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Abstract

In a regression model for treatment outcome in a randomized clinical trial, a treatment effect 

modifier is a covariate that has an interaction with the treatment variable, implying that the 

treatment efficacies vary across values of such a covariate. In this paper, we present a method for 

determining a composite variable from a set of baseline covariates, that can have a nonlinear 

association with the treatment outcome, and acts as a composite treatment effect modifier. We 

introduce a parsimonious generalization of the single-index models that targets the effect of the 

interaction between the treatment conditions and the vector of covariates on the outcome, a single-
index model with multiple-links (SIMML) that estimates a single linear combination of the 

covariates (i.e., a single-index), with treatment-specific nonparametric link functions. The 

approach emphasizes a focus on the treatment-by-covariates interaction effects on the treatment 

outcome that are relevant for making optimal treatment decisions. Asymptotic results for estimator 

are obtained under possible model misspecification. A treatment decision rule based on the derived 

single-index is defined, and it is compared to other methods for estimating optimal treatment 

decision rules. An application to a clinical trial for the treatment of depression is presented.
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1. Introduction

In precision medicine, a critical concern is to identify baseline measures that have distinct 

relationships with the outcome from different treatments so that patient-specific treatment 

decisions can be made [1, 2]. Such variables are called treatment effect modifiers, and these 

can be useful in determining a treatment decision rule that will select a treatment for a 

patient based on observations made at baseline. There is a growing need to extract treatment 
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effect modifiers from (usually noisy) baseline patient data that, more and more commonly, 

consist of a large number of clinical and biological characteristics.

Typically, treatment effect modifiers (or, “moderators”) are identified either one by one, 

using one model for each potential predictor, or from a large model which includes all 

potential predictors and their (two-way) interactions with treatment, and then testing for 

significance of the interaction terms, almost exclusively using linear models. In the linear 

model context, [3] proposed a model using a linear combination (i.e., an index) of patients’ 

characteristics, termed a generated effect modifier (GEM) constructed to optimize the 

interaction with a treatment indicator. Such a composite variable approach is especially 

appealing for complex diseases such as psychiatric diseases, in which each baseline 

characteristic may only have a small treatment modifying effect. In such settings, it is not 

common to find variables that are individually strong moderators of treatment effects.

Here we present novel flexible methods for determining composite variables that permit 

non-linear association with the outcome. In particular, the proposed methods allow the 

conditional expectation of the outcomes to have a flexible treatment-specific link function 

with an index. We define the index to be a one-dimensional linear combination of the 

covariates. This approach is related to single-index models [4, 5, 6, 7, 8, 9, 10], as well as to 

single-index model generalizations such as projection pursuit regression [11] and multiple-
index models [12, 13]. We employ a single projection of the covariates (i.e., an index) to 

summarize the variability of the baseline covariates, and multiple link functions to connect 

the derived single-index to the treatment-specific mean responses; we call these single-index 
models with multiple-links (SIMML). This single-index models with multiple-links provides 

a parsimonious extension of the single-index model in modeling the effect of the interaction 

between a categorical treatment variable and a vector-valued covariate. The dependence of 

treatment-specific outcomes on a common single-index improves the interpretability, and 

helps in determining treatment decision rules. This approach generalizes the notion of a 

composite “treatment effect modifier” from the linear model setting, to a nonparametric 

context, to define a nonparametric generated effect modifier.

2. A Single-index model with multiple-links (SIMML)

Let X = x1, …, xp
⊤ ∈ ℝp denote the set of covariates. Let T denote the categorical 

(treatment assignment) variable of interest, taking values in {1, …, K} with nonzero 

probabilities (π1, … πK) that sum to one. Let Y ∈ ℝ denote an outcome variable; without 

loss of generality, we assume that a higher value of Y is preferred. We focus on data arising 

from a randomized experiment, however, the method can be extended to observational 

studies.

A common approach to interrogate the effect of the interaction between X and the treatment 

indicator T on an outcome is to fit a regression model separately for each of the K treatment 

groups, as functions of X. For instance, a single-index model can be fitted separately for 

each treatment group t, resulting in K indices, βt
⊤X, t ∈ 1, …, K . We refer to this as a K-

index model; it has the form
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E(Y |T = t, X = x) = gt βt
⊤x (t = 1, …, K), (1)

where both the treatment-specific nonparametric link functions gt(·), and the treatment-

specific index vectors βt ∈ ℝp, need to be estimated for each group t. (The vectors βt need to 

satisfy some identifiability condition ([14]).) While this is a reasonable approach, the K 
indices of model (1) lack useful interpretation as effect modifiers and often lead to over-

parametrization.

For parsimony and insight, the SIMML constrains the βt in (1) to be equal, and it requires 

separate nonparametrically defined curves for each treatment t as a function of a single index 

α⊤X common for all t:

E(Y |T = t, X = x) = gt α⊤x (t = 1, …, K), (2)

where both the links gt and the vector α need to be estimated. The SIMML (2) provides a 

single parsimonious biosignature, α⊤X ∈ ℝ. Due to the nonparametric nature of gt, the scale 

of α is not identifiable in (2) and to address this we restrict α to be in 

Θ = α = α1, …, αp
⊤ | ∑j = 1

p αj2 = 1, αp > 0 , i.e., to be in the upper hemisphere of the unit 

sphere.

If the true model for the treatment-specific outcome Yt is not a SIMML, then the SIMML 

can be regarded as the L2 projection of the treatment specific mean outcome mt(X) = E Y t |X
on the single index u = α⊤X,

gt(u) = E mt(X) α⊤X = u (t = 1, …, K), (3)

for each given α. Specifically, suppose the true treatment-specific model can be expressed as

Y t = mt(X) + σt(X)ϵ (t = 1, …, K), (4)

in which E(ϵ |X) = 0, E ϵ2 |X = 1. Let R(α) = ∑t = 1
K πtE Y t − gt α⊤X 2, where gt is defined in 

(3) and let

α0: = argmin
α ∈ Θ

R(α) . (5)

Then α0 can be shown to be the minimizer of the cross-entropy (e.g., [15]) between the 

SIMML (2) and the general model (4) under the Gaussian noise assumption. Here, the cross-

entropy of an arbitrary distribution with probability density f, with respect to another 

reference distribution P is defined as EP( − logf), where the expectation is take with respect 

to the distribution P. Model (3) evaluated at α0 can be viewed as the “projection” (in the 

sense of the closest point) of the true distribution P (4) onto the space Θ of the SIMML 

distribution, using the Kullback-Leibler divergence as a distance measure.
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The SIMML (2) allows a visualization useful for characterizing differential treatment 

effects, varying with the single-index α⊤X. As X ∈ ℝp varies, the mean response of model 

(2) changes only in the specific direction α ∈ Θ, and the effect of varying X, described by 

the link functions gt, is different for each treatment condition t ∈ {1, …, K}. Therefore, the 

single-index can be viewed as a useful biosignature for describing differential treatment 

effects, provided gt ≠ gt′ for at least one pair t, t′ ∈ {1, …, K}.

3. Estimation

While any smoothing technique can be used to approximate the unspecified smooth links 

gt(·) in (2), in this paper, we will focus on cubic B-splines. Specifically, gt(u) ≈ ηt⊤Zt(u), for 

some coefficients ηt ∈ ℝdt. Here, Zt(u) = B1(u), …, Bdt(u) ⊤ ∈ ℝdt consists of a set of dt 

normalized cubic B-spline basis functions [16]. Let nt be the sample size for the tth 

treatment group and n = ∑t = 1
K nt denote the total sample size. Note, dt depends on nt (see 

Assumption 5 and [17]). For a given α, let ℤα, t denote the B-spline evaluation matrix (nt × 

dt), so that the ith row is Zt(α⊤Xti)⊤, which is the B-spline evaluation of the ith individual 

from the tth treatment group. The subscript α in the matrix ℤα, t highlights its dependence on 

α. Without loss of generality we assume that the outcome and the covariates are all centered 

at zero for each treatment group t, so that the model does not involve any intercept terms.

For sample data, SIMML (2) can be represented by

[Y ]n × 1 = ℤα n × ∑t = 1
K dt [η] ∑t = 1

K dt × 1 + [ϵ]n × 1, (6)

where Y = Y 1
⊤, …, Y K

⊤ ⊤
 is the observed response vector with Y t ∈ ℝnt,ℤα is n × ∑t = 1

K dt

block-diagonal B-spline design matrix of the ℤα, t′s, η = η1
⊤, …, ηK

⊤ ⊤
 is the B-spline 

coefficient vector, and ϵ = ϵ1
⊤, …, ϵK

⊤ ⊤
 is a mean zero noise vector with covariance matrix 

σ2In.

For a given α, we define the n × n single-index projection matrix to be 

Sα = ℤα ℤα
⊤ℤα

−1ℤα
⊤ . Assuming Gaussian noise and treating η as a nuisance parameter, the 

negative “profile” loglikelihood of α, up to a constant multiplier, is

Q(α) = Y − SαY 2 . (7)

We define the profile likelihood estimator of the index parameter α as

α = argmin
α ∈ Θ

Q(α) . (8)

Each link function gt(·) in (2) can be estimated by

gt(u) = Zt(u)⊤ ℤα, t
⊤ ℤα, t

−1ℤα, t
⊤ Y t (t = 1, …, K), (9)
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where ℤα, t is ℤα, t evaluated at α = α.

To solve (8), we can perform a procedure that alternates between the following two steps: 

first, for a fixed α, estimate each link functions gt(·) in (2) by (9), where α is taken at α; 

second, for a fixed gt(u), perform an iteratively reweighted least squares (IRLS) to 

approximately solve (8) for α. These two steps can be iterated until convergence.

4. Asymptotic theory

In this section, we establish the asymptotic results of the profile estimator α in (8) under 

possible misspecification, when the true model is assumed to be(4). Let us denote the pth 

component of the vector α0 in (5) by α0,p(> 0, since α0 ∈ Θ). By the completeness property 

of ℝ, we can always find some c > 0 such that α0,p ≥ c, and therefore, without loss of 

generality, we may assume that α0 is in a compact set 

Θc = α = α1, …, αp
⊤ ∈ ℝp | ∑j = 1

p αj2 = 1, αp ≥ c , with an appropriate choice of small c > 0. 

Further, to avoid the complication from the restricted parameter space Θc, we can consider 

instead the “pth component removed” R(α) in (5), as follows:

R α−p = R α1, …, αp − 1, 1 − α1
2 + ⋯ + αp − 1

2 , (10)

where a vector α−p = α1, α2, …, αp − 1 ∈ ℝp − 1 lives inside the unit ball. Let the “pth 

component removed” value of α0 in (5) be denoted by α0, − p ∈ ℝp − 1.

Similarly, let the “pth component removed” value of the corresponding profile estimator α in 

(8) be denoted by α−p ∈ ℝp − 1. The following conditions are assumed for the asymptotic 

results.

Assumption 1. The objective function R(α−p) in (10) is locally convex at α0,−p, and its 
Hessian function, H(α−p) evaluated at α−p = α0,−p, is positive definite, with bounded 
eigenvalues.

Assumption 2. The underlying mean functions mt(X) in (4) are in C(4)(Ba
p), t ∈ {1, …, K} 

for some finite a > 0, where Ba
p is the p-dimensional ball with center 0 and radius a and 

C(q) Ba
p = f |  tℎe qtℎ order partial derivatives of f are continuous in Ba

p .

Assumption 3. The probability density function of X, fX(x) ∈ C(4) Ba
p , and there exist 

constants 0 < cf < Cf such that cf /V olp Ba
p ≤ fX(x) ≤ Cf / V olp Ba

p , if x ∈ Ba
p and fX(x) = 0, 

if x ∉ Ba
p.

Assumption 4. The underlying noise ϵ in (4) satisfies E(ϵ |X) = 0 with E ϵ2 |X = 1, and there 

exists a constant Cϵ > 0, such that supx ∈ BapE |ϵ |3 |X = x) < Cϵ. For each group t ∈ {1, …, K}, 
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the standard deviation function σt(x) is continuous in Ba
p, with 

0 < cσt ≤ infx ∈ Bapσt(x) ≤ infx ∈ Bapσt(x) ≤ Cσt < ∞, for some constants 0 < cσt < Cσt.

Assumption 5. The number of interior knots, Nt(= dt − 4), in the cubic B-spline 
approximation of the link function gt(·) for the tth treatment group satisfies: 

nt1/6 ≪ Nt ≪ nt1/5 log nt
−(2/5), t ∈ {1, …, K}.

The first theorem establishes consistency of the estimator (8) and the second theorem 

establishes asymptotic normality of the estimator α−p for α0,−p.

Theorem 1. (Consistency) Under Assumption 1 to 5, α α0 almost surely, where α0 is 

defined in (5).

Theorem 2. (Asymptotic Normality) Under Assumption 1 to 5, 

n(α−p − α0, − p) N 0, Σα0, − p  in distribution, with asymptotic covariance matrix 

Σα0, − p = Hα0, − p
−1 Wα0, − pHα0, − p

−1 , where the matrix Hα0, − p is the Hessian matrix 

H α−p = ∂2

∂α−p∂α−pT R α−p  evaluated at α−p = α0,−p and the matrix Wα0, − p is defined in 

the Appendix.

The proofs of the theorems are given in the Appendix.

5. Simulation illustrations

5.1. Performance on estimating treatment decision rules

A treatment decision function, D(X):ℝp 1, …, K , mapping a subject’s baseline 

characteristics X ∈ ℝp to one of K available treatments, defines a treatment decision rule for 

the single decision time point [1, 2, 18, 19, 20]. Given covariates X, a treatment decision rule 

based on SIMML is D(X) = argmax t ∈ 1, …, K gt α⊤X . We investigate the performance of 

the estimated treatment decision rules of the form D(X) = argmax t ∈ 1, …, K E(Y |X, T = t), 
where the conditional expectation is obtained from various modeling procedures.

In our simulation settings, the baseline covariate vector X = x1, …, xp
⊤ N 0, ΨX , with ΨX 

having 1′s on the diagonal and 0.1 everywhere else. We consider K = 2 with different noise 

levels for the two treatment groups: ϵ1 N 0, 0.42 , ϵ2 N 0, 0.22  The outcome data are 

generated under the following fairly broad model

Y t = δM μ⊤X; ν + Ct α⊤X; ω + ϵt (t = 1, 2) . (11)

As a function of the index μ⊤X, M is referred to as the “main effect” of X. As functions of 

the other index α⊤X, the Ct’s are referred to as the “contrast” functions that define the 

treatment-by-X interaction. Here, we will use the parameters ν and ω to control the degree 

of non-linearity of M and Ct’s, respectively.
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An optimal treatment decision rule depends only on the Ct’s, not on M or the ϵt’s. The 

parameter δ in (11) controls the relative contribution of the “signal” component Ct′s to the 

variance in the outcomes, and is calibrated to obtain a relative contribution of 0.35. The 

contrast functions Ct’s in (11) are set to

Ct(u; ω) =
C1(u; ω) = + 1 − cos (0.5πωu) + 0.5(u − ω)
C2(u; ω) = − 1 + cos (0.5πωu) − 0.5(u − ω), (12)

where, if ω = 0, then the Ct’s are linear functions; and they are more nonlinear for larger 

values of ω. We considered three cases, corresponding to linear (ω = 0), moderately 
nonlinear (ω = 0.5), and highly nonlinear (ω = 1) Ct’s, respectively, illustrated in the first 

three panels of Figure 1. We set the main effect function M in (11) to be

M(u; ν) = 0.5u − sin(0.5πνu),

where, as ν increases, the degree of nonlinearity in the main effect function M increases. We 

considered two cases, ν = 0, corresponding to a linear M; and ν = 1, corresponding to a 

nonlinear M, illustrated in the fourth and the fifth panels of Figure 1. We set p = 5 and p = 

10 with α = (1, …, 5)⊤ and α = (1, …, 10)⊤, respectively, each standardized to have norm 

one. We set μ to be proportional to a vector of 1’s, standardized to have norm one. Two 

treatment groups were considered, with equal sample sizes n1 = n2 = 40. We used d1 = d2 = 

5 B-spline basis functions to approximate the link functions. The treatment decision rules 

were based on the following regression models: (i) SIMML (2) estimated from maximizing 

the profile likelihood; (ii) the K-Index model (1) fitted separately for each treatment group 

by the B-spline approach of [17], denoted as K-Index; (iii) the linear GEM model ([3]) 

estimated under the criterion of maximizing the difference in the treatment-specific slope, 

denoted as linGEM; and (iv) linear regression models fitted separately for each treatment 

group under the least squares criterion, denoted as K-LR. For each scenario, using the 

outcome Y from a simulated test set (of size 105), we computed the proportion of correct 

decisions (PCD) of the treatment decision rules estimated from each method and the 

methods were compared in terms of PCD using boxplots from training datasets.

Figure 2 shows that SIMML outperforms all other methods, except for the case under the 

linear M and Ct’s in which all 4 approaches perform well. The K-Index model is clearly 

second best, under the linear M (ν = 0) (the top panels) with the nonlinear Ct’s (ω = 0.5 and 

ω = 1). However, with a more complex M function (ν = 1) (the bottom panels), the 

performance of the K-index approach is considerably worse compared to SIMML. Given a 

relatively small sample size and under the complex main effect, the SIMML that emphasizes 

the treatment contrasts through the common single-index is more effective in estimating 

optimal treatment decisions than the K-Index model. As would be expected, additional 

complexity in the contrasts Ct’s (ω = 0.5 and ω = 1) has a greater effect on the performance 

of the more restrictive models (linGEM and K-LR) than it does on the flexible models 

(SIMML and K-index). The number of covariates, p, also has a clear impact on the 

performance of all methods. As p changes from 5 (red) to 10 (blue), the deterioration in 

performance is more pronounced for the K-Index model that requires separate fits for each 
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treatment and thus involves estimation of more parameters (K(p − 1) + Kd), compared to the 

more parsimonious SIMML with a fewer number of parameters (p − 1 + Kd) to be 

estimated.

5.2. Coverage probability of asymptotic 95% confidence intervals

The next simulation experiment assesses the coverage probability of the asymptotic 

confidence intervals derived from Theorem 2. The data were generated under model (11) 

with δ = 0 (i.e., no main effect M) with p = 5 covariates. We set the SIMML index vector 

α(= α0) to be stepwise increasing: (1, …, 5)⊤, normalized to have unit L2 norm. The 

associated contrast functions, Ct’s, are given by (12). As in Section 5.1, we consider three 

levels of the curvature of the contrasts, corresponding to linear (ω = 0), moderately 
nonlinear (ω = 0.5), and highly nonlinear (ω = 1) contrasts (see Figure 1). In (11), the 

standard deviations of the noise ϵt were set to 0.5. We set the sample size n = n1 + n2 with n1 

= n2. With varying n ∈ {50, 100, 200, 400, 800, 1600, 3200}, the number of interior knots 

used in the B-spline approximation, Nt, was determined to be Nt = nt1/5.5 , as recommended 

by [17] ([v] denotes the integer part of v). Two hundred datasets were generated for all 

combinations of n and ω. For each (i.e., the jth) component αj of α, the proportion of times 

the 95% asymptotic confidence interval contains the true value of αj was recorded in the 

Table C.2 in the Appendix. Notice that the 5th (i.e., the pth) element is estimated to satisfy 

the constraint α ∈ Θ in Theorem 2. To obtain the confidence intervals for the 5th 

component, we applied Theorem 2 with the 4th component removed (without loss of 

generality), and obtained the confidence intervals for the 5th component.

We note that the choice of Nt = nt1/5.5  is an approximation to the Nt of Assumption 5 which 

requires nt1/6 ≪ Nt ≪ nt1/5 log nt
−(2/5), as such Nt can only be obtained for a very large nt. 

Nevertheless, in Table C.2 in the Appendix, as the sample size n(= n1+n2) increases, the 

“actual” coverage probability gets closer to the “nominal” coverage probability, with better 

coverage results for the linear and the moderately nonlinear contrasts (ω ∈ {0, 0.5}) 

compared to the highly nonlinear contrasts (ω = 1).

6. Application to data from a randomized clinical trial

Major depressive disorder afflicts millions and, according to the World Health Organization, 

it is the leading cause of disability worldwide. It is a highly heterogeneous disorder, 

however, no individual biological or clinical marker has demonstrated sufficient ability to 

match individuals to efficacious treatment. Here we illustrate the utility of the proposed 

SIMML method for estimating a composite biomarker and treatment decision rules, with an 

application to data from a randomized clinical trial comparing an antidepressant and placebo 

for treating depression.

Of the 166 subjects, 88 were randomized to placebo and 78 to the antidepressant. In addition 

to standard clinical assessments, patients underwent neuropsychiatric testing prior to 

treatments. Table 1 summarizes the information on p = 9 baseline patient characteristics, X = 

(x1, …, x9)⊤. These baseline covariates were considered as potential treatment effect 

modifiers, and standardized to have unit variance. The treatment outcome Y was the 
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improvement in symptom severity from week 0 (baseline) to week 8 and thus larger values 

of the outcome were better.

Figure 3 shows the treatment outcomes Y against each of the 9 baseline covariates, for the 

placebo group (blue) and the active drug group (red). The estimated B-spline approximated 

curves for each individual covariate are shown with the associated 95% confidence bands: 

the solid blue curves for the placebo group and the dotted red curves for the active drug 

group. In Figure 3, each individual covariate has at most a small treatment modifying effect, 

as its treatment-specific curves do not differ much.

One natural measure for the effectiveness of a treatment decision rule D is called the “value” 

(V) of a treatment decision rule D [20], which is defined as the expected mean outcome if 

everyone in the population receives treatment according to that rule:

V(D) = EX EY X(Y |X, T = D(X)) . (13)

In the third and the fourth columns of Table 1, “Indiv. Value” refers to the estimated “value” 

of a decision rule D estimated from each of the 9 individual covariates, using the following 

two approaches for estimating D: the B-spline regressions of the treatment-specific outcome 

on each individual covariate (“Nonpar.” in the third column of Table 1) as suggested by the 

overlaid curves in Figure 3, and the linear regressions of the treatment-specific outcome on 

each individual covariate (“Linear” in the fourth column of Table 1). The value (13) of D
can be estimated by the inverse probability weighted estimator [21]:

V (D) = ∑
i = 1

n
Y iITi = D Xi / ∑

i = 1

n
ITi = D Xi , (14)

using a testing set, say, Y i, Xi, Ti , i = 1, …, n , where, if one uses only the jth covariate for 

estimating D, then Xi = xij. The data were randomly split into a training set and a testing set 

with a ratio of 10 to 1. This splitting was performed 500 times, each time estimating D on 

the training set and computing (14) from the testing set. Values (14) are averaged over the 

500 splits.

The SIMML can be made more efficient by incorporating a main effect component β⊤D(X) 

in the model, i.e., we can consider E(Y |T = t, X = x) = βTD(x) + gt α⊤x , for an appropriate 

vector-valued function D(X). If the n × q matrix D denotes the evaluation of D(X) on the 

sample data, then for each α, the negative “profile” loglikelihood (7) under this extended 

model (with Gaussian outcome), up to constants, is Q*(α) = Y − SαY 2, where 

Y = In − In − Sα D DTD −1DT Y . In this analysis, we took D(X) = X. We refer to this 

approach as “main effect adjusted” profile likelihood SIMML and denote it by SIMML*.

In Table 1, the last three columns show the estimated single-index coefficients α obtained by 

two different SIMMLs (SIMML* and SIMML) and the linear GEM (linGEM) which 

restricts the link gt(·) to be a linear function. In Figure 4, the estimated pairs of link functions 

are plotted against the approach-specific single-index α⊤X, obtained from applying the two 
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SIMML approaches and the linear GEM approach. From Figures 3 and 4, it appears that the 

index α⊤X exhibits a stronger moderating effect of treatment than the individual covariates. 

Also, the shapes of the regression curves from the SIMML approaches appear to capture a 

nonlinear treatment-by-index interaction effect, especially due to some non-monotone 

relationship between the index and the outcome in the active drug group.

In Figure 5, we illustrate the single-index coefficient estimates from each of the methods, 

and the associated 95% confidence intervals obtained from a bias-corrected and accelerated 

(BCa, [22]) bootstrap with 500 replications. The coverage of the asymptotic-based 

confidence intervals for this sample size is not expected to be very good (based on the 

simulation results in Section 5.2) and thus instead we used bootstrap confidence intervals. 

The magnitude of the estimated coefficients α1, …, α9 reflects the relative importance of the 

covariates x1, …, x9 in determining a composite treatment effect modifier α⊤X.

In this analysis, the incorporation of the “main effect” component improved the value of 

treatment decision rules determined from the proposed SIMML method, as illustrated in the 

boxplots in Figure 6; we compared the two SIMML approaches (SIMML* and SIMML); the 

linear GEM (linGEM) and the two approaches based on separate regression models for each 

treatment group (K-Index and K-LR), with respect to the estimated values (14) of the 

treatment decision rules. For comparison, we also included the decision to treat everyone 

with placebo (All PBO), and the decision to treat everyone with the active drug (All DRG). 

The results are summarized in Figure 6.

In Figure 6, in terms of the averaged estimated values (14) estimated from the 

aforementioned 500 randomly split testing sets, the proposed SIMML approaches 

outperform all other methods. The visualization (see Figure 4) indicates that the superiority 

of the active drug over placebo does not linearly decrease with the index, but rather, it 

appears to remain relatively constant to the left of the crossing point, exhibiting some 

nonlinear patterns. Finally, we note that the value of the treatment decision rule All PBO 

was lower than the value of the treatment decision rule All DRG, and that all treatment 

decision rules that took patient characteristics into account outperformed the decision of 

treating everyone with the drug (which is standard current clinical practice). In particular, 

the superiority the treatment decision rule SIMML* over treating everyone with the drug in 

terms of value was of similar magnitude of the superiority of the decision to treat everyone 

with the drug versus treating everyone with placebo. This is a clear indication that patient 

characteristics can help treatment decisions for patients with depression, and the more 

flexible SIMML methods are well suited for developing treatment decision rules. 

Particularly, the proposed methods show that combining patient characteristics with little 

moderating effects of a treatment can result in a strong treatment effect modifier which 

exhibits nonlinear association with the outcome that can help with making treatment 

decisions.

7. Discussion

The SIMML model (6) can be extended in various ways, for example, by allowing 

treatment-specific noise variances σt2. Under a Gaussian noise assumption, the B-spline 
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approximated profile log likelihood of α, that profiles out the nuisance parameters σt2 and ηt, 

up to constants, is ∑t = 1
K ntlogQt(α), in which Qt(α) = Y t − Sα, tY t

2/nt. The corresponding 

profile estimator of α is argmin
α ∈ Θ

∑t = 1
K ntlogQt(α). The estimation can be performed similarly 

as in the estimation of α in (8), but the criterion function Q(α) will be replaced by 

∑t = 1
K ntlogQt(α).

The SIMML can also be extended to generalized linear models (GLM) in which the outcome 

variable is a member of the exponential family. The standard form of the density is fY(Y; θ, 

ϕ) = exp {(Y θ − b(ϕ))/a(ϕ) + c(Y, ϕ)}, with a canonical link function h(·). We can extend 

the SIMML approach to the GLM setting with treatment-specific natural parameters θt, t ∈ 
{1, …, K} by modeling the treatment-specific outcomes as a function of a single-index 

α⊤X:θt(x) = ℎ−1(E(Y |T = t, X = x)) = gt α⊤x , t ∈ {1, …, K}; gt(·), hence θt(x) ∈ ℝ, can be 

approximated, for example, by B-splines. The approximates can be denoted by 

θt(x) = ηt⊤Zt α⊤x  for some ηt ∈ ℝdt. As in Section 3, the general strategy of nonlinear 

maximization of the “profile” likelihood over α ∈ Θ, where we profile out ηt for each value 

of α, can be employed. The dispersion parameter ϕ can also be profiled out. Other potential 

extensions involve incorporating variable selection in high-dimensional covariate settings 

using a regularization method and incorporating functional-valued data objects (such as 

images) as patient covariates.

An important extension to the SIMML model is to factor out baseline effects common to all 

treatment groups, by allowing an unspecified main-effect term μ(X) [e.g., 23] in the model. 

Generally, this can be handled by an “orthogonalization” approach, and the estimation can 

be performed under the framework of A-learning [1, 24, 25, 26, 27]. To elaborate, consider 

the following extension of model (2),

E(Y |T = t, X = x) = μ(x) + gt α⊤x (t = 1, …, K), (15)

where we impose a structural constraint, ET gT α⊤X |X = ∑t = 1
K πtgt α⊤X = 0, which is a 

sufficient condition for orthogonality between the SIMML, gT (α⊤X), and the unspecified 

main effect, μ(X) in (15), as in [27]. Optimization of model (15) can be achieved by 

constrained least squares under this orthogonality constraint and A-learning can be 

employed for estimating an optimal treatment decision rule, focusing on estimating the 

interactions in the presence of the unspecified main effect μ(X). The technicalities of this 

adjustment are treated in a separate work.
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Appendix A.: The asymptotic covariance matrix in Theorem 2

Define Rt(α) = EY , X |T = t Y − gt α⊤X 2, t ∈ {1, …, K}. In Theorem 2, the asymptotic 

covariance matrix is given as Σα0, − p = Hα0, − p
−1 Wα0, − pHα0, − p

−1 . Here, the Hessian matrix 

Hα0, − p = Hj, q j, q = 1
p − 1  evaluated at α−p = α0,−p has its (j, q)th element given by

Hj, q = ∑
t = 1

K
πt

∂2

∂αj∂αq
Rt(α) − αj

αp
∂2

∂αp∂αq
Rt(α) − αq

αp
∂2

∂αp∂αj
Rt(α)

− αjαq
αp3

∂
∂αp

Rt(α) + αjαq
αp2

∂2

∂αp2
Rt(α)] α = α0 .

(A.1)

The matrix Hα0, − p = Hj, q j, q = 1
p − 1  evaluated at α−p = α0,−p has its (j, q)th element given by

W j, q = ∑
t = 1

K
πtEY , X T = t 2 gt uα − Y ∂

∂αj
gt uα − αj

αp
∂

∂αp
gt uα + ∂

∂αj
Rt(α

) − αj
αp

∂
∂αp

Rt(α) × 2 gt uα − Y ∂
∂αq

gt uα − αq
αp

∂
∂αp

gt uα + ∂
∂αq

Rt(α)

− αq
αp

∂
∂αp

Rt(α) ) α = α0

(A.2)

where uα = α⊤X.

Appendix B.: Proof

Appendix B.1. Proof of Theorem 1

Proof. Let us write Qt(α) = Y t − Sα, tY t
2/nt and Q(α) = ∑t = 1

K ntQt(α)/n. Under 

Assumptions 2–4, by the results from A.14 of [28], we have

sup
α ∈ Θc

Qt(α) − Rt(α) ≤ O nt−1/2ℎt−1/2lognt
2 + ℎt4

2 + O nt−1/2logntℎt−1/2 + ℎ4

almost surely, where ℎt = 1
Nt + 1  is the distance between knot points, and Nt (note, Nt = dt − 

4) is the number of interior knots on [0, 1]. Since we choose Nt such that 

nt1/6 ≪ Nt ≪ nt1/5 log nt
−(2/5) for all t ∈ {1, …, K}, under Assumption 5,

sup
α ∈ Θe

|Qt(α) − Rt(α) 0 t ∈ 1, …, K ,

almost surely. By the continuous mapping theorem,

sup
α ∈ Θc

∑
t = 1

K nt
n Qt(α) − ∑

t = 1

K
πtRt(α) ≤ sup

α ∈ Θc
∑

t = 1

K nt
n Qt(α) − πtRt(α) 0
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almost surely, therefore, we have

sup
α ∈ Θc

Q(α) − R(α) 0,
(B.1)

almost surely. Denote by (Ω, ℱ, P) the probability space on which all Y i, Ti, Xi
⊤

i = 1
∞

 are 

defined. By (B.1), for any δ > 0, ω ∈ Ω, there is an integer n*(ω), such that Q(α0, ω) − 

R(α0) < δ/2, whenever n > n*(ω). Since α(ω) is the minimizer of Q(α, ω), we have 

Q(α(ω), ω) − R α0 < δ/2. Also, by (B.1), there exists an integer n**(ω), such that 

R(α(ω), ω) − Q(α(ω), ω) < δ/2, whenever n > n**(ω). Therefore, whenever n > max(n*(ω), 

n**(ω)), we have R(α(ω), ω) − R α0 < δ. The strong consistency α α0 follows from the 

local convexity of Assumption 1. □

Appendix B.2. Proof of Theorem 2

Proof. We first derive the expression (A.1) from the Appendix for the Hessian matrix. We 

can write R α−p = ∑t = 1
K πtRt α−p , where the “pth component removed” function 

corresponding to the tth treatment is Rt α−p = Rt α1, …, αp − 1, 1 − α1
2 + ⋯ + αp − 1

2 . 

Applying the chain rule for taking the derivative of Rt(α−p) with respect to αj, we obtain

∂
∂αj

Rt α−p = ∂
∂αj

Rt(α) − αj
αp

∂
∂αp

Rt(α) (B.2)

for each j ∈ {1, …, p – 1}. Taking another derivative of (B.2) with respect to αq, for each q 
∈ {1, …, p – 1}, again by applications of the chain rule,

∂2

∂αq ∂αj
Rt α−p = ∂2

∂αq ∂αj
Rt(α) − αq

αp
∂2

∂αp∂αj
Rt(α) − αj

αp
∂2

∂αq ∂αp
Rt(α)

− ∂
∂αq

αj
αp

∂
∂αp

Rt(α) + αqαj
αp2

∂2

∂αp∂αp
Rt(α) .

(B.3)

After summing (B.3) over the groups t ∈ {1, …, K}, weighted by the group probabilities π1, 

…, πK, evaluated at α = α0, we obtain (A.1).

Next, we examine the asymptotics of the profile estimator α. From A.15 of [28] and under 

Assumptions 2–5, we have

sup
α ∈ Θc

sup
1 ≤ j ≤ p

∂
∂αj

Qt(α) − Rt(α) − 1
nt

∑
i = 1

nt
ξα, i, j, t = o nt−1/2 (B.4)

almost surely, with ξα, i, j, t = 2 gt uα, ti − Y ti
∂

∂αj
gt uα, ti − ∂

∂αj
Rt(α), where uα,ti = α⊤Xti and 

furthermore
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sup
α ∈ Θc

sup
1 ≤ j ≤ p

∂
∂αj

Qt(α) − Rt(α) = o(1),

sup
α ∈ Θc

sup
1 ≤ q, j ≤ p

∂2

∂αq ∂αj
Qt(α) − Rt(α) = o(1),

(B.5)

almost surely, for each group t ∈ {1, …, K}.

Now, we will prove that the estimated score of Q α−p = ∑t = 1
K πtQt α−p , where 

πt = ∑i = 1
n I Ti = t /n, evaluated at α−p = α0,−p, is represented up to o(n−1/2) almost surely, 

by a sum of mean-zero independent random variables, which we denote by 

ηi ∈ ℝp − 1, i ∈ 1, …, n , i ∈ {1, …, n} where n = ∑t = 1
K nt. Let us denote the estimated score 

function by Ψ α−p = ∂
∂α−p⊤ Q α−p , where α−p ∈ ℝp − 1. We will show

sup
1 ≤ j ≤ p − 1

Ψj α0, − p − 1
n ∑

i = 1

n
ηi, j = o n−1/2 , (B.6)

almost surely, where Ψj α−p ∈ ℝ is the jth component of the score function Ψ α−p  and 

ηi, j ∈ ℝ is the jth component of the random variable ηi. In order to employ the result (B.4), 

we first consider the score function defined on the set Θc, i.e., the score function Ψj(α), 

instead of the “pth component removed” score function defined on ℝp − 1, i.e., Ψj α−p . We 

will show that, for some mean-zero independent random variables, which we denote by 

ξα, i, j* , i ∈ 1, …, n , i ∈ {1, …, n}, j ∈ {1, …, p},

sup
α ∈ Θc1 ≤ j ≤ p

∂
∂αj

{Q(α) − R(α)} − 1
n ∑

i = 1

n
ξα, i, j* = o n−1/2 (B.7)

is satisfied almost surely. Let us set the desired mean-zero independent random variable 

ξα, i, j*  to be ξα, i, j* = ∑t = 1
K ξα, i, j, t* , where

ξα, i, j, t* = 2 gt α⊤Xi − Yi
∂

∂αj
gt α⊤Xi − ∂

∂αj
Rt(α) I Ti = t ,

which must satisfy the following:

sup
α ∈ Θc1 ≤ j ≤ p

∑
t = 1

K
πt

∂
∂αj

Qt(α) − ∂
∂αj

Rt(α) − 1
n ∑

i = 1

n
∑
t = 1

K
ξα, i, j, t* = o n−1/2 . (B.8)

We can write
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∑
t = 1

K
πt

∂
∂αj

Qt(α) − ∂
∂αj

Rt(α) − 1
n ∑

t = 1

K
∑

i = 1

n
ξα, i, j, t*

= ∑
t = 1

K
πt

∂
∂αj

Qt(α) − ∂
∂αj

Rt(α) − 1
πt

nt
n

1
nt ∑

i = 1

nt
ξα, i, j, t ,

where ξα,i,j,t is defined in (B.4). Therefore, applying the continuous mapping theorem and 

Slutsky’s theorem to (B.4) leads to the desired result (B.8).

Next, we will show (B.6), the result corresponding to the “pth component removed” 

estimated score function, Ψ α−p  on ℝp − 1. Considering the linear operator ∂
∂αj

−
αj
αp

∂
∂αp

, we 

note that by the chain rule,

∂
∂αj

−
αj
αp

∂
∂αp

{Q(α) − Q(α)} = Ψj α−p − Ψj α−p ,

for j ∈ {1, …, p−1}, where Ψj(α−p) denotes the jth component of the gradient of R(α−p). If 

we set the approximation variable ηi,j of (B.6) to be

ηi, j = ξα, i, j* − αj
αp

ξα, i, p*

= ∑
t = 1

K
2 gt α⊤Xi − Y i

∂
∂αj

gt α⊤Xi − αj
αp

∂
∂αp

gt α⊤Xi

+ ∂
∂αj

Rt(α) − αj
αp

∂
∂αp

Rt(α)]I T i = t ,

(B.9)

then we can show

sup
α ∈ Θc

sup
1 ≤ j ≤ p − 1

∂
∂αj

− αj
αp

∂
∂αp

{Q(α) − R(α)} − 1
n ∑

i = 1

n
ηi, j

≤ sup
α ∈ Θc

sup
1 ≤ j ≤ p − 1

∂
∂αj

(Q(α) − R(α)) − 1
n ∑

i = 1

n
ξα, i, j*

+ sup
α ∈ Θc

αj
αp

∂
∂αp

(Q(α) − R(α)) − 1
n ∑

i = 1

n
ξα, i, p* = o n−1/2 ,

(B.10)

by the triangle inequality and the result of (B.7). Since Ψj(α−p) is evaluated at the minimum 

α0,−p, we have

Ψj α0, − p = ∂
∂αj

− αj
αp

∂
∂αp

Q(α)
α = α0

= 0, (B.11)

by the local convexity under Assumption 1. Then we obtain the desired result of (B.6), by 

(B.10) and (B.11).
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The uniform consistency of the observed Hessian, H(α) = ∂2

∂α−p∂α−n⊤ Q α−p , to the 

population Hessian H(α−p) of (A.1) follows directly from the results of (B.5) under 

Assumptions 2–5, with applications of the continuous mapping theorem.

Finally, we prove the main result. Consider the random variable Ψj α0, − p  introduced in 

(B.6), and the following parametrization: for each component j ∈ {1, …, p – 1}

fj(s) = Ψj sα−p + (1 − s)α0, − p , s ∈ [0, 1] .

Taking the derivative with respect to t, we have by the chain rule

d
dtfj(s) = ∑

m = 1

p − 1 ∂
∂αm

Ψj sα−p + (1 − s)α0, − p αm − α0, m .

Since Ψj α−p = 0 by the definition of α−p, it follows that 

fj(1) − fj(0) = Ψj α−p − Ψj α0, − p = − Ψj α0, − p . Therefore, for any particular j = 1, …, 

p−1, there exists sj* ∈ [0, 1] by the mean value theorem, such that

−Ψj α0, − p = ∂
∂α1

Ψj sj*α−p + 1 − sj* α0, − p ,

…, ∂
∂αp − 1

Ψj sj*α−p + 1 − sj* α0, − p ] α−p − α0, − p ,

which is just

∂2

∂α1∂αj
Q sj*α−p + 1 − sj* α0, − p ,

…, ∂2

∂αp − 1∂αj
Q sj*α−p + 1 − sj* α0, − p ] α−p − α0, − p ,

(B.12)

where α−p − α0, − p  is a p − 1 dimensional random vector. Writing (B.12) in matrix 

notation, we have

−Ψ α0, − p = ∂2

∂αq ∂αj
Q sj*α−p + 1 − sj* α0, − p

j, q = 1

p − 1
α−p − α0, − p . (B.13)

Then, by (B.13) one can write

n α−p − α0, − p = − ∂2

∂αq ∂αj
Q sj*α−p + 1 − sj* α0, − p

j, q = 1

p − 1 −1
nΨ

α0, − p .
(B.14)

Meanwhile, by (B.6), for each component j ∈ {1, …, p−1} of Ψ α0, − p , we can write
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Ψj α0, − p = 1
n ∑

i = 1

n
ηi, j + o n−1/2 , (B.15)

almost surely with E ηi, j = 0. The variance-covariance matrix of the random vector 

ηi = ηi, 1, …, ηi, p − 1
⊤ ∈ ℝp − 1 evaluated at α−p = α0,−p, where ηi,j are specified in (B.9), is 

given in (A.2), where it is denoted by Wα0,−p. From (B.15), the central limit theorem ensures 

that nΨ α0, − p N 0, W α0, − p  in distribution. Now, by the representation of (B.14) 

together with an application of Slutsky’s theorem on the observed Hessian, we obtain 

n α0, − p − α0, − p N 0, Σα0, − p  in distribution, where 

Σα0, − p = Hα0, − p
−1 W α0, − pHα0, − p

−1 , which is the desired result of Theorem 2. □

Appendix C.: Table for Section 5.2 Coverage probability of asymptotic 95% 

confidence intervals

Table C.2:

The proportion of time (“Coverage”) that the asymptotic 95% confidence interval contains 

the true value of αj, j ∈ {1, …, 5}, for varying ω ∈ {0, 0.5, 1}, corresponding to linear, 
moderately nonlinear, and highly nonlinear contrasts, respectively, with varying n(= n1 + n2, 

where n1 = n2).

ω = 0 (linear) ω = 0.5 (moderate nonlinear) ω =1 (highly nonlinear)

n α1 α2 α3 α4 α5 α1 α2 α3 α4 α5 α1 α2 α3 α4 α5

50 0.36 0.45 0.43 0.44 0.42 0.49 0.46 0.45 0.46 0.40 0.59 0.58 0.57 0.55 0.52

100 0.64 0.67 0.72 0.68 0.64 0.76 0.75 0.80 0.72 0.76 0.89 0.82 0.84 0.75 0.73

200 0.77 0.77 0.79 0.78 0.73 0.88 0.83 0.82 0.85 0.79 0.92 0.88 0.84 0.78 0.81

400 0.85 0.90 0.87 0.87 0.85 0.88 0.88 0.88 0.82 0.85 0.95 0.88 0.84 0.79 0.78

800 0.95 0.92 0.91 0.89 0.88 0.92 0.89 0.92 0.89 0.87 0.92 0.91 0.83 0.78 0.81

1600 0.93 0.93 0.92 0.93 0.92 0.94 0.94 0.91 0.93 0.91 0.93 0.90 0.87 0.84 0.81

3200 0.94 0.95 0.94 0.94 0.94 0.96 0.94 0.90 0.92 0.90 0.93 0.92 0.87 0.90 0.85
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Figure 1: 
The first panel shows the linear contrast Ct’s (ω = 0), the second panel the moderately 
nonlinear contrast Ct’s (ω = 0.5), and the third panel displays highly nonlinear contrast Ct’s 

(ω = 1). Data points are generated from model (11) with δ = 0 and p = 5. The fourth and the 

fifth panels show the linear (ν = 0) and the nonlinear main effect M (ν = 1), respectively.

Park et al. Page 19

J Stat Plan Inference. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Boxplots of the proportion of correct decisions (PCD) of the treatment decision rules 

obtained from 200 training datasets for each of the four methods. Each panel corresponds to 

one of the six combinations of ω ∈ {0, 0.5, 1} and ν ∈ {0, 1}: the shape of the contrast 

functions Ct’s controlled by ω; the shape of the main effect function M controlled by ν; the 

number of predictors p ∈ {5, 10}. The sample sizes are n1 = n2 = 40.
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Figure 3: Depression randomized clinical trial:
For each of the 9 baseline covariates individually, treatment-specific spline approximated 

regression curves with 5 basis functions are overlaid on to the data points; the placebo group 

is the blue solid curve and the active drug group is the red dotted curve. The associated 95% 

confidence bands of the regression curves were also plotted.
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Figure 4: Depression randomized clinical trial:
Pair of estimated link functions (g1 and g2) obtained from SIMML with the “main effect 

adjusted” profile likelihood (first panel), SIMML with the (main effect un-adjusted) profile 

likelihood (second panel), and the linear GEM model estimated under the criterion 

maximizing the difference in the linear regression slopes (third panel), respectively, for the 

placebo group (blue solid curves) and the active drug group (red dotted curves). The 95% 

confidence bands were constructed conditioning on the single-index coefficient α. For each 

treatment group, the observed outcomes are plotted against the estimated single-index.
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Figure 5: Depression randomized clinical trial:
Top panel: Violin plots of the estimated values of treatment decision rules based on each of 

the individual covariates x1, …, x9, determined from univariate nonparametric and linear 

regressions, respectively, obtained from 500 randomly split testing sets (with higher values 

preferred). Bottom panel: The estimated index coefficients α1, …, α9, associated with the 

covariates x1, …, x9, and the 95% confidence intervals for each of the three methods, 

obtained from BCa bootstrap with 500 replications. An estimated significant coefficient is 

marked with * on top of each confidence interval.
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Figure 6: Depression randomized clinical trial:
Boxplots of the estimated values of treatment decision rules, obtained from the 500 

randomly split testing sets (higher values are preferred). The estimated values (and the 

standard deviations) are given as follow. SIMML*: 9.34(2.68); SIMML: 8.72 (2.68); K-

Index: 8.04 (2.69); K-LR: 8.36 (2.69); linear GEM (linGEM):8.22 (2.67); All placebo 

(PBO): 6.17 (2.63); All drug (DRG): 7.57 (2.67).
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Table 1:
Depression randomized clinical trial:

Description of the p = 9 baseline covariates (means and SDs); the estimated values (“Indiv. Value”) of 

treatment decision rules from each individual covariate, using either the B-spline regression (“Nonpar.”, in the 

third column) or the linear regression (“Linear”, in the fourth column); the estimated single-index coefficients 

(in the last three columns), and the values of the associated treatment decision rules from the three methods (in 

the bottom row).

(Label) Baseline Mean Indiv. Value Coefficients αj’s, j ∈ {1, …, 9}

patient characteristics (SD) Nonpar. Linear SIMML* SIMML linGEM

(xi) Age at evaluation 38.00 (13.84) 8.56 8.24 −0.53 −0.50 −0.43

(x2) Severity of depression 18.80 (4.29) 6.85 7.07 −0.07 −0.13 −0.37

(х3) Dur. MDD (month) 38.19 (53.17) 7.42 7.33 0.08 −0.18 0.20

(x4) Age at MDD 16.46 (6.09) 6.29 6.95 0.23 0.05 0.31

(x5) Axis II 3.92 (1.43) 7.16 7.11 0.23 0.20 0.17

(x6) Word Fluency 37.42 (11.68) 7.64 7.11 0.11 0.09 0.27

(x7) Flanker RT 59.51 (26.63) 8.19 8.39 0.12 0.23 −0.18

(x8) Post-conflict adjus. 0.07 (0.12) 6.73 7.23 −0.30 −0.29 −0.18

(x9) Flanker Accuracy 0.22 (0.15) 7.89 8.37 0.70 0.70 0.59

Value from single-index model 9.34 8.72 8.22
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