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ABSTRACT
Development of female flowers is an important process that directly affects the yield
of Cucubits. Little information is available on the sex determination and development
of female flowers in pumpkin, a typical monoecious plant. In the present study, we
used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the
differentially expressed genes (DEGs) to gain insights into the molecular mechanism
underlying pistil development in pumpkin. A total of 3,817 DEGs were identified,
among which 1,341 were upregulated and 2,476 were downregulated. The results
of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG
enrichment analysis showed that theDEGswere significantly enriched in plant hormone
signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs
were enriched in the plant hormone signal transduction pathway, which accounted for
12.54% of the significant DEGs, andmost of themwere annotated as predicted ethylene
responsive or insensitive transcription factor genes. Furthermore, the expression levels
of four ethylene signal transduction genes in different flower structures (female calyx,
pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive
DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10,
showed the highest expression in pistils and the lowest expression in stamens, and their
expression levels were 78- and 162-times more than that in stamens, respectively. These
results suggest that plant hormone signal transduction genes, especially ethylene signal
transduction genes, play an important role in the development of pistils in pumpkin.
Our study provides a theoretical basis for further understanding of the mechanism
of regulation of ethylene signal transduction genes in pistil development and sex
determination in pumpkin.

Subjects Agricultural Science, Bioinformatics, Plant Science
Keywords Pumpkin, Pistil development, Transcriptome, Ethylene, Plant hormone signal
transduction, Phenylpropanoid

INTRODUCTION
Pumpkin (Cucurbita moschata Duch.) is a typical monoecious plant with distinct male
and female flowers. The number and proportion of female flowers can directly influence
yields and economic benefits of Cucurbitaceae crops. The pistil is the main characteristic
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structure of female flowers. It is well established that ethylene promotes pistil and female
flower development. Application of ethylene, or inhibition of ethylene action, increases
or decreases the number of pistil-bearing buds (Papadopoulou et al., 2005). Ethylene
promotes carpel development and arrests stamen development in female flower (Chen et
al., 2016). Treatment with exogenous ethylene or ethylene releasing reagents can increase
the numbers of female and bisexual flowers in monoecious and andromonoecious lines,
respectively (Iwahori, Lyons & Sims, 1969;Malepszy & Niemirowicz-Szczytt, 1991;Manzano
et al., 2011). Auxin response factors (ARFs), an important component in auxin signalling
pathway, especially the ARF13 and ARF17 genes are essential for pistil development in
Japanese apricot (Song et al., 2015). The development of female flowers is inseparable from
sex differentiation in Cucurbitaceae crops.

A number of studies have found that the floral development and sex expression in
Cucurbitaceae crops can be affected by multiple phytohormones, including ethylene,
auxin, cytokinin, gibberellin, abscisic acid, brassinosteroid, jasmonic acid, and salicylic
acid (Rudich & Halevy, 1974; Trebitsh, Rudich & Riov, 1987; Yamasaki, Fujii & Takahashi,
2003; Menéndez et al., 2009; Pimenta Lange & Lange, 2016; Mao et al., 2017; Zhang et al.,
2017). Ethylene might be the major hormone in sex determination. In cucumber, sex
differentiation is mainly determined by the F (CsACS1G),M (CsACS2), and A (CsACS11)
genes. The F,M, and A genes encode 1-aminocyclopropane-1-carboxylate (ACC) synthase
(ACS), which is a key rate-limiting enzyme in ethylene biosynthetic pathway (Pierce &
Wehner, 1990; Pan et al., 2018). Among these, the F gene promotes the development of
female flowers (Mibus & Tatlioglu, 2004; Knopf & Trebitsh, 2006), and theM gene inhibits
the development of stamens (Yamasaki et al., 2001; Saito et al., 2007). The CsACS11 (A)
is an androecious gene, and mutants with loss of CsACS11 function were found to be
androecious, with no female flowers (Boualem et al., 2015). The ACC oxidase gene (ACO),
another key gene in ethylene biosynthesis, is also essential for the development of female
flowers. A transcription factor gene, CsWIP1, could directly bind the promoter of CsACO2

to repress its expression (Chen et al., 2016). In melon, sex determination is governed by the
genes, andromonoecious (a) and gynoecious (g). CmACS-7 is the andromonoecious gene
(Boualem et al., 2008). CmACS11 controls the development of female flowers in melon
and its function is not exactly the same as of CsACS11. CmWIP1, the ortholog of CsWIP1,
can negatively regulate the femaleness and gynoecious plants are obtained when there is
a loss of function of CmWIP1. The expression patterns of CmWIP1 and CmACS11 are
opposite in melon. CmACS11 can repress the expression of CmWIP1 at an upstream step
in the sex determination pathway to control flower development. Ethylene could inhibite
stamen development through CmACS-7 and CmACS11 (Boualem et al., 2015). Thus, the
sex differentiation and floral development in melon could be a result of the interaction
among CmACS11, CmWIP1, and CmACS-7.

Besides the genes involved in ethylene biosynthesis, those involved in ethylene signal
transduction have also been implicated in the development of female flowers in cucumber.
Previous studies have revealed that there existed organ-specific DNA damage in primordial
anther of female flowers and that the DNA damage was induced via the ethylene signaling
pathway. The ethylene-receptor gene, CsETR1, located in the pistil primordia has also
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been involved in the arrest of stamen development through induction of DNA damage
in female flowers (Hao et al., 2003; Yamasaki, Fujii & Takahashi, 2003; Duan et al., 2008;
Wang et al., 2010). It can be bound and activated by CsAP3 in vitro and in vivo (Sun et al.,
2016). Moreover, the expressions of CS-ETR2 and CS-ERS were reported to be regulated
by ethylene, because their mRNAs were significantly elevated by the application of ethrel
and their levels were lowered by the application of an ethylene inhibitor, aminoethoxyvinyl
glycine (Yamasaki, Fujii & Takahashi, 2000). Thus, not only the genes involved in ethylene
synthesis, those involved in ethylene-mediated signal transduction contribute to the
development of female flowers. However, the evidence for how the ethylene signal
transduction genes regulate the development of female flowers is still weak.

Besides ethylene, other phytohormones are also involved in the development of female
and male flowers. Gibberellins (GA) can promote the male tendency. Its production in
andromonoecious cucumber is higher than that in monoecious and gynoecious cucumber
(Hemphill, Baker & Sell, 1972). A recent report indicated that GA could regulate sex
expression via ethylene-dependent and ethylene-independent pathways (Zhang et al.,
2017). The application of indole-3-acetic acid (IAA), except for the Beta -Alfa type, could
enhance ethylene and ACC production (Trebitsh, Rudich & Riov, 1987). Cytokinins are
possibly involved in determining the morphological differences between sex types. The
endogenous levels of the cytokinins were found to be higher in female gametophytes
than in male gametophytes (Menéndez et al., 2009). Abscisic acid could promote the
female tendency of gynoecious plants. It participates in the sex regulation by inhibiting
the GA activity of cucumber (Rudich & Halevy, 1974). Jasmonic acid signaling also plays
an important role in flower development in plants, especially in stamen sterility, sex
determination, female flower development, and seed maturation (Yuan & Zhang, 2015;
Mao et al., 2017).

As evident from the above studies, floral development and sex differentiation is a result
of the interaction of various plant hormones and ethylene apparently plays a key role in
these processes. However, little is known about how the plant hormone signal transduction
genes are involved in female andmale flower development. Herein, to explore the key genes
involved in the development of pistils, the aborted and normal pistils of pumpkin were
used for RNA-Seq analysis. The results showed that plant hormone signal transduction
genes, especially ethylene related genes, play important roles in the development of pistils
in pumpkin. Fourteen DEGs, which were mostly annotated as plant hormone signal
transduction genes, were chosen for qRT-PCR verification. Furthermore, four ethylene
signal transduction genes were appealing candidates for investigation of their expression in
different flower structures. Our results provide a foundation for dissecting the molecular
mechanism of regulation of pistil formation in pumpkin by the candidate genes, identified
herein.

MATERIAL AND METHODS
Plant materials
The aborted plants were from the same inbred line as the normal plants and exhibited
similar plant characters except for the female development. The seeds of pumpkin were
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Figure 1 The aborted and normal pistils and differentially expressed genes (DEGs) that were signif-
icantly upregulated and downregulated between the aborted and normal pistils of pumpkin. (A) The
aborted and normal pistils (bars= 1 cm). (B) The number of upregulated and downregulated DEGs. (C)
Volcano map for the gene expression. The |log2 (fold change)| > 1 and FDR <0.05 were used as the cut-
offs for significance.

Full-size DOI: 10.7717/peerj.9677/fig-1

sterilized with hot water (55 ◦C) for approximately 15 min, and then soaked in water for
4 h. The seeds were germinated on a wet filter paper in a Petri dish at 28 ◦C in the dark.
When at least 80% of the seeds had germinated, they were transferred into a substrate
mixture of peat, vermiculite, and perlite (3:1:0.5, v/v) and grown in an artificial climate
room under conditions of 14-h light/10-h dark and day/night temperatures of 25 ◦C/18 ◦C.
When the seedlings had developed three true leaves, they were transplanted to a field and
grown under the natural environment. At flower development period, the aborted female
flowers exhibited different from those of the normal plants. When the length of corolla
of flower bud was less than five mm, there was no difference between the aborted female
flower and the normal one. As the buds grow bigger, in aborted pistils the incomplete
stigma can be seen when the corolla is peeled off, and ovary looks thinner than in normal
pistils, which is as shown in Fig. 1A. Thus, the aborted and normal pistils, which were come
from the female flower buds with five mm length of corolla and located in the shoot apices,
were used for RNA-Seq analysis and for the validation of gene expression. Moreover, leaf,
female calyx, pistil, ovary, male calyx, and stamen from the male and female flowers of the
same plants, were used to detect the expression of the candidate genes in different floral
structures. All the samples were immediately frozen in liquid nitrogen and stored at −80 ◦

C for further experiments.

RNA isolation
Total RNA was extracted using the TrizolTM reagent (Invitrogen, Carlsbad, CA, USA), as
described by the manufacturer. DNase I was then used to remove DNA contamination
in the RNA preparations. The purity and integrity of RNA samples were evaluated by
electrophoresis on 1% RNase-free agarose gels, spectrophotometry (A260/A280 and
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A260/A230) on NanoDrop DU8000, and analysis using the Agilent 2100 Bioanalyzer
system (Agilent, USA).

Construction and sequencing of cDNA libraries
The NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ispawich,
USA) was used for mRNA fragmentation. In brief, poly (A) mRNA was extracted from
total RNA using oligo-dT magnetic beads, and further fragmented. First strand cDNA was
synthesized using random hexamer primers and reverse transcriptase. Second strand cDNA
was synthesized using dNTPs, DNA polymerase I, RNase H, and the first strand. To select
the fragments that were preferentially 150–200 bp in length, the cDNA fragments were
purified with an AMPure XP system (Beckman Coulter, USA). The high-quality libraries
were then sequenced on the Illumina HiSeq 4000 platform by Sagene Co. (Guangzhou,
China). The libraries of two biological replicates of aborted and normal pistils were
prepared independently. The raw transcriptome data were deposited in the National
Center for Biotechnology Information Sequence Read Archive under BioProject number
PRJNA554766.

Bioinformatics analysis of differentially expressed genes (DEGs) data
The raw reads were pre-processed by removing the adaptor sequences, low-quality reads
(more than 50% bases with SQ ≤20 in one sequence), and reads with more than 5% N
bases (bases unknown). The clean reads were mapped to the Cucurbita moschata genome
(http://cucurbitgenomics.org/organism/9) using TopHat2 v2.1.1 (Trapnell et al., 2012;
Kim et al., 2013; Sun et al., 2017), allowing up to two mismatch. Functional annotation
was performed by searching against the non redundant (NR), Swiss–Prot and clusters of
orthologous groups for eukaryotic complete genomes (KOG) databases using BLAST with
an E-value of 1e−5. The R package edgeR was used to identify the DEGs using raw read
counts as input data (Robinson, McCarthy & Smyth, 2010). P-values were adjusted using
Benjamini and Hochberg’s method to control the false discovery rate (FDR) (Benjamini
& Hochberg, 1995). The |log2 (fold change)|> 1 and adjusted P-value < 0.05 for multiple
tests using the Benjamini method were used as significance cut-offs for the expression
differences.

Functional enrichment analysis for DEGs
Gene functional enrichment analysis of DEGs was implemented using the GOSeq R
package (Young et al., 2010). GO terms included cellular component, molecular function,
and biological process. After the hypergeometric test, Bonferroni correction was employed
for P-value correction with a cut-off of 0.05. The GO terms satisfying the condition were
considered significantly enriched by DEGs. Furthermore, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was performed. KEGG is the main public
database of pathways. FDR control method was used to identify the threshold of the
P-value in multiple tests (Benjamini & Hochberg, 1995). Pathways with their Benjamini
and Hochberg adjusted P-values ≤0.05 were defined as significantly enriched by DEGs
(Mao et al., 2005; Kanehisa et al., 2014). Using significant enrichment of pathways, the
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Table 1 Statistical results of reads mapped to reference genome and expressed genes in different li-
braries.

Sample Total pair
reads

Mapped pair
reads (Ratio)

Known
gene num

Novel
gene num

A2 55729080 49972699(89.67%) 26128 386
A4 65402194 58874465(90.02%) 26463 386
N2 58025908 51001759(87.89%) 26559 381
N4 56371344 50670138(89.89%) 25914 372

major biochemical metabolic pathways and signal transduction pathways involving DEGs
can be determined.

Quantitative real-time RT-PCR
RNAextraction and detectionwere done as described above. cDNA synthesis was conducted
using the PrimeScriptTM RT Master Mix (Perfect Real Time) Reagent Kit (Takara, Dalian,
China), according to the manufacturer’s instructions. The gene primers used in the
quantitative real-time RT-PCR (qRT-PCR) experiment are listed in Table S1. ACTIN was
used as an internal control. The qRT-PCR system was consisted of 10 µL SYBR Premix
Ex TaqTM II, 0.8 µL each primer (10 µM), 2 µL diluted cDNA (150 ng), and 6.4 µL
nuclease-free water. The qRT-PCR reactions were performed in three biological replicates.
The qRT-PCR was carried out using a Bio-Rad IQ5 instrument (Foster City, CA, USA),
with the following conditions: 1 cycle of 95 ◦C for 40 s, 40 cycles of 95 ◦C for 5 s and
61 ◦C for 30 s. The relative expression levels were calculated using the 2−11Ct method
(Livak & SchmittgenT, 2001). To verify the RNA-Seq data, the correlation analysis and the
Pearson correlation coefficient between log2 (fold change) of RNA-Seq and qRT-PCR was
calculated using the IBM SPSS statistics 22 software.

RESULTS
Summary of the sequencing data
After filtering, 5.62, 6.60, 5.86, and 5.72 million high quality clean reads for aborted (A2,
A4) and normal (N2, N4) pistils were obtained. Among these high quality clean reads,
the percentages of Q20 were 97.46%, 97.58%, 96.61%, and 97.45%, respectively, and the
percentage of GC were 45.55%, 45.49%, 45.77%, and 45.81%, respectively. The total pair
reads, mapped pair reads (ratio) of these libraries according to the Cucurbita moschata
genome, known gene number, and number of novel genes were as shown in Table 1. Finally,
3,817 DEGs were identified, including 1,341 up-regulated and 2,476 down-regulated genes,
in the aborted pistils compared with the normal pistils (Figs. 1B, 1C, Table S2).

GO enrichment analysis
The DEGs were enriched in cellular component, molecular function, and biological process
groups. A total of 749DEGs were categorized into biological process category, whichmainly
included metabolic process (213 up-regulated, 345 down-regulated), cellular process (179
up-regulated, 307 down-regulated), and single-organism process (151 up-regulated,
235 down-regulated) (Fig. 2). Among these, the most significantly enriched GO terms
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Figure 2 Gene ontology (GO) categories of differentially expressed genes (DEGs) between the aborted
and normal pistils.

Full-size DOI: 10.7717/peerj.9677/fig-2

included single-organism metabolic process (256, P = 9.21E−12), hydrogen peroxide
metabolic process (16, P = 7.80E−07), phenylpropanoid metabolic process (10, P = 4.34
E−04), and carbohydrate metabolic process (49, P = 4.41E−04). 580 DEGs were divided
into the cellular component category, and they mainly enriched in membrane (140 up-
regulated, 260 down-regulated), membrane part (111 up-regulated, 188 down-regulated),
and cell (94 up-regulated, 146 down-regulated) terms (Fig. 2). The most significantly
enriched GO terms in the cellular component category included extracellular region (19,
P = 5.01E−05), membrane (400, P = 3.94E−04), photosystem II (6, P = 5.37E−03), and
external encapsulating structure (23, P = 9.34E−03). A total of 762 DEGs were divided
into molecular function, which mainly enriched in the catalytic activity (205 up-regulated,
362 down-regulated), binding (178 up-regulated, 235 down-regulated), and transporter
activity (26 up-regulated, 35 down-regulated). The most significantly enriched GO terms
in the molecular function category included oxidoreductase activity (152, P = 1.47E−17),
tetrapyrrole binding (56, P = 1.69E−12), ion binding (186, P = 6.80E−05), and cation
binding (167, P = 1.96E−04) (Fig. 2). On the whole, in cellular component, molecular
function, and biological process groups, the down-regulated genes were all more than
up-regulated ones.

Plant hormone signal transduction and phenylpropanoid
biosynthesis involved in pistil development in pumpkin
The KEGG pathway enrichment analysis indicated that the DEGs were significantly
enriched in the following pathways: phenylpropanoid biosynthesis, plant hormone signal
transduction, phenylalanine metabolism, tryptophanmetabolism, linoleic acid metabolism
(Fig. 3). It showed that 84 DEGs were enriched in the plant hormone signal transduction
pathway (Table S3), which accounted for 12.54% of all the pathway annotated DEGs. The
plant hormones involved in this pathway included ethylene, auxin, cytokinin, gibberellin,
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Figure 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of differentially ex-
pressed genes (DEGs) between the aborted and normal pistils.Ggplot2 package for R language was used
to generate this figure. The bigger the bubble, the more the DEGs. The smaller the pvalue, the more signif-
icant the KEGG enrichment. Rich Factor represents the ratio of DEGs number in the pathway to the total
number of genes in the pathway. The larger the RichFactor, the higher the enrichment.

Full-size DOI: 10.7717/peerj.9677/fig-3

Table 2 List of PAL in the significant DEGs.

Gene ID Gene annotation Fold
change

FDR

CmoCh03G012270 PREDICTED: phenylalanine ammonia-lyase-like
[Cucumis melo ]

0.439562 3.20E−05

CmoCh03G012290 PREDICTED: phenylalanine ammonia-lyase-like
[Cucumis melo ]

0.343162 1.13E−28

CmoCh07G009470 phenylalanine ammonia-lyase 3 [Luffa aegyptiaca ] 0.458279 4.76E−08
CmoCh07G009540 phenylalanine ammonia-lyase 3 [Luffa aegyptiaca ] 0.077247 1.86E−26
CmoCh07G009550 phenylalanine ammonia-lyase 3 [Luffa aegyptiaca ] 0.209537 1.47E−13
CmoCh07G009560 PREDICTED: phenylalanine ammonia-lyase-like

[Cucumis melo ]
0.368197 4.93E−05

CmoCh20G005320 phenylalanine ammonia-lyase 4 [Luffa aegyptiaca ] 2.000495 0
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abscisic acid, brassinosteroid, jasmonic acid, and salicylic acid. Most of DEGs enriched in
the plant hormone signal transduction pathway were annotated as predicated ethylene-
responsive transcription factor, ethylene insensitive transcription factor, and ethylene
receptor genes in NCBI blast and Cucurbita moschata genome (Table S4, Fig. S1). In
addition, we found that 68 DEGs were enriched in phenylpropanoid biosynthesis (Table
S5), which accounted for 10.15% of all the pathway annotated DEGs. Among these, seven
DEGs were defined as phenylalanine ammonia-lyase genes (PAL), which coded for the key
first rate-limiting enzyme in the phenylpropanoid pathway. It is worth noting that six PAL
DEGs were downregulated in the aborted pistils (Table 2). The results indicated that the
phenylpropanoid pathway, especially PAL, might be implicated in pistil development in
pumpkin.

Verification of RNA-Seq data by qRT-PCR analyses
The RNA-Seq results were validated by qRT-PCR assays. Fourteen annotated DEGs
were chosen for qRT-PCR analyses. Twelve of these genes were downregulated and
two were upregulated. It included auxin related genes, AUX-IAA (CmoCh04G015610,
auxin-responsive protein IAA gene) and ARF (CmoCh16G005850, auxin response factor),
gibberellins-related gene, TF (CmoCh05G010630, PIF4: phytochrome-interacting factor
4), ethylene related genes, ACO (CmoCh02G000640, 1-aminocyclopropane-1-carboxylate
oxidation), ETR (CmoCh08G004320, ethylene receptor), ERDBF3 (CmoCh17G005350,
ethylene response DNA binding factor), ERTF10 (CmoCh11G005450, ethylene
responsive transcription factor gene), and AP2 (CmoCh01G000430, ethylene responsive
transcription factor gene), brassinosteroid biosynthesis genes, TCH4 (CmoCh11G004020,
xyloglucan:xyloglucosyl transferase) andCYCD3 (CmoCh01G018690, cyclin D3), jasmonic
acid pathway gene, JAR1 (CmoCh06G010560, jasmonic acid-amino synthetase), salicylic
acid pathway gene, NPR1 (CmoCh03G001860, regulatory protein), and transcription
factor, TGA (CmoCh13G003300), and phenylpropanoid biosynthesis gene, PAL
(CmoCh07G009540, phenylalanine ammonia-lyase). As shown in Fig. 4, all the detected
genes showed similar expression trends in qRT-PCR analyses as in RNA-Seq data, with a
relative coefficient of R2

= 0.7887 (Figs. 4A, 4B). The Pearson correlation analysis indicated
that the RNA-Seq and qRT-PCR were strongly correlated (R= 0.888, P = 0.00002).

Expression levels of ethylene candidate genes in different flower
structures
Ethylene signal transduction genes (ERDBF3, ERTF10, AP2, and ETR) were appealing
candidates for investigating their gene expression in different flower structures, including
pistil, female calyx, ovary, stamen, male calyx, and leaf. The results showed that the
expression level of ethylene response DNA binding factor, ERDBF3, was highest in pistil,
followed by that in male calyx, leaf, female calyx, ovary, and stamen (Fig. 5), and the
expression level in pistil was 78-times more than that in stamen. The expression level
of ERTF10 was also highest in pistil, followed by that in leaf, male calyx, female calyx,
ovary, and stamen (Fig. 5), and the expression level in pistil was 162-times more than that
in stamen. ERTF10 and ERDBF3 showed the highest expression in pistil and the lowest

Li et al. (2020), PeerJ, DOI 10.7717/peerj.9677 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.9677#supp-4
http://dx.doi.org/10.7717/peerj.9677#supp-6
http://dx.doi.org/10.7717/peerj.9677#supp-5
http://dx.doi.org/10.7717/peerj.9677#supp-5
http://dx.doi.org/10.7717/peerj.9677


Figure 4 Verification of RNA-Seq Data by quantitative real-time PCR. (A) Relative normalized
expression of 14 selected genes in the normal and aborted pistils using qRT-PCR. Error bars indicate
the standard errors. AUX-IAA (auxin-responsive protein IAA), ARF (auxin response factor), TF (PIF4,
phytochrome-interacting factor 4), ACO (1-aminocyclopropane-1-carboxylate oxidation), ETR (ethylene
receptor gene), ERDBF3 (ethyleneresponse DNA binding factor 3), ERTF10 (ethylene responsive
transcription factor 10), AP2 (like ethylene-responsive transcription factor), TCH4 (xyloglucan
endotransglucosylase/hydrolase), CYCD3 (cyclin D3), JAR1 (jasmonic acid-amino synthetase), NPR1
(BTB/POZ domain and ankyrin repeat-containing protein NOOT2), TGA (TGACG-sequence-specific
DNA-binding protein), PAL (phenylalanine ammonia-lyase). (B) Comparison of the expression ratios of
14 selected genes in using RNA-seq and qRT-PCR.

Full-size DOI: 10.7717/peerj.9677/fig-4

in stamen. AP2 has been reported in other crops to be important for flower and seed
development (Jofuku et al., 1994; Zhang et al., 2018). In this study, the expression level of
AP2 was found to be higher in the reproductive organ stamen, male calyx, female calyx,
pistil, and ovary compared to that in leaf (Fig. 5). This indicates that, in pumpkin, AP2may
also play an important role in flower development. The expression level of the ethylene
receptor, ETR, was highest in stamen, followed by that in leaf, ovary, female calyx, pistil, and
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Figure 5 Expression levels of ethylene signal transduction candidate genes (ERDBF3, ERTF10, AP2,
and ETR) in different flower structures. Error bars indicate the standard errors. ERDBF3 (ethylenere-
sponse DNA binding factor 3), ERTF10 (ethylene responsive transcription factor 10), AP2 (like ethylene-
responsive transcription factor), ETR (ethylene receptor gene).

Full-size DOI: 10.7717/peerj.9677/fig-5

male calyx (Fig. 5). From the results, we can see that the four ethylene signal transduction
genes are important for the development of female and male flowers, and ERTF10 and
ERDBF3 may especially be more important in the pistils of female flowers than that in the
stamens of male flowers.

DISCUSSION
The number and proportion of female flowers are directly related to the yield of
Cucurbitaceae crops. In previous studies, researchers have focused on sex differentiation
to explore the key genes and mechanisms regulating the development of female and male
flowers. Ethylene is known to promote the development of female flowers, whichwasmainly
manifested in sexual expression, the earliness and the larger number of female flowers per
plant. Moreover, the development of female flowers requires much more ethylene than
the development of male flowers (Pierce & Wehner, 1990;Malepszy & Niemirowicz-Szczytt,
1991;Manzano et al., 2011;Manzano et al., 2014; Pan et al., 2018).

In this study, the key genes involved in pistil development were studied directly using
aborted pistil materials. The results of KEGG pathway analysis showed that the DEGs were
enriched in plant hormone signal transduction pathway, and most of them were annotated
as predicated ethylene-responsive transcription factor, ethylene insensitive transcription
factor, and ethylene receptor genes (Table S5). This result echo a previous study which
have suggested that ethylene synthesis and signal transduction play important roles in sex
expression of pumpkin (Cucurbita maxima) (Wang et al., 2019). Furthermore, we found
that the ethylene response DNA binding factor, ERDBF3, and the ethylene responsive
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transcription factor, ERTF10, showed the highest expression in pistils and the lowest
expression in stamens (Fig. 5). These results indicate that ethylene signal transduction
genes, ERTF10 and ERDBF3, may be more important in the pistils of female flowers than
in other floral structures. In addition, previous studies have also shown that the ethylene
receptor, CsETR1, and the ethylene-responsive transcription factor, CsAP3, are involved
in the development of female flowers (Hao et al., 2003; Yamasaki, Fujii & Takahashi, 2003;
Wang et al., 2010; Sun et al., 2016). The results presented in Fig. 5 show that AP2 and
ETR were expressed in all the structures of flowers that were assessed, and although their
expression level in the stamens was higher than that in the pistils, there is not enough
evidence to show as to how important they are for the development of female and male
flowers. Except for the ethylene signal transduction, which might play a major role in the
development of female flowers, the results of KEGG analysis also indicated that other plant
hormone signal transduction pathways, including auxin, cytokinin, gibberellin, abscisic
acid, brassinosteroid, jasmonic acid, salicylic acid signaling pathways, are involved in flower
development. There is a possibility for the existence of interactions between various plant
hormones through their signal transduction pathways. For example, ethylene synthesis
can be induced by auxin, gibberellin, and jasmonic acid (Rudich & Halevy, 1974; Trebitsh,
Rudich & Riov, 1987; Zhang et al., 2017; Schubert et al., 2019).

Phenylpropanoids comprise many aromatic metabolites, including the cell wall
structural component, lignin, and many small phenolic molecules, such as coumarins,
stilbenes, flavonoids, anthocyanins, and condensed tannins (Vogt, 2010; Fraser & Chapple,
2011; Zhang, Gou & Liu, 2013). Phenylalanine ammonia-lyase catalyzes the first rate-
limiting step in the phenylpropanoid pathway, which controls the carbon flux to aromatic
compounds, and to lignin. The results of this study indicate that six PAL DEGs are
downregulated in aborted pistils (Table 2). Previous study have indicated that transgenic
tobacco plants carrying antisense and sense pal cDNAs resulted in partial male sterility,
with the reduction of pollen fertility (Matsuda et al., 1996). At present, there has been no
systematic research on the mechanisms through which phenylpropanoids take part in the
development of female flowers.

In addition, the DEGs in the present study were obtained from RNA-Seq analysis of the
aborted and normal pistils, which were come from the flower buds with five mm length
of corolla. More genes related to pistil development were mined. But, when the aborted
female flower buds grew bigger, they exhibited incomplete stigma and thinner ovary for
the absence of ovules, and which is the primary cause of pistil abortion is unclear. Further
gene function analysis is needed to illuminate the mechanism of pistil abortion.

CONCLUSIONS
In the present study, DEGs in aborted and normal pistils of pumpkin were identified. KEGG
enrichment analysis showed that the DEGs were significantly enriched in plant hormone
signal transduction, which accounted for 12.54% of the significant DEGs. Most of them
were annotated as predicated ethylene signal transduction genes. The expression analysis
of ERDBF3 and ERTF10 in different flower structures showed the highest expression in
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pistils and the lowest expression in stamens. These results suggest that plant hormone
signal transduction genes, especially ethylene signal transduction genes, play an important
role in the development of pistils in pumpkin.
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