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Abstract

Inferring hidden structure from noisy observations is a problem addressed by Bayesian statistical 

learning, which aims to identify optimal models of the process that generated the observations 

given assumptions that constrain the space of potential solutions. Animals and machines face 

similar “model-selection” problems to infer latent properties and predict future states of the world. 

Here we review recent attempts to explain how intelligent agents address these challenges and how 

their solutions relate to Bayesian principles. We focus on how constraints on available information 

and resources affect inference and propose a general framework that uses benefit(accuracy) and 

accuracy(cost) curves to assess optimality under these constraints.

Introduction

We continuously gather noisy and incomplete information to make inferences about past, 

present, and future states of the world. Classical Bayesian theory provides a probabilistic 

framework to identify optimal solutions to this problem [1]. However, Bayesian approaches 

to inference typically rely on immediate access to all available and appropriate sources of 

information and unlimited time and resources to carry out the necessary computations. 

These prerequisites can be met only partially for inference problems faced in the real world, 

leading to questions about the applicability of Bayesian principles for understanding how the 

brain and other intelligent agents solve these problems.

Here we discuss recent findings that are beginning to provide a more nuanced understanding 

of how optimality can be defined in conditions that are subject to real-world constraints, 

which include limits on the available information and the time and other resources needed to 

carry out the inference process. We focus on identifying the conditions under which 

inference strategies employed by animals and machines are consistent with Bayesian 

principles and those in which they deviate from them. We show that the effectiveness of 

strategies under real-world constraints could be assessed by maximizing benefit/cost, where 

realistic benefit(cost) curves can be defined by combining two separate components, 

corresponding to benefit(accuracy) and accuracy(cost) curves. We argue that this approach 

can, in principle, be used to explain: (1) the large variation in cost and complexity of 
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inference strategies used for different tasks and conditions, and (2) why individuals 

sometimes choose inference strategies that are seemingly sub-optimal compared to the 

Bayesian solution.

Constraints on accessible information

Animals face the fundamental problem of inferring the model that best explains noisy 

observations, given information from a priori beliefs and ongoing observations. Both of 

these kinds of information can be limiting. For example, prior knowledge may or not specify 

the functional form of the process that generated the observations. Likewise, sampling of the 

environment may be constrained by how much and what kind of data can be gathered. 

Bayesian theory predicts how these constraints affect the speed of learning and the 

complexity the learned model. Below we explain these predictions and compare them with 

animal behavior in three scenarios: (1) the underlying generative process is known, leaving 

uncertainty only about its parameters; (2) the underlying process is unknown but lies within 

a specified hypothesis space of processes; (3) there is no prior knowledge of the hypothesis 

space for the generative process.

Uncertainty about model parameters

When the functional form of the model is known, Bayesian methods seek to infer the 

optimal parameter values by maximizing the posterior distribution of the parameters θ given 

the observed data x (where θ and x can be vectors). This distribution is obtained through 

Bayes’ rule: p(θ|x) α p(x|θ)p(θ), where p(x|θ) is the likelihood of the data x in the model 

parameterized by θ, and p(θ) reflects a priori expectations about the parameter values and 

further constrains the hypothesis space.

Strong sampling, weak sampling, and the “size principle”: In general, as more 

data are observed, the Bayesian posterior converges to the likelihood (and departs from the 

prior). If sampling is “strong”, i.e., if samples are drawn independently at random from the 

model to infer, this convergence occurs exponentially fast in the number of samples. 

Consider a special case in which the different parameters θ index categories such that each θ 
describes a probability distribution, p(x|θ), that is nonzero in a subset xθ of the sample 

space. The elements of xθ are then examples of the category, and it is possible that the xθ 
overlap or intersect. In this setting, if examples are drawn independently at random from a 

given underlying category (strong sampling), the likelihood of seeing examples under that 

category is inversely proportional to the number of items contained in that category. As a 

result, the Bayesian posterior concentrates exponentially quickly in the number of observed 

examples on the smallest and most specific category from which the examples could be 

drawn. This effect, known as the “size principle”, has been proposed to explain the striking 

human ability to learn categories from a few examples [2, 3, 4, 5]. In contrast, if sampling is 

“weak”, the relation between the sample distribution and the true distribution of items in the 

category is not known, because of which all categories compatible with observed samples 

will be equally likely. In this case, the posterior probability does not concentrate on the most 

specific category. Human categorization sharpens with increasing data but at variable speeds 

and generally not as fast as the size principle would prescribe. This result has been 
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interpreted in terms of different assumptions that people make about how observations are 

generated, usually compatible with a mix of strong and weak sampling [3, 4, 5].

Hierarchical Bayesian Models: Other sampling effects are evident in more complex 

problems addressed by Hierarchical Bayesian Models (HBMs) [6, 7]. HBMs solve inference 

problems in which the prior probability is split on multiple levels: typically, each level 

defines the probability of certain parameters conditional on other parameters, whose 

probability is defined at the immediately higher level. The distribution at the top level can be 

thought of as an “innate prior”. Thus, these models represent increasingly abstract 

knowledge, for example about classes of categories, along a hierarchy, and can learn at 

multiple levels of abstraction simultaneously [8]. This property has made HBMs successful 

as models of language learning [3, 8, 9, 10, 11, 12], conceptual learning [7, 13, 14], 

reinforcement learning [15], and adaptive inference of dynamic internal states [16, 17, 18, 

19]. HBMs make quantitative predictions about how the speed of learning structure in the 

data at different levels of abstraction is determined by both the sampling process and the 

structure of the data. For example, abstract knowledge can be acquired faster than specific 

knowledge: (1) when sampling interleaves examples of different categories [6, 13]; (2) if 

independent, random sampling results in a skewed distribution of categories, because the 

incidence of low frequency categories supports inference of the existence of novel categories 

[13]; and (3) if the features defining a category have little variance among the items of the 

category [20]. These kinds of sampling constraints are also likely to play critical roles in 

inference problems in which there is hierarchical or complex structure in the temporal 

sequences of observations, for which both Bayesian and other solutions require sampling 

over potentially many different timescales that provide relevant information about volatility 

of the environment [16, 17, 21, 22, 23, 24, 25, 26, 27, 28].

Uncertainty about the model form in a constrained hypothesis space

When the functional form of the model generating the observed data is unknown, but the set 

of plausible models is constrained, Bayesian theory can again be used to select the 

appropriate model form. In this case, the posterior for a certain model form is defined by 

integrating over the manifold of all the model probability distributions that have the same 

functional form f :  p(f |x) ∝ p(f)∫ dθp(x θ, f)p(θ f). Assuming a uniform prior over 

distributions (called Jeffreys’ prior), the log-posterior can be expressed asymptotically as a 

sum of terms of decreasing importance with increasing number N of data points: the 

leading-order term (O(N)) is the log-likelihood of the data under the optimal model and 

represents fitting accuracy, and the lower-order terms (O(logN) and O(1)) correspond to a 

measure of statistical simplicity of the model family, which is important to prevent 

overfitting [33, 34]. These competing quantities produce tradeoffs between the model 

complexity and fitting accuracy in Bayesian model selection as the number of sampled 

observations changes.

Bias-variance tradeoffs as a balance between fitting accuracy and 
complexity: The asymptotic expansion of the Bayesian posterior formalizes the 

biasvariance trade-off, such that simple models tend to underfit the data and thus yield 

biased results with low variance across resamplings from the true model, whereas complex 
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models tend to fit the data but overfit the noise and thus yield lower bias but higher variance 

(Fig.1A,B,C). The optimal model family, which can maximally generalize to new data 

sampled from the true generative process, typically has intermediate statistical complexity. 

The tradeoff between fitting accuracy and complexity is sensitive to amount of data. When 

the amount of data is small, complexity and accuracy compete on an equal basis in model 

selection. With increasing amounts of data, model accuracy dominates model selection, 

driving the inference of more complex models that better explain structure in the data. 

Recent studies on perception [35] and human inference in simple sensorimotor (curve-

fitting) tasks [29, 30] have shown, among models of different complexities and equivalent 

fitting accuracy, people prefer the simplest option, which makes fewer assumptions about the 

generative process and generalizes better. However, as more data accumulate individuals 

tend to infer more complex models, as expected from principles of Bayesian inference [36].

Complex model selection: Even if the set of plausible models or hypothesis space is 

known, it can be highly complex, with many correlated hypotheses (i.e., partially 

overlapping model families in the parameter space) and non-uniform prior densities. Under 

these conditions, consistent Bayesian model selection requires that the different priors match 

over the shared structure of the models. However, this constraint can lead to an interference 

effect on model selection given by the particular hypothesis space that is considered: for a 

fixed generative process, if a model is preferred to another one within a given hypothesis 

space, this preference is not guaranteed to be preserved when the same models are 

embedded in a different hypothesis space [37]. It would be interesting to understand if and 

how these effects relate to interference, measurement-order, and other contextual effects 

found in psychology [38, 39, 40, 41, 42, 43].

Uncertainty about the hypothesis space

In real-world statistical-inference problems, there may be so much uncertainty about which 

hypotheses should be considered that identifying a set of options that is likely to contain the 

true generative model is not feasible [44]. Ideally, the goal of model selection in these cases 

is to find a model within a given hypothesis space that is as simple as possible and yet comes 

close to the true data-generating distribution, with closeness quantified in this tradeoff by the 

log-likelihood of the observed data [33]. In this setting, we are not looking for the “optimal” 

model but simply the best choice in the set that is feasible to consider.

Ecological rationality – simple though biased models work better: Real-world 

problems in which the optimal model cannot be found because relevant information about 

the structure of the environment is lacking are the focus of “ecological rationality,” which 

aims to determine which models or strategies are better than others and in which 

environments [45, 46, 47, 48, 49, 50, 51, 52]. In general, these studies have highlighted a 

“less-is-more” effect, whereby simple fast-and-frugal heuristics or experience-based 

intuition, which may have evolved to meet recurrent needs in animal evolution, outperform 

complex statistical models that require more computations, evidence, and assumptions [48, 

49, 52, 53, 47]. This effect is consistent with expectation from Bayesian theory [33] and can 

also be interpreted as a consequence of the bias-variance trade-off. Specifically, when 

uncertainty is high because of an underconstrained hypothesis space or because of excessive 
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noise or instability of the environment, subjects often opt for simple strategies that are 

inflexible (high bias) but marginally affected by noise (low variance). These simple 

strategies can match, or in some cases surpass, the performance of more complex strategies 

that minimize bias at the expense of higher variance [54, 48]. The simple strategies may then 

form building blocks for more complex and adaptable strategies that are needed only under 

particular conditions, such as when the environment is moderately unstable [55, 46, 56].

Constraints on resources

Bayesian inference often involves complex manipulations of probabilities requiring a long 

time to perform, extensive memory, and/or substantial investment of computational 

resources [57, 58, 7, 59]. In practice, however, computational resources are limited and 

inferences must be made quickly to be useful. Thus, recent work has sought to understand 

Bayesian optimality in the presence of resource and time constraints.

Inference with limited time

Animals: Even when sufficient information for optimal Bayesian inference is available in 

the environment or from memory, the brain needs time to extract and process this 

information, implying a speed-accuracy trade-off (Fig.1D,E,F) [60, 61, 62, 63, 64, 65, 66, 

67]. For the kinds of two-alternative forced-choice (TAFC) tasks used commonly to study 

perception, memory, and value-based decision-making, the optimal trade-off that maximizes 

expected accuracy for a given processing time is implemented by the drift-diffusion model 

(DDM). The DDM selects the alternative with the highest Bayesian posterior given the 

portion of the evidence that can be processed or accumulated in the available time [68]. 

These computations can be thought of as Bayesian inference constrained by limited time for 

sequential information processing, and are consistent with both behavioural and neural 

responses in these tasks [62, 63, 64, 66, 69, 70]. The optimal speed-accuracy trade-off 

implemented by the DDM can also be seen, using a physics perspective, in terms of a 

variational principle that trades off a negative “energy” (representing performance gains) 

against an information-theoretic distance between the prior and the posterior probability 

distributions (representing information-processing costs) over the possible options. This 

interpretation is part of a new statistical theory of bounded, rational decision-making [71].

Machines: Trade-offs between accuracy and computational speed are also prominent in 

machine-learning applications, as exemplified by “Anytime” algorithms that are designed to 

generate increasingly accurate solutions to specific problems the longer they run 

(Fig.1G,H,I) [58, 72]. Anytime algorithms can be interrupted at any time and still produce a 

valid solution, which gives them the flexibility to solve inference and other decision-making 

tasks under variable time constraints. They are also well suited to complex problems in 

which exact solutions are often hard to find and require substantial computational resources 

and time. Recent examples include the problem of real-time, efficient distribution of power 

[73]; large-scale optimal web service composition [74]; ranked information retrieval [75]; 

approximate resolution in limited time of NP-hard problems, such as the identification of 

common patterns in strings of data [76] and the problem of heterogeneous multirobot 

coordination [77, 78, 79]; the SLAM (simultaneous localization and mapping) problem for 
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robot navigation [80]; the related motion-planning problem [81]; and pattern recognition 

[32] and classification [82]. It would be interesting to understand whether such algorithms 

have a neural or cognitive realization.

Inference with limited computation and memory

Animals: Even without a constraint on processing time, the optimal Bayesian solution 

might be unachievable because of limitations of computational resources and memory 

capacity. This idea has led researchers to seek alternative algorithms that the brain might use 

to solve statistical inference tasks subject to resource constraints. This problem has been 

studied in some detail in the context of inference in dynamic environments, where latent 

states, like the source of an uncertain reward, change in time with unknown and possibly 

time-varying volatility. When the latent states drift continuously in time, they can be inferred 

with limited memory and computational costs using an algorithm that is derived from a 

variational-Bayesian approximation of the posterior distribution of the states in a 

hierarchical Bayesian model [16, 17]. This algorithm implements Markovian equations with 

dynamic learning rates that weigh prediction errors based on the amount of uncertainty in 

the observations [16, 17]. These equations closely resemble classical reinforcement-learning 

heuristics and might therefore be implementable in the brain [19, 18]. Several approximate 

Bayesian algorithms have also been proposed to explain how the brain might infer latent 

states that do not drift but undergo sudden change points. These algorithms include particle 

filters, which reduce the computational and memory costs by approximating the Bayesian 

posterior using a small set of Monte Carlo samples that is updated as new observations are 

made [22, 83, 84, 85, 86, 87, 88]; approximate Bayesian models in which the memory load 

is reduced by forgetting or exponentially discounting past information [55, 24, 89, 90, 91, 

92]; low-dimensional approximations of Bayesian models that can infer dynamic discrete-

valued states and could be implemented by neural networks with plausible plasticity rules 

[25]; integrate-and-fire neuron models [28] and leaky evidence-accumulation models [27] 

that can infer dynamic binary states. All of these models approximate optimal solutions with 

different levels of accuracy and different computational costs and, in many tasks and 

conditions, match human behaviour more closely than exact Bayesian models [89, 90, 91, 

83, 84, 85, 87, 88]. Ongoing work is assessing how some of these solutions, and the 

cognitive operations that they represent, are related to one another, the quantitative form of 

the cost-accuracy trade-off that emerges from them, and how this trade-off can be optimized 

in different environments [55].

Machines: Trade-offs between accuracy and computational costs are also studied in 

machine learning. For example, in the field of deep neural networks (DNNs), there is a 

growing demand for efficient machine learning in devices with limited memory and 

computational power [93, 94, 95, 96, 97, 98, 99, 100]. These trade-off have been 

characterized in terms of different performance metrics, including: (1) “information 

density,” or the accuracy-per-parameter ratio that takes into account architectural complexity 

(the parameters used) but not computational complexity (the operations performed) [101]; 

(2) “NetScore,” which gauges accuracy relative to both architectural and computational 

complexity [102]; and (3) predictive accuracy per input compression, and its distance to the 

“information-bottleneck” theoretical limit, which defines the maximum predictive accuracy 
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that can be achieved for any given level of compression of the input [103, 104, 105]. These 

and other metrics are being used to compare DNNs and elucidate the specific cost-accuracy 

trade-off that they must navigate. Large scale comparisons of DNNs for object detection 

[106] and image classification [101, 93] have shown, for instance, that different DNNs lie at 

different points of a specific monotonic trade-off between accuracy and computational 

complexity: as the amount of computation increases, accuracy also increases but at 

progressively smaller rates. This phenomenon also applies to the theoretical information-

bottleneck limit, which predicts diminishing returns in performance with increasing 

complexity of input encoding [104]. Identification of upper bounds on accuracy given 

different constraints on memory and computational costs and comparison of these bounds 

with current DNN performance can be useful to guide selection of the DNNs that best match 

the constraints of each application [101, 102, 107] and to develop better architectures and 

training algorithms [103].

What is optimal in optimal inference?

Classically, optimal Bayesian inference balances prior knowledge and ongoing observations 

to identify the model with maximum posterior probability. We have argued that inference in 

the real world is beset by constraints on available information and computational resources. 

In this context, optimality must be defined in terms of a tradeoff that balances the accuracy 

or benefit of the inference against an appropriate information or computational cost. 

Concretely, we might say that an inference procedure is optimal if it maximizes benefit per 

unit cost, in which the benefit is some monotonically increasing function of accuracy. An 

example of this kind of objective is benefit per unit time. In fact, in some cases optimization 

of this objective is straightforward to implement by adjusting the amount of evidence that is 

integrated in the decision process (the decision threshold in the DDM and similar models) 

and can help account for reward-driven decision-making behaviors [66, 67, 61, 62, 68, 70, 

108].

We propose a generalization of this approach that decomposes the benefit/cost curve into 

two components (Fig. 2 and [55]). The first component describes the benefit, perhaps the 

reward obtained, as a function of accuracy. This function generally increases monotonically 

with accuracy but can take many different forms that reflect the goals or needs of the 

decision-maker, the task conditions, and other factors [109, 85]. The second component 

describes accuracy as a function of costs, which can include the time, memory, and 

computational resources needed to process information [55, 60]. This function is also 

generally monotonically increasing (e.g., investing more resources yields more accurate 

solutions in TAFC tasks, dynamic-state inference, and machine-learning applications). 

Optimizing benefit per cost in this setting will not generally lead to the solution that 

maximizes benefit, which is the target of classical optimization approaches. For example, 

consider scenarios in which benefit increases monotonically with accuracy of the inference 

procedure, and accuracy increases monotonically with the cost of carrying out the inference 

procedure. Also recall that a typical inference engine (whether a brain or computer) has a 

fixed resting-state cost to maintain the computational machinery. Below this threshold cost, 

accuracy will vanish. Here we analyze several scenarios of this kind.
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First consider a setting in which benefit (B) is proportional to accuracy (A) so that B = αA, 

while accuracy is a linear function of cost (C) above a threshold (t) so that A = β(C–t), and 

vanishes when C < t. So if C < t, the ratio B/C vanishes. But for C > t, B/C = αβ(C – t)/C = 

αβ (1 – t/C) which is maximized at the largest cost, or equivalently at the highest benefit. 

Thus, if benefit grows linearly with accuracy, and accuracy grows linearly with cost over a 

threshold, benefit/cost is maximized by simply maximizing the benefit, as expected in 

traditional optimization approaches. Next consider a setting (Fig. 2, column A) in which 

benefit is a convex (super-linear) function of accuracy, while accuracy is a convex function 

of cost above a threshold. Here doubling the cost more than doubles the accuracy, which in 

turn more than doubles the benefit. These relationships imply that benefit/cost is again 

maximized when benefit is maximized, in this case at the highest cost.

More realistically, consider scenarios (Fig. 2, column B) in which benefit is a concave (sub-

linear) function of accuracy, while accuracy is a concave function of cost above a threshold. 

Concavity here implies a law of diminishing returns [55, 101, 110]: doubling the cost over 

threshold yields less than double the accuracy, which in turn gives less than double the 

benefit. In this setting, the benefit/cost is maximized at an intermediate cost and thus at less 

than maximal accuracy and benefit (red dots in Fig. 2, column B). Columns C and D of Fig. 

2 demonstrate the same result for a saturating (sigmoidal) benefit-accuracy curve with both 

sigmoidal and concave accuracy-cost curves. In fact, this tradeoff appears very generally in 

scenarios in which there is a threshold cost and a subsequent law of diminishing returns, for 

example in energy-efficient information transmission [110] in which information/energy is 

maximized at some intermediate information rate.

These results suggest that when animals use strategies that do not maximize accuracy or 

other benefits, they may actually be rationally trading off benefits against costs that reflect 

constraints on information and computation.
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Figure 1: Trade-offs in inference with limited information, time, and computational resources.
Top panels: The bias-variance trade-off. A A curve-fitting task that requires an inference 

about the hidden curve (red dashed line) that is most likely to generate the data points (blue 

dots) with Gaussian noise [29, 30]. B Under limited data, increasing the degree of the fitting 

polynomial (and hence the statistical complexity of the solution) decreases errors due to bias 

(underfitting) but increases errors due to variance (overfitting). The total generalization error 

is minimized at intermediate complexity. C Three example solutions of increasing statistical 

complexity (yellow to pink); intermediate is optimal in this case. Middle panels: An 

example of speed-accuracy trade-off in behaviour. D A random-dot motion task that requires 

an inference about the dominant direction of motion of stochastic visual dots [31]. E The 

percentage of correct responses can be increased by increasing the time to sequentially 
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process information (accumulation time) about the direction of motion of the dots. F 
Example solutions showing increased accuracy but longer decision times as the pre-defined 

bound on the total evidence to integrate in the decision process (black dashed line) increases 

(yellow to pink). Bottom panels: An example of speed-accuracy trade-off in machines 

(adapted from [32]). G A pattern-recognition task that requires the identification of 

characters embedded in a scene image. H This task can be solved by an “anytime” algorithm 

that is governed by a trade-off between accuracy and computational time to process 

information in the image. I As the running time increases, the algorithm localizes (red 

rectangles) more and more characters (yellow to pink).
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Figure 2: Different Benefit vs. Accuracy (top) and Accuracy vs. Cost (middle) curves yield 
optimal solutions that vary widely in cost and accuracy.
The optimum is defined as the maximum of the Benefit/Cost ratio (red markers). We 

consider cases where Benefit increases monotonically as a function of the Accuracy, and 

Accuracy increases monotonically as a function of Cost. There is minimum operating cost, 

which means that Accuracy vanishes if Cost is less than this minimum. We consider four 

general scenarios for the two functions: (A) convex, (B) concave, (C) sigmoid, and (E), a 

common scenario in which there is little Benefit below a threshold Accuracy and maximal 

Benefit is quickly attained above this threshold, while Accuracy is a concave function of 

Cost. Concave functions encode a law of diminishing returns – e.g., if Accuracy is a concave 

function of Cost, then doubling the Cost gives less than double the return in Accuracy. In 

this scenario, different rates of diminishing returns (different blue lines) give optimal 

solutions with widely different costs (different red markers) [55].

Tavoni et al. Page 16

Curr Opin Behav Sci. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Constraints on accessible information
	Uncertainty about model parameters
	Strong sampling, weak sampling, and the “size principle”:
	Hierarchical Bayesian Models:

	Uncertainty about the model form in a constrained hypothesis space
	Bias-variance tradeoffs as a balance between fitting accuracy and complexity:
	Complex model selection:

	Uncertainty about the hypothesis space
	Ecological rationality – simple though biased models work better:


	Constraints on resources
	Inference with limited time
	Animals:
	Machines:

	Inference with limited computation and memory
	Animals:
	Machines:


	What is optimal in optimal inference?
	References
	Figure 1:
	Figure 2:

