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ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is spreading worldwide. Antiviral therapy is the most important treatment for COVID-
19. Among the drugs under investigation, anti-malarials, chloroquine (CQ) and hydroxychloroquine
(HCQ), are being repurposed as treatment for COVID-19. CQ/HCQ were shown to prevent receptor
recognition by coronaviruses, inhibit endosome acidification, which interferes with membrane fusion,
and exhibit immunomodulatory activity. These multiple mechanisms may work together to exert
a therapeutic effect on COVID-19. A number of in vitro studies revealed inhibitory effects of CQ/HCQ
on various coronaviruses, including SARS-CoV-2 although conflicting results exist. Several clinical
studies showed that CQ/HCQ alone or in combination with a macrolide may alleviate the clinical
symptoms of COVID-19, promote viral conversion, and delay disease progression, with less serious
adverse effects. However, recent studies indicated that the use of CQ/HCQ, alone or in combination
with a macrolide, did not show any favorable effect on patients with COVID-19. Adverse effects,
including prolonged QT interval after taking CQ/HCQ, may develop in COVID-19 patients. Therefore,
current data are not sufficient enough to support the use of CQ/HCQ as therapies for COVID-19 and
increasing caution should be taken about the application of CQ/HCQ in COVID-19 before conclusive
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findings are obtained by well-designed, multi-center, randomized, controlled studies.

1. Introduction

Coronavirus disease-19 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly
spreading worldwide, resulting in the third outbreak of cor-
onaviruses in the 21st century. The pandemic of COVID-19
constitutes a serious threat to the whole world [1]. To control
the pandemic of COVID-19, effective and easily accessible
antiviral drugs and vaccines are urgently needed, in addition
to the implementation of epidemiological measures such as
strict quarantine. However, until now, no drugs have been
demonstrated to be effective against COVID-19. Among the
various drugs under investigation are repurposed anti-
malarial drugs chloroquine (CQ) and its analog hydroxychlor-
oquine (HCQ), which are among the most used drugs
because they are easy to obtain and have a proven favorable
safety record at relatively low cost. CQ/HCQ are derivatives of
4-aminoquinoline. They are lipophilic weak bases that quickly
pass across cell membranes and accumulate in acidic orga-
nelles, such as lysosomes, endoplasmic reticulum and Golgi
[2]. CQ/HCQ are used to treat and prevent malaria attacks
due to their anti-plasmodium activity and to treat autoim-
mune diseases such as systemic lupus erythematosus (SLE)
and rheumatoid arthritis (RA) owing to their immunomodu-
latory activity [3]. In addition, CQ/HCQ display antibacterial,
antifungal and antiviral activities [4]. In vitro studies have

shown that CQ/HCQ possess antiviral activity against RNA
viruses, such as HIV [5], rabies virus [6] and polio virus [7]
and various DNA viruses as diverse as hepatitis B virus [8]
and herpes simplex virus [9]. This article reviews the current
status of CQ/HCQ against SARS-CoV-2 and their use in the
treatment of COVID-19.

2. Antiviral activity of CQ/HCQ against human
coronavirus in vitro and in vivo

The antiviral activity of CQ against MERS-CoV and HCoV-229E was
assessed in the human hepatoma cell line (Huh-7) and found that
the 50% effective concentrations (ECso) were 3.0(x1.1) uM and 3.3
(£1.2) pM, the 50% cytotoxic concentrations (CCsp) were 58.1(x1.1)
MM and >50, and the selectivity indexes (SI; calculated as CC50/
EC50) were 19.4 and >15, respectively [10]. CQ could inhibit an
early step in the MERS-CoV replication cycle. Addition of CQ to
VeroE6 cells 1 h after MERS-CoV infection did not affect virus
production. However, when CQ was added 1 h before MERS-CoV
infection, 16 um and 32 uM concentrations of CQ could reduce the
virus production of 1-log and 2-log, respectively [10].

In VeroE®6 cells, the antiviral activity of CQ/HCQ against SARS-
CoV had an ECsg of 4.1 (£1.0) uM and 34(£5) uM, CCs, of >128 uM
and CCso > 100 and Sl of >31 and SI>3, respectively [10,11]. SARS-
CoV replication was inhibited by 99% at 16 uM CQ 3 days post-
infection [12]. The data indicates that CQ has stronger anti-SARS-
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CoV activity than HCQ. In addition, CQ has both a prophylactic
and a therapeutic advantage. Vincent et al. tested various con-
centrations of CQ (0.1-10 uM) added 20-24 h prior to SARS-CoV
infection and found that 0.1, 1, and 10 uM CQ reduced infectivity
by 28%, 53%, and 100%, respectively; when CQ was added
immediately after virus adsorption, 0.1-1 uM and 33-100 uM
reduced the infection by 50% up to 90-94%; addition of CQ 3
and 5 h after virus adsorption was still significantly effective, yet
to achieve equivalent antiviral effect, a higher concentration of
CQ was needed [13]. In HRT-18 cells, the antiviral activity of CQ
against HCoV-OC43 had an ECsy of 0.306 (+£0.091) uM, CCs, of
419.0 (£192.5) uM, and SI of 1.369 [14].

An in vivo study found that CQ could exert anti-HCoV-OC43
activity transplacentally or via maternal milk. The data from
mouse models showed that 98.6% of the pups survived when
pregnant mice were treated with 15 mg/kg of CQ, and survival
rates decreased in a dose-dependent manner, with 88% and
13% survival when treated with 5 mg/kg and 1 mg/kg CQ,
respectively [14]. The survival rate of newborn mice via mater-
nal milk was 69.0% with 15 mg/kg of CQ [14]. In another
mouse study, CQ strongly attenuated HCoV-OC43 replication
in the brain and prevented the infection from spreading to the
spinal cord [15]. The above studies confirmed that CQ/HCQ
have a broad-spectrum anti-HCoV activity in vitro and in vivo.

3. Antiviral activity of CQ/HCQ against SARS-CoV-2
in vitro

In VeroE6 cells, the ECsq, CCso and SI of CQ against SARS-CoV-2
were 1.13 pM, >100 and >88.50, respectively. CQ functioned at
the entry, and post-entry stages of SARS-CoV-2 infected cells
[16]. In the same cell line, at different multiplicities of infection
(MOQls, 0.01, 0.02, 0.2, and 0.8) of SARS-CoV-2, the ECsq for CQ
(2.71, 3.81, 7.14, and 7.36 uM) was slightly lower than that of
HCQ (4.51, 4.06, 17.31, and 12.96 uM). Consequently, the SI of
CQ (100.81, 71.71, 38.26, and 37.12) was slightly higher than
that of HCQ (55.32, 61.45, 14.41, 19.25) [17]. These results
indicate that the anti-SARS-CoV-2 activity of CQ seems to be
more potent than HCQ in vitro. However, another in vitro cell
experiment showed that after SARS-CoV-2 infection of VeroE6
cells, the ECsq values for CQ were 23.90 uM and 5.47 pM, and
ECso values for HCQ were 6.14 uM and 0.72 pM, at 24 and 48 h,
respectively; When administered prior to SARS-CoV-2 infection
of VeroE6 cells, EC5y values for CQ were >100 uM and
18.01 uM, and the ECsy values for HCQ were 6.14 uM and
0.72 uyM, at 24 and 48 h, respectively [18]. These results
showed that the anti-SARS-CoV-2 activity of CQ was worse
than HCQ in vitro. The conflicting results of these two studies
may be related to different cell culture methods and experi-
mental conditions. In short, these in vitro studies show that
CQ/HCQ have strong anti-SARS-CoV-2 activity.

4. Mechanisms of CQ/HCQ in treating COVID-19
4.1. Antiviral activity

4.1.1. Hindrance of receptor recognition process
The S protein of SARS-CoV-2 is cleaved by host proteases
into two subunits, ST and S2 [19]. The S1 subunit binds to

the host cell surface receptor angiotensin-converting
enzyme 2 (ACE2) for virus attachment, and the S2 subunit
fuses the virus and the host cell membrane [19]. The inves-
tigation of the effect of CQ on ACE2 in VeroE6 cells showed
that effective anti-SARS-CoV-2 concentrations of CQ had no
significant effect on the synthesis and glycosylation of
S protein on the surface of SARS-CoV, and although it had
no significant effect on the cell surface expression of ACE2,
CQ could destroy the glycosylation at the terminal glycosy-
lation site of ACE2 [13]. Therefore, the mechanism of anti-
CoV activity of CQ/HCQ may be at least partly related to the
impairment of terminal glycosylation of ACE2, which may
result in reduced binding affinities between ACE2 and
SARS CoV S protein, thereby blocking receptor recognition
(Figure 1).

In addition to protein membrane receptors, infection of
host cells by HCoVs also relies on sialic acid-containing glyco-
proteins and gangliosides, which are used by a broad range of
viruses as receptors, such as influenza [20] and HCoVs includ-
ing SARS-CoV [21] and HCoV-0OC43 [13,22,23]. A recent mole-
cular structure analysis showed that SARS-CoV-2 not only uses
ACE2 as a receptor, but also recognizes highly conserved
gangliosides on the host cell surface through sialic acid
[24,25]. CQ/HCQ binds sialic acids and gangliosides with high
affinity, which can prevent the attachment of SARSCoV-2 S
protein to gangliosides [25]. CQ had inhibitory effect on qui-
none reductase 2 (QR2) involved in the biosynthesis of sialic
acids [26,27]. Hence, the mechanism of anti-CoV activity of
CQ/HCQ may also be related to hindering the recognition
process of sialic acid and ganglioside (Figure 1).

4.1.2. Interference of the membrane fusion process

CoVs are enveloped RNA viruses, and their cell entry processes
involve a principal route of receptor-mediated endocytosis
[28]. Membrane fusion takes place in the endosomal compart-
ment after endocytosis, which needs additional triggers such
as pH acidification or proteolytic activation [29]. Multiple cel-
lular proteases, such as trypsin, furin, proprotein convertase
(PC) family, cathepsins, transmembrane protease/serine
(TMPRSS) proteases and elastase, are involved in S protein
activation, which can induce membrane fusion [30]. Among
them, cathepsin L, with anoptimal pH of 3.0 to 6.5, is most
commonly associated with activation of a variety of CoV
S proteins [30], such as SARS-CoV [19], MERS-CoV [31], HCoV-
229E [32], and mouse hepatitis virus 2 (MHV-2) [33]. A recent
study found that SARS-CoV-2 enters 293/hACE2 cells mainly
through endocytosis, in which cathepsin L is critical for prim-
ing of SARS-CoV-2 S protein [24]. A study investigated the
detailed mechanism of action of CQ/HCQ in inhibiting SARS-
CoV-2 entry, and co-localization of SARS-CoV-2 with early
endosomes (EEs) or endolysosomes (ELs) in VeroE6 cells, and
the results showed that CQ/HCQ hampered the transport of
SARS-CoV-2 from EEs to ELs, indicating that CQ/HCQ might
inhibit endosomal maturation [17]. These studies revealed
that the mechanism of anti-CoV activity of CQ/HCQ may
involve the inhibition of the endosome acidification process,
which might inactivate lysosomal proteases, thus interfering
with the fusion of virus and host membranes [34,35]
(Figure 1).
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Figure 1. Schematic representation of the possible mechanisms of CQ/HCQ against CoVs replication and modulating immune response. CQ/HCQ may synergistically
exert antiviral and immunomodulatory effects on COVID-19 through multiple mechanisms including hindering the receptor recognition process by influencing the
affinity of ACE2 and S protein, and the affinity for sialic acid and ganglioside; inhibiting the membrane fusion process by suppressing endolysosome acidification;
suppressing the p38 activation and affecting host defense machinery, and preventing MHC class Il expression (block expression of CD154 on the surface of CD4 + T
cell) and TLR signaling and reducing the production of cytokines through inhibiting the activation of T cells and B cells.

ACE2, angiotensin-converting enzyme 2; COVID-19, coronavirus disease 2019; CQ, chloroquine; HCQ, hydroxychloroquine; CoVs, coronaviruses; MAPK, mitogen-activated protein kinase;
MHC-II, major histocompatibility complex class II; TLR, toll-like receptor; cGAS, cyclic GMP-AMP synthase; IFN, interferon; IL, interleukin; TNF-a, tumor necrosis factor-a.

4.1.3. Effects on cell signaling pathway and host defense
machinery

The mitogen-activated protein kinase (MAPK) pathway trans-
mits signals from the cell surface to the nucleus involved in
the infection of CoVs such as MHV [36] and SARS-CoV [37]. CQ
could inhibit HCoV-229E replication in human embryonic lung
epithelial cells (L132) through suppressing the activation of
p38 MAPK [38]. Moreover, HCQ could markedly induce the
production of cellular reactive oxygen species (ROS), which
play an important role in the activation of innate immunity
[39]. HCQ also could trigger the host defense mechanism
through the mitochondrial antiviral signaling (MAVS) pathway,
resulting in anti-dengue virus activity [39]. Therefore, CQ/HCQ
may also exert their antiviral activity by suppressing the acti-
vation of p38 MAPK pathway and affecting the host defense
machinery (Figure 1).

4.2. Inhibitory effect on T cell activation and cytokine
production

CQ/HCQ regulate the release of various pro-inflammatory fac-
tors, which are important immunomodulators. Intracellular
alkalinization by CQ/HCQ inhibits lysosomal activity, prevent-
ing antigen processing, major histocompatibility complex
(MHQ) class Il expression and immune activation [40]. This
process can inhibit T cell activation and block expression of
CD154 on the surface of CD4 + T cells [41]. CQ also reduces
cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis

factor-a (TNF-a) produced by T cells and B cells [42]. At the
same time, changes of endosomal pH can interfere with Toll-
like receptor (TLR) signaling, such as TLR7 and TLR9 proces-
sing, inhibiting the activation and production of cytokines
[43]. CQ/HCQ also weaken the cyclic GMP-AMP (cGAMP)
synthase (cGAS) activity by inhibiting cytosolic DNA, thereby
reducing type | interferon production [44]. In vitro, CQ/HCQ
can also inhibit phospholipase A2, altering the metabolism of
arachidonic acid, and reducing the production of prostaglan-
dins [45]. Some clinical studies have found that high concen-
trations of cytokines and pro-inflammatory factors such as IL-6
and IL-10 are elevated in the plasma of critically ill patients
infected with SARS-CoV-2 [46,47], suggesting that cytokine
release syndrome (CRS) is associated with disease severity. In
the aspect of immune response, HCQ/CQ therefore are likely
to inhibit CRS, delaying the progression of COVID-19
(Figure 1).

5. Clinical efficacy of CQ/HCQ in the treatment of
COVID-19

Only two published clinical reports have studied the efficacy
of CQ in COVID-19 patients (Table 1). One study used CQ to
treat more than 100 patients with COVID-19 and claimed that
CQ was superior to the control group in suppressing the
deterioration of pneumonia, improving lung imaging, promot-
ing viral conversion and shortening the course of disease.
Serious adverse effects were not observed in these patients
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[48]. However, this report did not provide any details about
the study design and patient data, thus it is difficult to eval-
uate the validity. Recently, a parallel, double-blind, rando-
mized, phase IIB clinical trial was performed in Brazil [49]. In
this study, 81 severe COVID-19 patients were randomly
divided into two groups: 41 patients received high-dose CQ
(600 mg/2 times/day for 10 day) and 40 patients received low-
dose CQ (450 mg/2 times on day 1 and then 450 mg/1 time/
day for 4 days). The 13-day mortality rate in the high-dose
group was more than double that in low-dose group (39.0%
vs. 16.0%). The high-dosage group exhibited more instance of
corrected QT (QTc) interval prolongation (>500 milliseconds
(ms); 7 of 37 [18.9%]) than the low-dosage group (4 of 36
[11.1%]). These findings suggest that the higher CQ dosage
should not be recommended for critically ill patients with
COVID-19 [49].

Several trials evaluated the efficacy of HCQ for the treat-
ment of COVID-19 (Table 1). In a randomized clinical trial from
Wuhan about HCQ treatment of mild COVID-19 [50], 31 out of
62 patients received HCQ (200 mg/2 times/day for 5 days). The
results showed that the temperature recovery time in the HCQ
group was improved compared with the control group (aver-
age days, 2.2 vs. 3.2); the cough relief time was shorter in the
HCQ group than the control group (average days, 2.4 vs. 3.1);
and the improvement rate of pneumonia in the HCQ group
was higher than the control group (80.6% vs. 54.8%). However,
only 48% of patients (15/31) in HCQ group and 71% of
patients (22/31) in control group had cough at baseline and
the duration of cough was not described. Improvement of
symptoms were small and the trial was terminated prema-
turely. These factors and the low sample size compromise
the reliability of the results of this study. Importantly, evalua-
tion of HCQ in the COVID-19 pandemic areas have shown that
HCQ can help patients with mild symptoms, and may poten-
tially reduce transmission in areas lacking isolation facilities
[51,52]. However, in areas with strict isolation standards, the
use of HCQ to reduce transmission or for treatment of mild
COVID-19 cases may not be beneficial in risk-benefit analysis
[51,52]. Nevertheless, there is an urgent need for drugs and
therapeutics in severe cases, which require randomized con-
trolled trials. A study from four French tertiary care centers
included 181 patients hospitalized for COVID-19 and requiring
oxygen (2 L/min): 84 patients received HCQ (600 mg/day)
within 48 hours of admission (HCQ group) and 97 did not (no-
HCQ group) [53]. The results showed that the patients trans-
ferred to the ICU or died within 7 days and developed ARDS
within 7 days had no significant differences between the HCQ
group and no-HCQ group. Eight patients in the HCQ group
(9.5%) discontinued HCQ due to electrocardiogram alterations.
These results do not support the use of HCQ for treating
hospitalized COVID-19-related hypoxic pneumonia patients. It
is worth noting that in the study’s propensity score model,
four possible important prognostic variables were unbalanced
and a center effect was not considered, which all can cause
bias for study results. In a multicenter, randomized, parallel
trial about HCQ in patients with mainly mild to moderate
COVID-19 [54], 80 patients received ‘standard care’ and 70
patients received HCQ (1200 mg daily for 3 days, and then

800 mg daily for 2 weeks [mild to moderate disease] or
3 weeks [severe disease]). The results showed that the 28-
days negative conversion probability in ‘standard care’ + HCQ
group was 85.4%, similar to the ‘standard care’ group (81.2%).
HCQ did not show additional benefits of viral elimination in
patients with mild to moderate COVID-19. However, the study
could not evaluate the antiviral effect of HCQ at early stages of
disease, which is a critical period of antiviral treatment. In
addition, viral RNA specimens were mostly from the upper
respiratory tract rather than bronchoalveolar lavage fluid,
which may cause false negative results. Due to the small
number of severe patients, this study could not provide evi-
dence regarding the effect of HCQ on the disease progression
or regression. In another large observational study involving
1376 cases of COVID-19 from New York, 811 patients received
HCQ (600 mg/2 times on the first day, then 400 mg once a day
for 4 days) within 24 or 48 hours of admission and 565 did not
[55]. This study found no correlation between HCQ use and
significantly higher or lower risk of intubation or death.
However, in this study, even after the propensity score-
matching, the diseases in patients receiving HCQ were more
severe at baseline than those in the patients not receiving.
Notably, according to another recent study [56], low dose of
HCQ reduced fatality of critically ill patients with COVID-19
without apparent toxicity. This retrospective study included
550 patients who need mechanical ventilation, of which 48
received HCQ treatment (200 mg/2 times/day for 7 to 10 days)
and 502 did not. The fatalities of the HCQ group was signifi-
cantly lower than no-HCQ group (18.8% vs 47.4%, P < 0.05),
and the inflammatory cytokine IL-6 in the HCQ group
decreased significantly from 22.2 (8.3 to 118.9 pg/mL) at the
beginning of treatment to 5.2 (3.0 to 23.4 pg/mL) at the end of
treatment. The authors deemed that the anti-inflammatory
effect of low-dose HCQ and the activity of inhibiting viral
replication may have important significance in critically ill
patients with COVID-19. Yet, this study is flawed due to its
retrospective nature and the small number of HCQ treated
patients included. In short, some initial studies have shown
that HCQ appears to have a curative effect on patients with
mild COVID-19, but subsequent studies indicate that HCQ had
no significant benefit in COVID-19 patients with viral conver-
sion and the risk of intubation or death. Although some recent
studies show that low-dose HCQ could potentially reduce the
mortality of severe COVID-19 patients, there are other studies
showing that the HCQ use had no effect on risk of intubation
or death.

There are also several reports that investigated the efficacy
of CQ or HCQ in combination with a macrolide in the treat-
ment of COVID-19 (Table 1). In an open nonrandom clinical
trial conducted in France [57], of the 36 participants, 20
patients were given HCQ (200 mg/3 times) with 6 receiving
added azithromycin, and 16 controls. The results showed that
compared with the control group, HCQ alone or in combina-
tion with azithromycin could effectively eliminate nasophar-
yngeal virus in 3-5 days. On the 6th day after treatment, the
virus clearance rates of HCQ combined with azithromycin,
HCQ alone and controls were 100%, 57.1% and 12.5%, respec-
tively (P < 0.001). This study indicated that the combined



application of azithromycin and HCQ appears to have
a synergistic effect. However, the trial design and the results
were unreliable, as six patients in the HCQ group discontinued
treatment early due to critical illness or intolerance to the
drugs and were excluded from the analysis. The assessment
of efficacy was based on viral load rather than a clinical end-
point. An observational study in 80 COVID-19 patients evalu-
ated the efficacy of HCQ (200 mg/3 times/day for 10 days) in
combination with azithromycin (500 mg on the first day,
250 mg/day afterward for 5 days) and showed that all patients’
clinical symptoms were improved, except for one patient aged
over 86 years who died due to critical illness [58]. The naso-
pharynx viral load in most patients decreased rapidly, and the
negative rates of viral nucleic acid conversion on days 7 and 8
were about 83% and 93%, respectively. About 97.5% of
patients had negative virus culture in respiratory specimens
on the fifth day. However, this study had no control group,
thus the results were difficult to interpret [58]. Some recent
studies have yielded different results about the efficacy of
HCQ combined with azithromycin. A retrospective study
including 368 patients (97 patients received HCQ, 113 patients
received HCQ + azithromycin and 158 patients received no
HCQ) from USA [59] showed that the rates of ventilation in the
HCQ, HCQ+azithromycin and no HCQ groups had no signifi-
cant differences. Unfortunately, theHCQ group (but not in the
HCQ+azithromycin group) had a higher risk of death from any
case than the no HCQ group. This study showed no evidence
that the use of HCQ, either with or without azithromycin,
reduced the risk of mechanical ventilation in patients hospita-
lized with COVID-19. Noticeably, in patients treated with HCQ
alone, an association with increased overall mortality was
observed [59]. In this study, the subjects included were only
men and most of them were black, which may affect the
generality of the results. In addition, the patients who received
HCQ or azithromycin were more severe, which may also affect
the results. In a retrospective multicenter cohort study of
a random sample of COVID-19 patients from 25 hospitals in
New York [60], totaling 1438 patients, 735 received HCQ and
azithromycin, 271 received HCQ alone, 211 received azithro-
mycin alone and 221 received neither drug (HCQ or azithro-
mycin). The results showed that the hospital mortality rate of
patients receiving HCQ + azithromycin was 25.7%, HCQ alone
was 19.9%, azithromycin alone was 10.0% and neither drug
was 12.7%. In adjusted Cox proportional hazards models,
compared with patients receiving neither drug, there were
no significant differences in hospital mortality rate for patients
receiving HC + azithromycin, HCQ alone, or azithromycin
alone. In this study, the sample size is large and includes
patients with long-term, complex and ongoing hospitalization.
However, the mortality rate of this study was limited to in-
hospital deaths, and patients discharged during the study
period were considered alive, which may underestimate the
morality rate. Recently, a multinational registry analysis about
HCQ or CQ with or without second-generation macrolides
(especial azithromycin and clarithromycin) for treatment of
COVID-19 was reported [61]. A total of 96,032 patients were
included in this study. Of these, 1868 received CQ, 3783
received CQ with a macrolide, 3016 received HCQ and 6221
received HCQ with a macrolide and 8114 patients as control
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group. After controlling various confounding factors related to
disease, when compared with the mortality in the control
group (9.3%), CQ group was 16.4%, CQ with a macrolide
group was 22.2%, HCQ group was 18.0% and HCQ group
with a macrolide was 23.8%; each group was associated with
an increased risk of hospital mortality independently. Apart
from this, compared with the control group (0.3%), CQ group
(4.3%), CQ with a macrolide group (6.5%), HCQ group (6.1%)
and HCQ with a macrolide group (8.1%) were independently
associated with a risk for ventricular arrhythmia during hospi-
talization [61]. This study showed that CQ or HCQ (used alone
or combination with a macrolide) was associated with an
increased hazard for in-hospital death and an increased risk
of ventricular arrhythmias. This study included a large number
of patients, but it is not a randomized clinical trial. In short,
some small studies have shown that HCQ combined with
azithromycin could quickly and effectively eliminate viruses,
but the design of these studies was flawed in many aspects,
making the results unconvincing. Several subsequent studies
have shown that the combination of HCQ or CQ and macro-
lides (azithromycin or clarithromycin) has no obvious correla-
tion with a reduced risk for mechanical ventilation, and may
even increase the risk of arrhythmia and in-hospital mortality.

In summary, although CQ/HCQ appeared to exhibit
a favorable effect on COVID-19 patients in some initial studies
of small numbers of patients, the most recent studies with
larger sample sizes revealed that CQ/HCQ exhibited no signif-
icant improvement of disease but even an increased overall
mortality in COVID-19 patients. The studies on the combina-
tion of HCQ or CQ and macrolides (azithromycin or clarithro-
mycin) also showed conflicting findings. Therefore, caution
should be taken regarding the use of CQ/HCQ treatment in
COVID-19 due to the uncertainty of efficacy, the potential
adverse effects and the various defects in the studies.
According to the Chinese Clinical Trial Registry (ChiCTR)
(http://www.chictr.org.cn/index.aspx) and the International
Clinical Trials Registry Platform (ICTRP) (https://www.who.int/
ictrp/en/), currently, there are more than 200 ongoing clinical
trials for CQ/HCQ. Current findings suggest that CQ/HCQ alone
or in combination with macrolides should not be recom-
mended for widespread use in COVID-19 (except in clinical
trials). Results from these ongoing prospective, randomized,
controlled studies are required before these drugs are recom-
mended for the treatment of COVID-19.

6. Safety

CQ/HCQ are basic medications for malaria with a long history
of reliable safety records [3,62]. However, the therapeutic
window of CQ is narrow, and the toxic dose is 3 times higher
than the therapeutic dose [55,63]. The most common adverse
effects of taking CQ are gastrointestinal discomforts, such as
nausea, vomiting, diarrhea, and anorexia. These symptoms are
mild and can be controlled by reducing the dose [3]. However,
long-term and high-dose CQ intake can cause irreversible
damage to the ear, cardiovascular system, and blood system,
such as neurological deafness, conduction disorder cardio-
myopathy, and leukopenia, though these adverse effects are
very rare [3]. Compared to CQ, HCQ has fewer adverse effects,
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which may be related to its lower toxicity. In animal models,
HCQ was about 40% less toxic than CQ [64]. Reportedly, only
overdoses (average daily dose > 5.0 mg/kg) and long-time
(more than 5 years) ingestion of HCQ can cause retinopathy
[65]. CQ/HCQ have similar pharmacokinetic characteristics, fast
absorption in the gastrointestinal tract, fast excretion in liver
and kidney, and a long half-life (40-50 days) [3,66]. Therefore,
liver and kidney dysfunction may aggravate adverse effects.
High-dose CQ (600 mg/2 times/day for 10 day) is associated
with increased QTc interval prolongation in critically ill
patients with COVID-19 [49] and should not be recommended.
In the initial trial from France, of the 84 patients receiving HCQ
treatment, 8 patients discontinued HCQ owing to ECG mod-
ifications within 4 days. Among them, 7 patients had a pro-
longed QTc interval more than 60 ms, and one patient
developed a first-degree atrioventricular block within 2 days
[53]. In a randomized clinical trial from Wuhan, 2 out of 31
patients receiving HCQ treatment had minor adverse effects
(headache and rash) [50]. Prolonged QT interval after taking
HCQ may also develop in ICU COVID-19 patients [67]. A recent
observation showed that patients who received HCQ for the
treatment of pneumonia associated with COVID-19 were at
high risk of QTc prolongation (19%), and concurrent use of
azithromycin was associated with greater changes in QTc
(21%) [68]. Another observation in COVID-19 patients
admitted to ICU showed that QTc intervals increased in 93%
of patients receiving HCQ with or without azithromycin, pro-
longed QTc was observed in 36% of patients after a duration
of the treatment for 2 to 5 days, and 6 of 18 (33%) patients
treated with HCQ and azithromycin and 1 of 22 (5%) of those
treated with HCQ alone developed an increase in QTc of
500 ms or greater [69]. The use of CQ, CQ with a macrolide,
HCQ and HCQ with a macrolide were all found to be indepen-
dently associated with increased risk for ventricular arrhythmia
in hospitalized COVID-19 patients [61]. Therefore, clinicians
should carefully weigh risks and benefits if considering CQ/
HCQ with or without a macrolide. When CQ/HCQ are used,
electrocardiogram examination should be routinely performed
before taking the medicine, with close monitoring of QTc and
concomitant medication usage. CQ/HCQ should be more cau-
tiously used in patients with existing heart disease, and the
use of QT interval prolonging drugs, such as antiarrhythmic
drugs, antihistamines, and moxifloxacin should be avoided. In
addition, close attention should be paid to symptoms after
taking drugs and the drugs should be stopped in time if there
are intolerable adverse reactions. In addition, CQ is extremely
dangerous for patients with glucose 6-phosphate dehydro-
genase (G6PD) deficiency because of the possible induction
of hemolytic anemia [70]. Therefore, more caution should be
given for patients with G6PD deficiency when CQ is consid-
ered for the treatment and the best way should be to detect
G6PD deficiency before the use of CQ.

7. Discussion

At present, the COVID-19 pandemic is continuing worldwide. It
is still an urgent need to find effective therapies and vaccines

for treatment and prevention. CQ/HCQ have diverse biological
activities, and their mechanisms against CoVs including SARS-
CoV-2 are not yet fully clarified. Current studies show that CQ/
HCQ can prevent receptor recognition by CoVs, inhibit endo-
some acidification, which interferes membrane fusion, and
exhibit immunomodulatory activity. These multiple mechan-
isms may work together to exert a therapeutic effect on
COVID-19. A number of in vitro studies have revealed that
CQ/HCQ have inhibitory effects on various CoVs, including
SARS-CoV [12,13], MERS-CoV [10] and SARS-CoV-2 [16-18].
However, conflicting results also exist on the in vitro activity
of CQ/HCQ against SARS-CoV-2 [17,18]. Several clinical studies
have shown that CQ/HCQ may alleviate the clinical symptoms
of COVID-19, promote viral conversion, and delay the progres-
sion of the disease, with less serious adverse effects
[48,50,57,58,]. However, previous studies showed that CQ
had anti-Ebola virus activity in cell culture, but it had conflict-
ing results in animal models [71,72]. In addition, CQ has shown
beneficial results against chikungunya virus in vitro, but in
animal models it aggravates the infection and lacks therapeu-
tic effect [73]. More importantly, in recent studies the use of
HCQ did not show any favorable effect on patients with
COVID-19 and high-dose CQ treatment of severe COVID-19
patients may even increase the risks of mortality and QTc
interval prolongation [49,55]. In addition, the optimal daily
dose and duration of treatment course are not yet clear. One
study suggested that the dose of HCQ should be 400 mg/2
times for 1 day, 200 mg/2 times/day for 4 days based on the
physiological pharmacokinetic model [18]. A prospective study
of HCQ on COVID-19 patients (13 cases) admitted to the ICU in
France showed that the first daily dose of 800 mg/1 time for
1 day, and 200 mg/2 times/day for 7 days was recommended
to maintain the HCQ treatment level (1-2 mg/l) based on
physiologically pharmacokinetic (PBPK) models for COVID-19
patients in ICU [67]. Whether the dosage of CQ or HCQ should
be varied according disease severity is also unclear. A rodent
study showed that CQ could exert anti-HCoV-OC43 activity
transplacentally or by way of maternal milk [14]. However, in
humans, the efficacy of CQ in the prevention and treatment of
SARS-CoV-2 infection to both the mother and the child
remains to be investigated. Clinical trials in France showed
that HCQ combined with azithromycin could enhance the
virus clearance [50], but the subsequent reports did not sup-
port this combination [59,61]. Furthermore, CQ/HCQ alone or
in combination with a macrolide induced high rate of adverse
effects, especially prolonged QTc, in the use for COVID-19
treatment [61,68,69]. Therefore, current data are not sufficient
enough to support the routine use of CQ/HCQ as therapies for
COVID-19 and increasing caution should be taken for the
application of CQ/HCQ, alone or in combination with other
drugs, in COVID-19 before the conclusive findings are
obtained by well-designed, multicenter, randomized, con-
trolled studies.
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