock
Vina are �9.38, �8.61 and 7.6, respectively, and four hydro-
gen bond interactions with GLU166(x2), CYS145, GLY143. The
DG bind of the second compounds is �59.75 (� �60.00).
Both compounds have shown good docking scores with all
docking methods and more negative than crystal ligand
Glide docking scores.

3.2.3. Docking score (glide, iDock and AutoDock vina) and
binding free energy (DG bind) calculation by prime
MM-GBSA of top nine compounds from Library-C

Table 2 (C-15 to C-23) elaborates on the best nine com-
pounds from Lib-C (Asinex Antiviral compound database)
concerning the two-dimensional structure, DG bind, docking

Table 1. Ramachandran plot statistics showing residues present in favored
and disallowed regions of protein structure of main protease from SARS
CoV-2.

Properties Residues Percentage (%)

The most favored regions 476 91.2%
Additional allowed regions 43 8.2%
Generously allowed regions 0 0.0%
Disallowed regions 3 0.6%
Number of non-glycine and non-proline residues 522 100.0%
The end residues (excluding Glycine and Proline) 4
Number of glycine residues (shown as triangles) 50
Glycine 26
Total number of residues 602 100.0%

Figure 3. Ramachandran plots of 7brp proteins structure describe favored and
the disallowed.
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scores, number of hydrogen bonds and hydrogen bond asso-
ciated amino acids.

The DG bind lies between �48.74 and �65.92 of the
most notable top nine compounds from Lib-C. The docking
score of these nine compounds is between �8.212 and
�9.795 with Glide, �7.94 to �9.67 with iDock and �7.2 to
�8.3 with Auto Dock Vina. Among all nine compounds, one
compound formed seven hydrogen bond interactions, one-
formed six, the other three formed five, two of them formed
four and rest two compounds formed three hydrogen bond
interactions with the target protein. All hydrogen bond inter-
active amino acids are HIS164, LEU141, GLY143, SER144,
CYS145, GLU166 and ARG188. Among these residues, most
of the compounds interact with three amino acid residues,
including CYS145, SER144 and GLY143. One compound was
passed all the selection criteria (see lead compounds selec-
tion criteria in the Material and Methods section) and

selected for further MDS from Lib-C among all the best
nine compounds.

One compound stands out with its parameter in this data-
base, which can be worthy of further development of drugs
against the Mpro of SARS CoV-2. The DG bind of this com-
pound (Asinex ID: 8250) is �63.70 and Glide, iDock and
AutoDock Vina docking scores are of �9.795, 7.94 and 7.5,
respectively. Four hydrogen bond interactions formed with
THR190, GLY43, SER144 and CYS145 (Figure 5).

3.3. Physiochemical properties, ADME/T and drug
likeness properties

In silico tools such as SwissADME and admetSAR �2.0 web-
server can lead to early predictions of Physiochemical prop-
erties, ADME/T and drug-likeness properties. The oral
bioavailability of the possible active compounds was

Figure 4. (A) Glide docking scores of selected 23 compounds from Lib-A, Lib-B and Lib-C. (B) Comparative docking score of best three ligands with respect to refer-
ence ligand molecule (co-crystal ligand).
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Table 2. Two-dimensional structure, free binding energy, docking scores, number of hydrogen bond and interactive residues of best 23 ligands (from Lib-A: A-1
to A-8; Lib-B: B-9 to B-14 and Lib-C: C-15 to C-23) with target protein structure of SARS CoV-2.

S/No Life chemicals ID 2D structures DD structures ID

Docking score (kcal/mol)

NHB
H-bond interactive
residues Chain AGlide iDock AutoDock Vina

A-1 F0015-0201 –60.87 –8.817 –10.46 –8.5 3 GLU166
GLY143
CYS145

A-2 F0265-1326 –64.79 –8.799 –7.68 –7.00 4 LEU141
GLY143
CYS145
GLU166

A-3 F1641-0167 –51.52 –8.446 –8.35 –7.3 3 GLY143
SER144
CYS145

A-4 F1011-1885 –51.51 –8.31 –8.08 –7.6 5 HIS164
LEU141
GLY143
SER144
CYS145

A-5 F0886-0045 –67.95 –8.148 –8.70 –6.5 4 GLY143
SER144
CYS145
HIS41

A-6 F2711-0202 –56.93 –8.113 –8.63 –7.6 4 LEU141
GLY143
CYS145
GLU166

A-7 F1057-0056 –61.60 –8.093 –8.16 –7.1 4 LEU141
GLY143
CYS145
GLU166

A-8 F0452-4293 –44.90 –8.008 –8.24 –7.3 4 GLY143
SER144
CYS145
ARG188

B-9 F2679-0163 –61.37 –10.75 –10.29 –9.2 4 LEU141
GLY143
CYS145
GLU166

B-10 F6355-0442 –59.75 –9.38 –8.61 –7.6 4 GLU166(x2)
CYS145
GLY143

(continued)
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Table 2. Continued.

B-11 F0648-0053 –68.78 –8.99 –9.09 –8.5 4 GLN192
GLU166
CYS145
GLY143

B-12 F0648-0756 –63.03 –8.584 –8.81 –8.1 4 GLY143
SER144
CYS145
GLU166

B-13 F0612-0047 –56.87 –8.56 –7.93 –6.8 4 GLY143
SER144
CYS145
GLU166

B-14 F2644-0465 –62.56 –8.46 –8.50 –7.6 5 THR190
GLN192
GLY143
SER144
CYS145

C-15 8250 –63.70 –9.795 –7.94 –7.5 4 THR190
GLY43
SER144
CYS145

C-16 7017 –55.29 –8.986 –9.32 –8.3 5 GLU166(x2)
GLN189
CYS145
SER144

C-17 5804 –58.71 –8.672 –8.37 –7.4 7 THR190
GLU166
LEU141
GLY143
CYS145

THR26(x2)

C-18 8396 –63.62 –8.402 –9.12 –7.8 6 THR26(x2)
CYS145
GLY143
LEU141
GLU166

C-19 5510 –65.92 –8.4 –8.61 –7.2 5 GLU166(x2)
HIE41
ASN142
THR26

C-20 728 –58.57 –8.388 –8.49 –7.5 3 GLY143
CYS145
THR26

(continued)
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calculated through Lipinski’s rule of five and Veber’s rule.
While the Muegge’s rule determined the possibility of a com-
pound to become a successful drug molecule by the
pharmacophore point calculation. All the compounds fol-
lowed the Lipinski, Veber’s and Muegge’s rule, and their val-
ues are shown in Table 3. Therefore, final compounds were
predicted to have good bioavailability and satisfied the drug
likeliness parameters according to these rules. Moreover, 20
compounds show high human intestinal absorption except
three compounds (F0648-0053, F0648-0756 and 5804) which
have low absorption.

Log S scale predicted the solubility level of 23 com-
pounds, out of which, one compound is very soluble, four
compounds are moderately soluble, and remaining18 com-
pounds are soluble. Out of 23 compounds, three compounds
(F0015-0201, F1011-1885 and F1057-0056), have AMES toxic
nature, and one (F0452-4293) has carcinogenic nature based
on the toxicity screening results of ligands. The rest 19 com-
pounds were relatively safe (Table 3).

3.4. Molecular dynamics simulations

The compounds that qualify two-phase lead optimization
screening selection criteria were taken for the molecular
dynamics studies. Out of the 23 compounds, three com-
pounds (F2679-0163, F6355-0442 and 8250) fulfilled all the
parameters further needed for molecular dynamic simula-
tions. The parameters explored for analyses such as RMSD,
RMSF, inter-molecular hydrogen bonding (H bonding), RoG
and binding free energy through MDS.

3.4.1. RMSD analysis
The RMSD assess the structural stability of the protein-ligand
complexes within a particular period. The behavior of pro-
tein-ligand complexes was calculated as a function of time
performed over 150 ns by MDS. The RMSD values of protein-
ligand are depicted in Figure 6(A). The ligand F6355-0442 is
gradually reached the stabilized value of 2.5 Å in 50 ns and
remained at the same value for 150 ns. However, it showed
slightly non-significant fluctuation around 90 and 130 ns.
Moreover, the RMSD graph for ligand F2679-0163 showed a

similar pattern to maintain the stabilization. However, the lig-
and 8250 reached the average value of 2.5 Å only in 10 ns
and remained there for 140 ns. Additionally, it showed little
higher values at the end of the plot for the last 10 ns. Thus,
all three compounds were stabilized for the majority of the
MDS time duration.

3.4.2. RMSF analysis
The RMSF determines the deviation of the particle from their
original position in the macromolecule three-dimensional
structure. It details the conformational flexibility of the pro-
tein structure by identifying the flexible and rigid structures
of the proteins. We find the high fluctuations in the loop of
three protein-ligand complexes (Mpro-F2679-0163, Mpro-8250
and Mpro-F6355-0442) depicting their accommodating nature
of the binding site of the proteins (Figure 6(B)). It measures
the deviation of the particle from their original positions in
the rigid, flexible regions.

3.4.3. Intermolecular hydrogen bonding
The number of hydrogen bonds formed between ligand and
protein measures the binding affinity of the ligand.
Therefore, more number of a hydrogen bonds between the
protein and ligands depict stronger binding affinity.
Therefore, MDS analysis takes into consideration the forma-
tion and deformation of hydrogen bonds. Our study
observed a maximum of six hydrogen bonds at the end of
150 ns simulation in the case of ligand F6355-0442. The Mpro-
8250 and Mpro- F2679-0163 show five and three HB, respect-
ively (Figure 7(A)).

3.4.4. RoG analysis
The folding and compactness of the proteins-ligand com-
plexes can be judged with the help of RoG. It is an import-
ant method of revealing the influence of ligand molecules
on the three-dimensional conformational structural changes
after the interaction of the ligand with it. The high value of
RoG depicts the sustenance of loose packing and folding
behavior of the protein after the interaction with the ligands.
All three ligand-protein complexes show an average high

Table 2. Continued.

C-21 7018 –48.74 –8.369 –8.86 –7.9 4 ARG188
CYS145
SER144
GLY143

C-22 2676 –64.03 –8.358 –8.71 –8.1 3 CYS145
SER144
GLY143

C-23 8489 –62.32 –8.212 –9.67 –8.1 5 LEU141
CYS145

THR26(x2)
GLU166
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value of around 22Å throughout the 150 ns (Figure 7(B)).
They are in its native structure as there was not much vari-
ation observed throughout the 150 ns in the RoG graph
except in case of ligand 8250 where values went even higher
gradually starting from 110 to 150 ns. However, there were

few minor variations in RoG due to conformational changes
in the secondary structure of protein during the MDS pro-
cess. The RoG graph of all three complexes (Figure 7(B))
shows that ligand remains tightly bound to the active site of
the protein.

Figure 5. Binding mode and chemical interactions of best three lead molecules with residues.
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Figure 6. (A) Molecular dynamics simulation (MDS) results of three ligand-protein complex for 150 ns. (B) Mean square fluctuation (RMSF) results of three ligand-
protein complex for 150 ns.

Figure 7. (A) Number of Intermolecular hydrogen bonds between the ligands and amino acid residues of the target protein for 150 ns. (B) Radius of gyration (RoG)
results of the ligand-protein complex for 150 ns.
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3.4.5. MM-GBSA calculations
The average binding free energy (DG) of these three com-
pounds was calculated for every 20ns by the MM-GBSA
approach up to 150ns. Table 4 shows the change of DG values
at each data point along with their standard deviations. The
minimum values of DG for ligands F2679-0163, F6355-0442 and
8250 were �22.90±2.97Kcal/mol (90ns), �24.78±3.38Kcal/mol
and (150ns) �35.94±3.05 (10ns) and maximum values were
�38.99±2.73Kcal/mol (30ns), �30.61±2.47Kcal/mol (90ns)
and �42.44±3.35Kcal/mol (110ns), respectively. Therefore, the
order of binding free was in a favorable range that can be
appreciated graphically in Figure 8.

4. Conclusions

The study has used the main protease of SARS CoV-2 as it is
the recently released crystal structure (PDB ID: 7brp) and is
highly conserved, predominantly responsible for posttransla-
tional processing of various viral proteins. This study was con-
ducted with 21,207 compounds from Life Chemicals and Asinex
database to find the potential drug molecules through compu-
tational drug designing techniques. The molecular docking
results showed a good binding affinity with the target protein
of SARS CoV-2. The docking and MDSs studies have delineated
three chemical compounds, which can be the potential drug
molecules against the main protease of SARS-CoV-2. Two final
compounds (Compound id: F2679-0163, F6355-0442) are from
the Life Chemicals library, and the third chemical compounds
library having an antiviral property is from the Asinex database
(Compound ID: 8250). All three ligand-protein complexes have

favorable parameter values in RMSD, RMSF, RoG, intermolecular
hydrogen bonding and binding free energy for 150ns. These
compounds (F2679-0163, F6355-0442 and 8250) can be further
explored for in vitro experimental validation against SARS-
CoV-2.
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