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Abstract

The conventional method for developing health care plan payment systems uses observed data to 

study alternative algorithms and set incentives for the health care system. In this paper, we take a 

different approach and transform the input data rather than the algorithm, so that the data used 

reflect the desired spending levels rather than the observed spending levels. We present a general 

economic model that incorporates the previously overlooked two-way relationship between health 

plan payment and insurer actions. We then demonstrate our systematic approach for data 

transformations in two Medicare applications: underprovision of care for individuals with chronic 

illnesses and health care disparities by geographic income levels. Empirically comparing our 

method to two other common approaches shows that the “side effects” of these approaches vary by 

context, and that data transformation is an effective tool for addressing misallocations in individual 

health insurance markets.
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1. Introduction

Public and private regulators set prices in health care – to physicians, hospitals, health plans 

and other providers – with the purpose of improving economic efficiency of health care 

delivery. To implement a payment system, the regulator selects a methodology to establish 

prices for each of the thousands of procedures physicians perform, the hundreds of disease 

groups treated by hospitals, or per capita prices paid to plans for the nearly innumerable 

combinations of enrollees’ health conditions. In many health care settings, prices are set 

according to observed costs in the market. In the U.S. Medicare program, a hospital’s 

payment for a given inpatient admission is tied to the national average cost of admissions 

*Corresponding author at: Interfaculty Initiative in Health Policy, Harvard University, 14 Story Street, Cambridge, MA, 02138, United 
States. bergquist@g.harvard.edu. 

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jhealeco.2019.05.005.

HHS Public Access
Author manuscript
J Health Econ. Author manuscript; available in PMC 2020 August 21.

Published in final edited form as:
J Health Econ. 2019 July ; 66: 195–207. doi:10.1016/j.jhealeco.2019.05.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.jhealeco.2019.05.005


belonging to the same diagnosis-related group (DRG). In the Medicare Advantage program, 

the Affordable Care Act Marketplaces, most state Medicaid programs, and in Germany, the 

Netherlands, Switzerland, and other countries, a health plan’s payment for enrolling a given 

individual is tied to the average cost of individuals with similar demographics and histories 

of chronic conditions. This method for setting prices weakens incentives for inefficient 

“cream-skimming” behaviors by insurers (Geruso et al., 2016; Newhouse et al., 2015).

While acknowledging the benefits of setting prices in this way, this paper explores a 

previously unresolved deficiency: when the existing health care system is inefficient or 

unfair, setting payments based on observed costs may sustain those inefficiencies or 

inequities, which may be precisely the issues the payment system is meant to correct. 

Consider the following extreme example: suppose under the current health plan payment 

system individuals with cancer are highly unprofitable due to low revenues relative to costs, 

and insurers rationally respond by limiting access to care for individuals with cancer to deter 

those individuals from enrolling in their plans. Further, assume insurers are so effective at 

rationing access that individuals with cancer obtain only very low levels of spending, for 

example, $1000. Now suppose a regulator seeks to address the problem of insurers 

inefficiently limiting access to care for individuals with cancer by “risk adjusting” payments 

to health plans, and they use a standard risk adjustment system where plan payments are 

adjusted according to the observed $1000 of spending for individuals with cancer. Such a 

payment system will not solve the problem the regulator sought to fix, because individuals 

with cancer will appear relatively inexpensive due to the insurers’ actions limiting their 

access to care. Thus, this conventional approach to payment will sustain rather than correct 

the insurers’ incentive to inefficiently limit access to care for this group. While this example 

is extreme, a weaker version of this feedback loop between inefficiencies embedded in the 

health care system and the incentives embedded in the payments is likely to play out in 

many more realistic settings.1 The general point is that if regulated prices are intended to 

move the health care system to be more efficient and fair, using observed (inefficient/unfair) 

patterns of care for payment calibration will not fix the existing flaws.

The problem of basing risk adjusted payments on observed costs has been previously 

acknowledged (van de Ven and Ellis, 2000; Zweiful et al., 2009), but using data other than 

observed costs has been dismissed as being difficult to put into practice, and instead 

observed costs are often assumed to represent “acceptable” cost levels. Both Schokkaert and 

van de Voorde (2004) and Stam et al. (2010) propose methods for risk adjustment 

improvement that incorporate information on normative costs by leveraging risk factors that 

are desirable to subsidize and those that are not (e.g., inefficient practice styles or higher 

rates of smoking in some subpopulations). However, these approaches maintain the basic 

practice of correcting inefficient risk adjustment payments by modifying the risk factors 

1Algorithmic fairness with biased data is a growing area of study outside of health care. The theme of using a data- or algorithm-based 
intervention to break a feedback loop that reproduces or exacerbates biases in data runs through many, diverse applications. For 
example, Lum and Isaac (2016) discuss how using biased data in predictive policing algorithms can reproduce and amplify the biases 
in police data, and in some cases lead to a discriminatory feedback loop between policing practices and algorithm predictions. Hu and 
Chen (2017) show how a fairness constraint can be imposed on firms’ hiring practices to ensure both individual- and group-based 
fairness and address discrimination in the labor market.
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included in the algorithm, rather than through transformations to the underlying data used to 

estimate the payments tied to those risk factors.

In this paper, we show that data modified to reflect the researcher’s or policymaker’s beliefs 

about efficient and fair levels of spending versus the observed spending levels can be used 

for calibrating health plan payments. We propose a systematic approach for transforming 

data in a pre-estimation step to break the feedback loop between plan payments and insurer 

actions. The intuition behind our proposed method follows from conditions of market 

equilibrium: set prices to buy the equilibrium you want, not the equilibrium you currently 

have. After introducing background material in Section 2, we lay out the theoretical basis of 

our approach in Section 3. The model in Section 3 characterizes the optimal input data 

(which leads to the desired health care system outcomes) at an abstract level, and then 

translates the ideas for our empirical applications of health plan payment in Medicare. In 

Section 4, we describe two data transformation examples. The first focuses on underpayment 

for individuals with chronic illnesses, and the second addresses disparities in health care 

spending by zip code-level income. We empirically compare our method to approaches 

based on modifying payment algorithms using existing data. This includes exploring the 

conventional approach of adding or removing risk adjustor variables from the pricing 

algorithm. In the chronic diseases example, we include additional risk adjustors for chronic 

illness groups, and in the disparities example we include a low-income neighborhood 

indicator. We also leave the set of risk adjustors in place but introduce constraints on the 

OLS regression that target spending for groups of interest (van Kleef et al., 2017).2

Both applications demonstrate that data transformation is a powerful approach for moving 

plan payments closer to the desired levels. In the chronic diseases application, data 

transformation is the most effective method for improving fit across all groups. Introducing 

constraints on the risk adjustment formula also performs well at the group level, while 

adding risk adjustors to the OLS regression is the least effective approach. The substantial 

improvements in group-level fit for both our method and constrained regression come at 

only a trivial decrease in statistical fit at the individual level (i.e., R2) compared to an 

unconstrained OLS regression. In the disparities application, adding a risk adjustor for 

neighborhood income is highly ineffective if the objective is to address health care spending 

disparities for that group. Such an action aggravates the disparity by income group. Data 

transformation improves incentives to serve a group, but combining data transformation with 

adding a risk adjustor is even more effective at altering incentives because it combines the 

strengths of both approaches.

2. Background

2.1. Medicare health plan payment and risk adjustment

Medicare adjusts per person payments to health plans according to age, sex, Medicaid status, 

reason for Medicare eligibility, and diagnostic information. The Medicare risk adjustment 

2Van Kleef et al. (2017) show that in the case where certain groups are undercompensated but it is problematic to include indicators of 
group membership in the risk adjustment formula, a constrained regression can be used to mitigate selection incentives while avoiding 
the introduction of perverse incentives.
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formula is calibrated on data from traditional fee-for-service Medicare but used to pay 

private Medicare Advantage plans (whose data are not used for calibration purposes). Most 

efforts to improve risk adjustment have centered on adding and refining the risk adjustor 

variables that indicate the presence of a diagnosis for a particular chronic disease (currently 

the Hierarchical Condition Categories, abbreviated HCCs), or on segmenting the population 

and estimating mutually exclusive subgroup formulas (e.g., separating community-dwelling 

and institutionalized beneficiaries). Medicare tracks regression fit at the individual level, 

updating the risk adjustment coefficients every few years by refitting the regression on more 

recent fee-for-service data. The most recently publicly evaluated Medicare risk adjustment 

formula is CMS HCC Version 21; the subgroup formula for the largest group, community-

dwelling beneficiaries, has an R2 of 12.46%.3

Despite a risk adjustment scheme refined over many years, some groups remain vulnerable 

to selection-related incentives.4 For example, plans are underpaid for individuals with 

certain chronic conditions in that the revenue a plan receives for members of this group falls 

short of the expected costs. Research on Medicare Advantage plans shows plans react to 

such “underpayments” by cutting back on services to unprofitable illness groups (Han and 

Lavetti, 2017).

2.2. Related policy interventions

The most significant example in the U.S. of using normative inputs for setting provider 

payment is the Resource-Based Relative Value Scale (RBRVS) used by Medicare since the 

early 1990s to set physician procedure prices. Prior to the RBRVS reform, a policy 

consensus held that the prices set for “Evaluation and Management” (E&M) procedures (i.e., 

routine office visits) were too low and prices for some interventions (i.e., many surgical 

procedures) were too high. These payment levels resulted in too little physician time spent 

with patients and too high a volume of some procedures – patterns in the existing data 

policymakers wanted to change (Newhouse, 2002). Rather than accepting these patterns, 

Medicare incorporated information about normative time and effort – what doctors should 

be doing – and raised the prices of E&M procedures relative to surgery. In short, the RBRVS 

fee schedule was designed not to simply reflect the time spent by physicians for various 

procedures, it was meant to affect the time spent.5 While the RBRVS is similar in spirit to 

our approach, it differs substantially in terms of implementation and focus: the RBRVS sets 

physician fees, whereas our method transforms the input data for health plan risk 

adjustment, which is then estimated via an OLS regression that preserves individual and 

group-fit properties.

3The Medicare risk adjustment formula currently used in practice is CMS-HCC Version 22; it includes fewer HCCs than Version 21 
and estimates a greater number of subgroup regressions.
4Pope et al. (2004) outline ten principles to guide developing the first HCC system for Medicare Advantage, which include factors 
such as choice of diagnostic categories, approaches to mitigate insurer gaming, and properties of fairness and consistency. Ellis et al. 
(2018) propose two updates: risk adjustment design should anticipate the effects of the payment system on coding and risk adjusters, 
and should optimize given potential selection incentives set by the payment system. The data transformation approach is in the spirit of 
this second principle; our method explicitly acknowledges the relationship between the payment system and insurer actions and breaks 
this feedback loop.
5This is an example of the well-accepted idea that, as Newhouse (2002) pointed out in the context of physician pricing, provider costs 
are endogenous to the payment method.
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We also see limited forms of using modified data in regulated health insurance markets in 

the Netherlands and the ACA Marketplaces. The Dutch risk adjustment algorithm is 

estimated on data modified to incorporate benefit package changes over time (Layton et al., 

2016). In the ACA Marketplaces, the risk adjustment algorithm is estimated on a pooled 

sample of data not subject to the selection incentives in the Marketplaces, and modified by 

an anticipated annual growth rate. The 2017 update of the formula additionally features 

separate specialty drug, traditional drug, and medical expenditure trends based on external 

actuary and industry reports. Similar to the Dutch approach, the goal of applying a trend 

modification to the data is to incorporate expected patterns of spending, not to alter those 

expected patterns (Centers for Medicare and Medicaid Services, 2016). The key difference 

between the actuarial approach to risk adjustment (which motivates these real-world 

examples of data modification) and the economic approach to risk adjustment is that 

actuaries typically set payments to cover predicted costs, while economists typically 

consider costs as endogenous to payments and set payments to produce optimal insurance 

contracts. Applying the economic lens to the question of data transformation thus motivates 

our key contribution, which is the application of data interventions to alter the allocation of 

services and patterns of care rather than just to account for changes in insurer costs due to 

exogenous forces.

3. Conceptual framework

Here, we develop a general model of plan actions in response to plan payment coupled with 

recognition that plan payments are endogenous to plan actions and vice versa. After 

formalizing our idea of data transformation, we describe how it can be used as a systematic 

approach to address spending allocation problems.

3.1. A data transformation model

Define the matrix X = {xis} , where i indexes individuals in the health insurance market and 

s indexes the services provided by health plans (Layton et al., 2016). A service could be a 

particular type of care for a particular condition or conditions, e.g., office-based care for 

depression. An element of X is xis, spending in dollars on service s for individual i. Also 

define R = {ri}, a vector of payments a health plan receives for enrolling each individual i. In 

essence, X is what consumers and the health care system do in response to the insurance 

contract offered by insurers, and R is how the regulator pays plans.

X and R are related in two ways. The vector of payments affects the contract offered by the 

insurer which, in turn, affects both the care produced by health care providers and the level 

of health care consumption chosen by consumers. And data from the health care system are 

inputs into the algorithm that generates the payment vector. For example, if insurers are paid 

high rates for individuals with mental illness (ri), insurers will design contracts offering 

generous coverage for behavioral health services and set high rates to providers to ensure 

sufficient supply of those services. These consumer and provider responses to the contract 

combine to generate realized spending xis. Realized spending, xis, is then used to determine 

payments to insurers, ri. We represent these two relations as:
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X = f R (1)

R = g X (2)

The function f(·) represents the working of the health care system in response to payment 

incentives. Dependent on the payments set for each enrollee, plans set contracts with 

providers and engage in other actions, including selection, that lead to an allocation of 

spending on various services to each individual. The function g(·) is the algorithm specified 

by the regulator that takes as input the patterns of health care spending and determines a 

payment for each person. The empirical methodology used by Medicare to assign risk scores 

to individuals based on age, sex, and indicators of medical morbidity is an example of a g(·) 

function.6

In the conventional approach to economic analysis of health plan payment, the payment 

vector R is treated as an exogenous policy choice, and the health care system is 

characterized by f(·) only (Glazer and McGuire, 2002). This may not, however, constitute a 

full equilibrium. In general, the health care allocations that result from a given payment 

vector will not, given the payment algorithm g(·), generate the original payment vector. We 

broaden the concept of equilibrium by recognizing the second relationship between the 

health care system and payments, represented in g(·). We say that with a fixed algorithm g(·), 

relating data from the health care system to payment, the system is in full equilibrium when 

both conditions are satisfied. We thus define a full equilibrium in the health care system (Xe, 

Re) as:7

Xe = f Re (3)

Re = g Xe (4)

To motivate transforming the data, we assume another allocation, X*, is preferred to Xe. We 

refer to X* as the “desired” allocation; X* might be preferred to Xe for reasons of efficiency 

or fairness.

Conventional health policy analysis modifies the g(·) function (for example, by adding 

variables to the risk adjustment regression). With knowledge of the operation of the health 

6Relations (1) and (2) should be understood broadly and remain true even in a system like Medicare where the payment system 
calibration is based on data from fee-for-service Medicare. Medicare Advantage plan behavior in response to payment incentives 
affects how many and what type of beneficiaries remain in fee-for-service Medicare. The relations also remain in place even in the 
case in which the data used for calibration is entirely disconnected from system performance. In that case, the g(X) function is a set of 
payments unaffected by X. Such a system may be desirable in that it eliminates the feedback loop between payments and realized 
costs, but it is not necessarily the case that it will produce optimal insurance contracts without modifying data from the fee-for-service 
setting due to potential inefficiencies in that setting.
7In practice, data from a previous period are typically used to set payments in the current period. If a system is in full equilibrium as 
we describe, such timing does not affect the equilibrium. Out of equilibrium, a system characterized by (1) and (2) would need to take 
account of timing and any iterative process leading to equilibrium.
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care system (i.e., the g(·) function), one could solve for the vector of per person payments 

that would lead to the desired allocation.8 Call this desired vector of payments R*:

R* = f−1 X* (5)

Eq. (5) represents the strand of the health plan payment literature referred to as “optimal risk 

adjustment,” with f−1 as the optimal risk adjustment formula.9 Note that (5) is consistent 

with a full equilibrium, in the sense that the optimal risk adjustment formula, f−1, when 

applied to the optimal health care system, X*, yields the optimal vector of per person 

payments R*.

In this work, we take a different approach and ask, what X matrix, used in Eq. (2) with a 

fixed algorithm g(·), would lead to the optimal set of per person payments, and thus to the 

efficient health care system. Define X⃛ to be this optimal data input matrix:

X⃛ = g−1 R* , or
X⃛ = g−1 f−1 X* , or
X⃛ = h X*

(6)

Eq. (6) presents our main idea in abstract form. By disconnecting the data used as input to 

the plan payment algorithm from the spending in the current system, i.e., by transforming 
the data, we can induce an efficient health care system. We recognize the h(·) function is 

complex and we have little policy experience with its properties. Nonetheless, we believe (6) 

represents a novel and useful observation. Data used as input into payment system 

calibration, X⃛ in (6), can be chosen by policy. And although the form of (6) is unknown, 

simple and intuitive transformations of the input data have foreseeable effects on incentives. 

A well-chosen intervention on the data that improves incentives should move the health care 

system in the right direction.10

3.2. A Medicare application

To address allocation problems in Medicare we operationalize (6) and illustrate the data 

transformation process. We specify the variables and some properties of how the health care 

system responds to price incentives (f(·)), and how the data from the health care system is 

used to construct payments to health plans (g(·)). In this section, we use the chronic diseases 

application to translate our model into practice. A parallel method is used in our disparities 

8Throughout, we assume that solutions exist, correspond to positive values of all spending, and are unique and stable. Our Medicare 
application only requires the assumptions to hold locally.
9In Glazer and McGuire (2002), optimal coefficients are those that lead the plan, in profit maximization, to supply efficient health 
care. In both of these instances, the coefficients are found by inverting the function describing system response to the price incentives. 
Theoretical solutions to optimal risk adjustment are assumed to be applied to the optimal allocations and are not designed to move the 
system to optimal based upon some arbitrary inefficient/unfair initial allocation.
10There are direct parallels in our proposed approach to the theory underlying structural causal modeling (Pearl, 2009). Specifically, 
we could formulate the two relationships in (1) and (2) as nonparametric structural equation models with unknown functional forms 
f(·) and g(·), although an explicit representation of equilibrium does not always apply. We can intervene on the system we have defined 
to set random variables (here, payments) to specific values.
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application; these examples are selected to illustrate our new method and are simplified 

versions of a systematic approach to improving the health plan payment system.11

3.2.1. The inefficiency—As with other systematic risk adjustment improvement 

approaches, such as constrained regression, our data transformation method requires an 

initial assessment of baseline risk adjustment performance to identify groups underserved in 

the current system. To demonstrate performing a data intervention for an inefficiency 

problem, we select our groups of interest and the target of our intervention based on prior 

research and a baseline assessment of the Medicare risk adjustment system: as shown by 

McGuire et al. (2014) in another context and as our data analysis confirms for Medicare, 

among four major chronic illnesses – cancer, diabetes, heart disease, and mental illness – the 

incentives are strongest to underspend on mental health care. We therefore intervene to 

address the incentives to underspend on persons with mental illness and track the incentives 

for groups defined by the other chronic illnesses.

3.2.2. The plan payment algorithm: R = g(X)—The function g(·) is the algorithm 

that determines the per person payments paid to health plans for enrollment of beneficiaries 

with various indicators for health status (which come from the data). We implement a 

slightly modified version of Medicare’s current algorithm, described in detail in Section 4 

and the Appendix.

3.2.3. The health care system: X = f(R)—The f(R) function relates per person 

payments to the functioning of the health care system. This function encompasses not only 

plan spending and beneficiary enrollment, but also involves the relationships between 

providers, hospitals, insurers, and individual consumers. Rather than making strong 

assumptions about the form of f(·), we make a weaker assumption about its local properties, 

the signs of the derivatives of f(·). This assumption is sufficient to determine the sign of the 

local effect of a data intervention. Specifically, we assume plans respond positively to 

incentives in the sense that if the payment for an individual is increased (decreased), the plan 

spends more (less) on that person.12 The assumption implies that in response to an increase 

in the level of plan payment for a group of beneficiaries, plans will spend more on the 

services used by those beneficiaries in order to encourage more of that group to enroll.

4. Data and methods

We study methods for reducing underpayment (which we assume induces underservice) for 

the targeted group in the chronic diseases application, and methods to reduce underservice 

for the targeted group in the disparities application. In both the chronic diseases and 

disparities applications, we identify the target group using a classification system that is 

distinct from the CMS HCC risk adjustment system. We track the impact of alternative 

11We focus on a subset of features of Medicare payment and Medicare Advantage plan spending allocations. Our examples are 
concerned only with medical spending predicted by the Medicare Advantage risk adjustment formula – primarily Part A and B 
spending – not drug spending (which has its own plan payment system). The analyses we present focus on community-dwelling 
individuals, the largest set of Medicare beneficiaries. We ignore any joint cost issues introduced by the presence of other payers of 
health plan services.
12This assumption is based on the model of health plan choice and plan design presented in Frank et al. (2000). Geruso et al. (2016), 
Carey (2017), Lavetti and Simon (2018), and Shepard (2016) present empirical evidence supporting this assumption.
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methods on regression fit at the group and individual levels. As a summary measure, we 

calculate Group Payment System Fit (GPSF), which captures how well a given risk 

adjustment formula matches payments and costs at the group, rather than the individual, 

level (Layton et al., 2018). Similar to other group-fit measures, such as Grouped R2, GPSF 

depends on partitioning the sample into mutually exclusive groups.

4.1. Data and baseline risk adjustment formula

In practice and in this paper, data from fee-for-service Medicare are used to estimate 

payment coefficients on the risk adjustment variables for setting capitation payments to 

Medicare Advantage plans. We follow CMS and include only individuals with 12 months of 

continuous Parts A and B coverage in the base year (2010) and those with at least one month 

of coverage in the prediction year (2011). We exclude beneficiaries with end-stage renal 

disease and those residing in an institution. After applying these exclusion criteria, we draw 

a random sample of 1.5 million individuals in order to approximate CMS’s practice of using 

a random 5% sample of Medicare beneficiaries for risk adjustment estimation. Our sample is 

predominately white (85%) and urban-dwelling (75%) (Table 1). Approximately two-thirds 

of our sample has at least one of four major chronic conditions: cancer, diabetes, heart 

disease, or mental illness. For our random sample we combine the Medicare Beneficiary 

Summary File on enrollment with Part A, Part B, home health, and durable medical 

equipment claims files for 2010 and 2011. We map ICD-9 diagnoses to 87 HCCs, combine 

age and sex into 24 age-sex cells, and create indicators for disabled enrollees and individuals 

enrolled in Medicaid. Our outcome measure, health care spending in 2011, is total Medicare 

spending on inpatient, outpatient, durable medical equipment, and home health, weighted to 

reflect each individual’s eligible fraction of the prediction year. To predict spending we use a 

similar specification as the Version 21 CMS HCC risk adjustment formula for the 

community-dwelling subgroup:

Y i = ∑i βkHCCik + βlage − sexil + β113Medicaid − Female − Agedi
+ β114Medicaid − Male − Agedi + β115Medicaid − Female
− Disabledi + β116Medicaid − Male − Disabledi + β117
OriginallyDisabled − Femalei + β118OriginallyDisabled − Malei
+ β119Disabled − HCC6i + β120Disabled − HCC34i
+ β121Disabled − HCC46i + β122Disabled − HCC54i
+ β123Disabled − HCC55i + β124Disabled − HCC110i
+ β125Disabled − HCC176i + εi

(7)

where Yi is observed spending for individual i, HCCik is the value of HCC indicator k for 

individual i (k = 1, …, 87), βk is the coefficient for HCC indicator k, age − sexil is the value 

of the age-sex cell indicator l for individual i (l = 88, …, 112), βl is the coefficient for age-

sex cell l, Disabled − HCC6i indicates the combination of disability and an opportunistic 

infection for individual i, Disabled − HCC34i indicates disability and chronic pancreatitis for 

individual i, Disabled − HCC46i indicates disability and severe hematological disorders for 

individual i, Disabled − HCC54i indicates disability and drug/alcohol psychosis for 

individual i, Disabled − HCC55i indicates disability and drug/alcohol dependence for 

individual i, Disabled − HCC110i indicates disability and cystic fibrosis for individual i, 
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Disabled − HCC176i indicates disability and complications of an implanted device or graft 

for individual i, and the remaining terms are indicators capturing interactions between 

Medicaid status, disability, original reason for Medicare enrollment, and sex.13 The 

principal differences between the formula in Eq. (7) and the Version 21 CMS HCC formula 

are that we omit interaction terms between diseases, which are sparsely populated, and we 

also do not modify coefficients post-estimation as CMS does (Pope et al., 2011). The goal of 

estimating Eq. (7), rather than using the CMS risk adjustor weights to calculate individual 

payments, is to fit the means of our particular data sample and illustrate the potential of the 

data transformation method.

We map ICD-9 diagnoses to Clinical Classification Software (CCS) groups and to 

Prescription Drug Hierarchical Condition Categories (RxHCCs) (AHRQ, 2016; DHHS, 

2017). CCS groups are used to identify beneficiaries with a chronic condition because, 

unlike the HCCs included in the risk adjustment formula, all ICD-9 codes map to a 

condition group.14 RxHCCs are the categories used by the Medicare Part D risk adjustment 

formula and capture a greater number of mental illness diagnoses than HCCs (Montz et al., 

2016). We use the RxHCCs to demonstrate the effect of including additional risk adjustor 

variables.15

4.2. Defining and measuring underpayment for a group with a chronic illness

In our first application we target the systematic underpayment of persons with a chronic 

illness. We divide our sample into seven mutually exclusive groups based on clinical 

diagnoses in 62 CCS categories: 1) mental illness only, 2) mental illness and at least one 

other major chronic condition (cancer, diabetes, or heart disease), 3) diabetes only, 4) heart 

disease only, 5) cancer only, 6) multiple chronic conditions, not including mental illness, and 

7) no chronic conditions.

We define net compensation as the difference between average payments and average costs 

for a group.16 We assume an individual’s total Medicare spending is the cost the plan bears 

for that individual, and payments to a plan are the predicted values from estimating the risk 

adjustment regression; for example, net compensation at baseline is based on estimating the 

formula in Eq. (7). In general, individual payments are calculated from risk adjustment 

regression estimation: ri = ∑i β jzij, where ri is the payment for individual i, β j is the 

estimated coefficient for risk adjuster j, and zij is the value of the risk adjuster j for 

individual i. We then calculate group-level net compensation for the average plan based on 

the predicted values:

13Age-sex cells capture female and male with age groups 0–34, 35–44, 45–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, 
90–94, and 95+. Appendix Table 1 contains the full list of HCC indicators and descriptions, and omitted interaction terms.
14In our sample, the mental illness HCCs capture only 44% of individuals in the mental illness group defined by CCS groups. The 
difference in how CCS groups are defined versus how the HCC-based risk adjustors are defined accounts for why some groups are 
underpaid in the current risk adjustment scheme, despite having HCC indicators in the formula.
15It is sometimes an explicit choice on the part of the regulator to reduce predictive accuracy by blurring some medical distinctions 
between conditions (e.g., among mental health diagnoses) or excluding some conditions due to concerns about incentives for gaming; 
these concerns would likely to continue to affect any formulas used in payment.
16Papers and government evaluations of underpayment by group in the U.S. commonly measure underpayment in ratio form 
(predictive ratios) rather than by a difference (e.g., McGuire et al., 2014; Pope et al., 2011). Here we work with the difference metric 
to keep net compensation on the dollar scale. Our approach is similar to the European literature, which uses the difference rather than 
the ratio (e.g., Van Kleef et al., 2013).
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Net compensationg = rg − cg (8)

Where rg = ∑i ∈ g ri/ng , cg = ∑i ∈ g Y i/ng, ng is the number of individuals in the group of 

interest g, and Yi is the observed spending for individual i. Negative values of net 

compensation indicate under-payment, where the group-level revenues (predicted spending) 

are systematically less than group-level costs (observed spending). Positive values indicate 

overpayment, where group-level revenues exceed group-level costs.17

4.3. Defining and measuring a health care disparity

Our second application addresses a disparity between groups defined by a sociodemographic 

variable. We divide our sample into individuals residing in low-income zip codes (those with 

a zip code-level median income in the lower 60% of individuals in our sample) and high-

income zip codes (upper 40%).18 We measure the disparity in health care between these two 

groups. Measuring and addressing disparities between groups does not require knowledge 

about the source(s) of the disparity – many factors contribute to disparities in care across 

neighborhood of residence. Rather than seeking to directly address these underlying causes, 

we rely on the responsiveness of the health care system to financial incentives to reduce 

disparities between low- and high-income neighborhoods: if health plans are paid more to 

enroll individuals in low-income neighborhoods, then the plans will act to attract these 

individuals by providing them with more care.

Disparity for a group is defined, following the Institute of Medicines (2002) Unequal 
Treatment report, as differences in health care not due to health status or preferences. 

Because of the difficulties in measuring preferences, the literature on disparities compares 

care for groups after adjusting for health status only,19 and we do the same. Specifically, we 

estimate a disparity in total health care spending between the group of interest and the 

reference group as the difference in estimated and observed price-adjusted spending, 

conditional on health status. We define disparity as:

Dg,ref = 1
ng

∑
i ∈ g

Y i, g − Y i, g − 1
ηref

∑
i ∈ ref

Y i, ref − Y i, ref , (9)

where g is the group of interest, ref is the reference group, Yi,g is the observed spending for 

an individual in the group of interest, Yi,ref is the observed spending for an individual in the 

reference group, Y i, g is predicted spending conditional on health status (as measured by 

CCS categories, age, and sex) for an individual in group g, and Y i, ref is predicted spending 

conditional on health status for an individual in the reference group. We follow common 

practice in the disparities literature and also adjust for age and sex, because differences 

17Note that net compensation is defined in relation to observed spending rather than the desired, efficient level of spending. We return 
to the matter of using observed vs. efficient levels for payment system evaluation in the Discussion.
18We examined disparities across zip code median income quintiles and compared two different definitions for the reference group: 
the upper 60% and the upper 40%. We found the middle quintile aligned more closely with the bottom two quintiles, thus we defined 
the reference group (high-income) as the upper 40% and the group of interest (low-income) as the lower 60%.
19For a review of methods for implementing the IOM definition of health care disparity, see Cook et al. (2012).
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related to these demographic factors could stem from differences in prevalence of illness 

correlated with age and sex, and thus would not constitute a disparity. The first term in Eq. 

(9), for group g (low-income), is expected to be negative, with actual services received less 

than predicted based on health status. The second term is expected to be positive, measuring 

the excess of services received by the reference group in relation to their health status. When 

the difference between these two terms, the disparity, is negative, it measures the 

underservice of group g, conditional on health status, in relation to the reference group.

The estimation of Dg,ref in Eq. (9) depends on accurate predicted values Y i, where 

“accuracy” can be defined with respect to an underlying squared error loss function.20 

Therefore, we employ ensemble statistical machine learning methods to obtain optimal 

predicted values in the calculation of the disparity. The Appendix contains additional details 

on implementation.

4.4. Data transformations

4.4.1. Targeting underpayment for a group with a chronic illness—In our 

demonstration applying the data transformation method to an inefficiency problem, we start 

by estimating the basic OLS specification in Eq. (7) to assess the status quo performance of 

the risk adjustment regression across patient groups. We then intervene on the group that is 

the most undercompensated on average under the basic OLS risk adjustment regression: in 

this example, that is the mental illness group. Specifically, the intervention consists of 

increasing the Y vector by 10% for each individual in the targeted group. The choice of 10% 

is arbitrary. Notably, we only need to transform the data once in order to project the effect of 

transforming the data by any amount because of the linear form of least-squares 

estimators.21 This linearity property does not, however, hold for the impact of data changes 

on a quadratic measure of fit.

After intervening to transform the Y vector, we estimate the risk adjustment regression, 

ensuring total payments remain constant by imposing a constraint on the coefficients:

Y N = ∑j βjzj, N (10)

where Y N is the sample average of observed total Medicare spending and zj, N are the 

sample means for the j risk adjustor indicator variables. By constraining the coefficients to 

produce the observed sample mean spending, we guarantee that the total payments after the 

data intervention sum to total costs. Put differently, we implement the constraint Eq. (10) so 

that spending for individuals without a mental illness is reduced and counterbalances the 

increase for individuals with a mental illness.22 From the regression fit on the transformed Y 
we obtain a set of predicted revenues for each individual in the sample.

20Other loss functions can be considered, including those for bounded continuous outcomes.
21Intervening on Yi leads to a constant change in net compensation because revenues at the individual and group level are linear in 

Y :rg = Y g Y g = βZg β = Z′Z −1
 Z′Y Transforming the data changes Y, while (Z′Z)−1 Z′ and cg are constant. Thus, any ΔY 

leads to the same Δβ, ΔY , and, ultimately, change in net compensation.
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Using these predicted spending values, we can then calculate net compensation under the 

data transformation risk adjustment approach for each disease subgroup in the manner 

described above. Net compensation reveals how a given group fares under a particular risk 

adjustment formula, but does not summarize overall group fit across the entire sample. We 

use Group Payment System Fit (GPSF) (Layton et al., 2018) to summarize the overall 

impact of each risk adjustment approach on net compensation:

GPSF = 1 − ∑g sg cg − rg
∑g sg cg − c (11)

where rg comes from the estimated risk adjustment regression and cg is the observed, 

unmodified vector of spending; c is the mean of the observed, unmodified vector of spending 

for the entire sample; and sg is the share of the sample in group g, with ∑g sg = 1. GPSF is a 

measure of regression fit calculated at the group level (where groups are required to be 

mutually exclusive); we use a linear scale to maintain consistency with our net compensation 

measure.23 The denominator is the weighted sum of absolute differences between group-

level costs and the overall sample average, and the numerator is the group-level sum of 

absolute residuals under a given payment system. GPSF falls between 0 (the risk adjustment 

formula is equivalent to paying sample average costs) and 1 (the risk adjustment formula 

perfectly matches payments and costs at the group level). We expect the denominator to be 

large relative to the numerator (and GPSF to be high) in cases where group-level costs vary 

widely from the average cost of the entire sample, and group-level payments are close to 

group-level costs. In our application, GPSF calculated using the baseline OLS risk 

adjustment regression is the floor we seek to improve on with alternative risk adjustment 

approaches, and 1 is the ceiling. Comparing GPSF allows us to rank our risk adjustment 

approaches based on how well they address discrepancies in net compensation for all of the 

defined groups, not just the targeted group of interest. Concerns about how other groups 

might be affected by transforming the data or imposing linear constraints should guide the 

selection of the mutually exclusive groups for calculating GPSF.

We also present Grouped R2, an earlier measure of group-level fit on the quadratic scale 

(Ash et al., 2005; Gruenberg et al., 1986):

Grouped R2 = 1 − ∑g sg cg − rg
2

∑g sg cg − c 2 (12)

Although both GPSF and Grouped R2 capture regression fit at the group level, we prefer 

GPSF because it enables greater differentiation between regression approaches when group-

level costs vary widely from the average cost of the entire sample and group-level payments 

22Another way to maintain the same aggregate budget would be to directly deduct the corresponding amount of spending from the 
complementary group. Using a constraint, however, is our preferred approach. First, using a constraint does not require calculating the 
addition to the targeted group before running the regression, allowing the analysis to proceed in one step rather than two. And second, 
if the data transformation is complex – for example, if there are multiple targeted groups – our approach of intervening on the Y vector 
to enact the desired changes for the targeted groups and then imposing an overall constraint is simple and easily implemented.
23GPSF on a linear scale is a group-level version of Cumming’s Prediction Measure (CPM) (van Veen et al., 2015).
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are close to group-level costs, whereas the Grouped R2 will tend to compress these 

differences in fit.

To compare fit at the individual level of the estimated alternative risk adjustment regression 

to the baseline OLS version, we calculate an R2 as follows:

SSR = ∑ Y i,obs − Y i,est
2,

SST = ∑ Y i,obs − Y obs
2,

R2 = 1 − SSR
SST ,

(13)

where Y i,est comes from the estimated risk adjustment regression Yi,obs is the observed, 

unmodified vector of spending; and Y obs is the mean of Yi,obs.

We examine the potential for creating unintended incentives to attract or deter certain 

observable groups by comparing the estimated coefficients of the baseline OLS regression to 

the alternative risk adjustment methods.

In addition to specifically targeting one chronic illness group, we perform another 

intervention, where we proportionally increase spending for a beneficiary with at least one 

of the chronic conditions. Here the goal is to provide an additional example to demonstrate 

how intervening based on a group categorization can affect subgroups within the broader 

classification. We estimate the effect of an initial 5% spending increase and show 

proportional increases in the range of 0–15% of spending.

4.4.2. Targeting a disparity—In the disparities application, we use the plan payment 

system to reduce incentives for the targeted underservice. Recall that the method is agnostic 

as to the cause of the disparity in the first place, but makes the simple assumption, discussed 

above, that increasing the profitability of the group suffering a disparity will encourage plans 

to provide that group with more services. Because we do not modify costs, tracking changes 

in group-level payments is sufficient to capture how well transforming the data addresses 

disparities. We calculate group-level payments, rg = ∑i ∈ g ri/ng, by estimating the same 

CMS−HCC risk adjustment formula described above to obtain individual-level payments 

(ri). Groups that are underserved, like those living in low-income areas, will likely already 

have payments exceed costs, i.e., be profitable. Despite this, the disparity indicates that the 

incentives conveyed by the payment system are not strong enough to encourage health plans 

to compete for these individuals by providing them with more services, and thus reduce 

disparities.

To transform the data, we increase spending by 10% for all individuals in the low-income 

zip code group, and again reduce spending for the complementary group by imposing an 

overall budget constraint. We estimate the risk adjustment regression with the transformed Y 
vector and calculate group-level payments. It is then possible to characterize the tradeoffs 

between reducing incentives for disparities and traditional measures of statistical fit for the 

risk adjustment system, such as R2, described above in Eq. (13). We include an extension of 
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this example in the Appendix: in an even more targeted intervention, we increase spending 

by 10% for the low-income group, but counterbalance the increase by only reducing 

spending for the upper half of the high-income group (the fifth quintile)

4.5. Comparison to alternative methods: adding risk adjustor variables and constrained 
regression

We compare data transformation with two changes to the risk adjustment algorithm used to 

define payments based on the existing data. First, in the mental illness application, we add 

RxHCCs from the Medicare Part D risk adjustment formula related to mental illness and not 

already included in the Medicare Advantage risk adjustment formula.24 In the disparities 

application, we add a low-income neighborhood indicator to the formula. When low-income 

neighborhoods are underserved, adding an indicator is a poor choice because it reinforces 

incentives to underserve; we add a low-income neighborhood indicator to illustrate that 

adding indicators related to socioeconomic status can often be counterproductive and to 

allow us to set up a combination approach. A related alternative, which we do not consider 

empirically, is to impose a positive coefficient on a variable such as low-income 

neighborhood. OLS fit properties are lost with a post-risk adjustment ad hoc modification.

Second, we impose linear constraints on the estimated coefficients from the risk adjustment 

regression to ensure that group-level payments for a chronic illness group hit targeted levels. 

Thus, to completely eliminate underpayment for the targeted chronic illness group we set 

Y g = ∑j βjzj, g. To compare constrained regression to data transformation, we also apply a 

constraint with the same reduction of underpayment as achieved by our data transformation 

approach. Again, we maintain aggregate spending levels by imposing a second constraint on 

spending for the entire sample: Y N = ∑j βjzj, N. We do not implement a constrained 

regression comparator for the disparities application because it is not possible to directly 

constrain the target (disparities) without making strong assumptions regarding how the 

health care system reacts to changes in payments.

5. Results

5.1. Increasing net compensation for beneficiaries with a chronic illness

Prior to transforming the data, we assess net compensation by chronic illness. In aggregate, 

net compensation for individuals with a mental illness is −$607 per person; separating this 

group into those with mental illness only and those with mental illness and another chronic 

condition shows the latter and larger group is subject to the greatest underpayment (Table 2). 

Individuals in the multiple chronic conditions with no mental illness group are the most 

accurately compensated of the chronic illness groups we examine, followed by the heart 

disease only group. Those with diabetes only, cancer only, and no chronic conditions are 

overpaid at $678, $217, and $273 per person.

Transforming the data to increase spending by 10% for all individuals with a mental illness 

increases net compensation for individuals with a mental illness and at least one other 

24Details on selecting the additional risk adjustors can be found in the Appendix.
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chronic condition from −$1026 to only −$257 per person (Table 3, Columns (1) and (2)). 

Net compensation for individuals with only a mental illness increases from $415 to $748 per 

person. Notably, compensation for individuals with cancer only and no chronic conditions 

becomes much more accurate. Net compensation for the diabetes only group is reduced, and 

underpayment is aggravated slightly for the heart disease only group.

5.2. Comparison to alternative methods increasing net compensation for beneficiaries 
with a chronic illness

After adding three RxHCC risk adjustors to the baseline regression, average per person net 

compensation for the multiple chronic conditions with a mental illness group is increased to 

−$789. In the mental illness only group, net compensation is increased to $623 per person 

(Table 3, Column (4)).

Setting the constrained regression target to be equal to the average spending for the mental 

illness group achieved by data transformation (so that the two methods are directly 

comparable) does more than transforming the data to increase net compensation for the 

mental illness only group ($748 vs. $1021; Table 3, Columns (2) and (5)) and less to 

decrease net compensation for the multiple chronic conditions with a mental illness group (−

$257 vs. −$468). The constrained regression targeting zero net compensation for all 

individuals with a mental illness extends these trends, yielding net compensation of $1058 

per person in the mental illness only group, and −$434 per person in the multiple chronic 

conditions with a mental illness group (Table 3, Column (6)).

To calculate GPSF we combine the “mental illness only” and “multiple chronic conditions 

with a mental illness” group into a single category, which reflects the group targeted by the 

intervention. At baseline GPSF is 92.81, where a GPSF of 100 signals that average payment 

equals spending for each subgroup in the partition. Transforming the data by a 10% 

spending increase yields the largest improvement over the baseline (by 5 percentage points) 

with a GPSF of 97.85. The constrained regression approach leads to a 4 percentage point 

improvement over baseline, while adding in the risk adjustors generates only a 1 percentage 

point improvement. In contrast, adding the risk adjustors has the best individual fit, with an 

R2 of 11.39%, compared to 11.32% for data transformation and 11.38% for the base risk 

adjustment formula.25 The Grouped R2 measure is less able to distinguish between the risk 

adjustment methods: all fall between 99.34 and 99.90, with the baseline OLS regression 

yielding the lowest Grouped R2 and the 10% spending increase yielding the highest.

Overall, in this application, data transformation is the most effective method for addressing 

underpayment for individuals with a mental illness within a balanced budget. Adding in risk 

adjustors is the least effective method. By design, the data transformation regression and 

constrained regression are comparable in their results for the aggregate mental illness group, 

but transforming the data moves closer to eliminating under- and overpayment in all of the 

25The baseline regression R2 is slightly lower than that reported for the CMS-HCC Version 21 regression (12.46%). However, the 
correlation between predicted values from our regression and those using the CMS-HCC coefficients is 98%, indicating our empirical 
formula is a good representation of the one used by CMS for plan payment.
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non-mental illness subgroups. Improvements in fit at the group level essentially come at no 

expense of fit at the individual level as measured by R2.

These approaches to addressing underpayment also affect subgroups of people with mental 

illness differently. Fig. 1 compares changes in net compensation by method, across mental 

illness subgroups occurring in at least 10% of individuals with a mental illness.26 The data 

transformation regression substantially increases net compensation compared to the baseline 

OLS regression for the screening history of mental health and substance use disorders, 

anxiety disorders, and mood disorders groups. The dementia/delirium and alcohol/substance 

disorder groups have the highest average spending ($21,802/person and $20,219/person) – 

thus receiving the largest increases – and become overpaid after we transform the data. The 

constrained regression performs similarly to the data transformation regression in terms of 

the impact on mental illness subgroups. The regression that includes the RxHCCs for 

bipolar, depression, and major depression yields similar results to the baseline regression, 

although compared to the constrained regression and data transformation it generates the 

largest increase in net compensation for individuals without a mental illness HCC. The 

formula with the added RxHCCs also substantially increases net compensation for the mood 

disorders subgroup, which includes depression and bipolar ICD-9 codes.

Figs. 2 and 3 provide a side-by-side comparison of specifically targeted individuals with 

mental illness (Fig. 2) versus all individuals with at least one chronic condition (Fig. 3). Fig. 

2 shows how increasing spending for individuals with a mental health illness and decreasing 

it for all others affects predicted spending – and thus net compensation – at the group level. 

Increasing spending by slightly less than 15% would eliminate underpayment for individuals 

with multiple chronic conditions and a mental illness, while the increase exacerbates the 

overpayment for the mental illness only group. Fig. 3 shows transforming the data to 

increase spending for individuals with multiple chronic conditions has a similar effect on the 

multiple chronic conditions groups with and without mental illness. Given the differing 

levels of initial net compensation, the multiple chronic conditions with mental illness group 

requires a spending increase of approximately 12% while the multiple chronic conditions 

with no mental illness group requires only about a 1% increase to eliminate underpayment.

We also compare the estimated coefficients of the baseline OLS regression to the data 

transformation regression, constrained regression, and regression with additional risk 

adjustors for the mental health example. Appendix Fig. 1 presents the coefficients for the top 

ten most rare conditions, Appendix Fig. 2 shows the coefficients for the top ten most 

common conditions, and Appendix Fig. 3 includes the coefficients for the mental health 

condition risk adjustors. The risk adjustors exhibiting the largest shifts correspond to rare 

conditions or mental health conditions, while the more common conditions are relatively 

stable. Overall, the coefficient differences are relatively small in magnitude.

26We center Fig. 1 at “$0” to demonstrate that both positive and negative net compensation can be achieved by different methods 
across the subgroups; we do not intend to imply that zero is the appropriate level of net compensation.
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5.3. Reducing disparities for individuals in low-income neighborhoods

The low-income group faces a disparity of $162 compared to the high-income (reference) 

group (Table 4). Examined by subgroups (zip code income quintiles), we see the disparity 

primarily occurs in the second and third income quintiles, and largely in relation to use in 

the fifth income quintile. The goal is to increase the average payment for the low-income 

group in order to decrease the disparity. Transforming the data via a 10% spending increase 

to the low-income group raises payments by approximately $25 per person compared to the 

baseline OLS regression (Table 5). The overall fit of the regression is minimally reduced 

from 11.38% by a 10% spending increase: the data transformation regression yields an R2 of 

11.33%. By contrast, adding in a risk adjustor for the low-income group has a large effect 

and makes average payments equal to average costs, as expected. The combination of adding 

a risk adjustor and data transformation leads to the most dramatic change in payments. The 

addition of the low-income group indicator means there is a risk adjustor in the formula that 

is perfectly imbalanced between the group of interest and the reference group. This risk 

adjustor provides a clear channel for the intervention to work through without greatly 

disturbing other coefficients in the risk adjustment formula. Appendix Table 4 presents 

deviations from mean spending by income groups across the risk adjustment alternatives.

Similar to the inefficiency application, the changes in risk adjustor coefficients between the 

baseline regression and alternative methods are minor and we see the largest differences 

occur for rare conditions. Again, the sizes of the coefficient changes are relatively small.

6. Discussion

This paper contributes to the literature on health plan payment on both theoretical and 

practical levels. Our central theoretical insight is that there is a two-way relationship 

between the data describing the performance of the health care system and the level of 

payments that emerge from a risk adjustment methodology. Payments determine behavior, 

and behavior generates the data that feeds into payment algorithms. Our paper calls attention 

to the second link, and introduces a new mechanism for affecting payment and, thus, health 

system performance. The researcher/regulator need not accept the behavior from the flawed 

health care system as the input data for use in calibrating payment, and in general, they 

should not. The mechanism of data transformation is easy to implement in practice, and 

intuitive, and therefore may have ready practical application. Health care systems are 

complex and suffer from allocation problems related to efficiency and fairness. We show 

how the process of transforming the data is a systematic and transparent way to address both 

types of problems.

We present two simplified empirical applications, which assume the current health care 

system underspends on individuals with chronic illnesses and underprovides services for 

individuals living in low-income zip codes. In the context of net compensation by disease 

group, data transformation and constrained regression both outperform the approach of 

including additional risk adjustors. Both data transformation and constrained regression are 

effective methods, have little effect on R2, and improve group fit. If a group is currently 

underserved, adding in a risk adjustor for low-income status will exacerbate the health care 

disparity between low-income and high-income neighborhoods. Combining adding a risk 
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adjustor with a spending increase is more effective at altering incentives than data 

transformation in isolation.

Our goal in this paper is to introduce a new idea for improving the performance of health 

plan payment methods. While the empirical applications show how our model might be 

implemented, this method requires further practical development in terms of how it would be 

deployed within an existing health plan payment system. For example, policy objectives, 

groups to be targeted, and outcome measures would all need to be specified in each year of 

implementation. Additionally, desired spending levels for subgroups must be specified. 

Subgroup performance across a wide variety of groups – including those based on predicted 

spending deciles, chronic conditions, number of HCCs, and demographic characteristics – 

are already routinely used to evaluate Medicare risk adjustment formulas and could help 

shape how the data transformation process is applied (Pope et al., 2004, 2011). Although we 

use the Medicare program as the setting for our empirical demonstration, in practice it may 

be more straightforward to transform the data in a health plan payment system where the 

data used for risk adjustment calibration is the same as the spending data in the current 

system the regulator seeks to affect.27 The Netherlands for example, has such a system, and 

would be an appropriate setting for further empirical work or policy applications.28

Regulators may choose from a variety of policy alternatives to achieve an efficiency or 

fairness goal via the risk adjustment system. Expanding the formula with additional risk 

adjustors is, as discussed earlier in this paper, a common approach. However, it not only is 

harmful in the case of the disparities example, but it also has potential costs in an efficiency 

setting, such as upcoding or other types of gaming, which are avoided by data 

transformation. Various forms of risk sharing, such as outlier payments, are another form of 

modification of health plan payment systems that may address some of the incentives of 

concern here. These policies are distinct, however, and have different effects. Outlier 

payments matter most to the groups with a few very high cost cases, and would have little 

effect on systematic underservice for a broad group of plan enrollees. There is also a large 

set of ad hoc, post-estimation adjustments regulators can implement – i.e., increasing the 

prices paid for certain groups after estimating the risk adjustment formula – but these 

modifications do not attempt to preserve OLS fit properties, rely on risk adjustors exactly 

identifying groups of interest, and do not take into account other subgroups, whose 

coefficients/payments remain untouched. These payment approaches also have problematic 

incentive properties, where insurers face weak incentives to limit spending for individuals 

likely to trigger ex-post payments. Our approach does not share these properties, in that we 

break the connection between insurer spending and insurer payment via a data 

transformation prior to risk adjustment estimation. We aim to expand the regulator’s toolkit 

in order to facilitate achieving objectives that may be more costly or difficult when 

implementing other approaches like ad hoc adjustments or including more risk adjustors.

27Recall that the Medicare risk adjustment formula is calibrated on traditional fee-for-service Medicare data but used to pay private 
Medicare Advantage plans.
28Although in Germany the risk adjustment formula is also calibrated with the spending data the regulator seeks to influence, in 
practice it is likely to be a less impactful setting for our method. Sickness funds (i.e., health plans) have little ability to influence the 
allocation of health care spending, because allocation decisions for nearly all health expenditures (95%) are taken at the collective 
level, leading to uniform prices for physicians and hospitals across sickness funds (Wasem et al., 2018). Thank you to an anonymous 
reviewer for pointing out this detail of the German health plan payment system.
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“Big data” and machine learning methods have been explored as another potential policy 

option for risk adjustment improvement in smaller targeted studies that have shown 

particular promise in terms of producing more parsimonious algorithms that may be less 

vulnerable to insurer gaming (e.g., Rose, 2016; Shrestha et al., 2017; Park and Basu, 2018). 

Despite this promise, these machine learning methods have not been implemented in 

practice, are in need of further vetting, and there is currently no consensus on the extent to 

which data sources like electronic medical records and machine learning tools may 

ultimately improve risk adjustment performance (Ellis et al., 2018). Importantly, big data 

and machine learning methods will not solve the problem of using observed data to estimate 

risk adjustment formulas: although these methods may yield more accurate prediction, if the 

outcome is based on observed data then improved prediction will not address the 

inefficiencies or inequities in the market. Machine learning methods attempt to address the 

risk adjustment problem at the fitting stage rather than our data transformation approach, 

which targets the pre-processing phase.

An increasingly discussed component of using algorithms for social policy decision-making 

is examining the possibility of undesired outcomes or side effects (e.g., Diakopoulos et al., 

2016). All of the risk adjustment approaches we compare demonstrate the potential for 

unintended consequences: in the mental health example, the heart disease group’s 

undercompensation is exacerbated by each of the risk adjustment approaches. In the case of 

data transformation and constrained regression, this is a result of explicitly imposing a total 

budget constraint; in the additional risk adjustor version the budget constraint is implicit. 

This negative side effect raises the issue of which groups to intervene on, which is possible 

and relatively transparent via data transformation or constrained regression, but less 

straightforward in the case of adding risk adjustors. Additionally, we often do not know the 

“right” level of spending for a group or service, so there is always the risk of pushing a 

service “too high” or “too low” when transforming the data. A related potential side effect is 

the shifts in estimated coefficients. Overall, the magnitude of the coefficient differences we 

observe combined with the prevalence of the conditions suggests data transformation does 

not create strong incentives to deter or attract certain groups via direct risk selection.

While the main objective of this paper has been to provide a new approach to payment 

system design, there is another important implication of the basic conceptual issue we 

explore here. It is not only problematic to use observed data to design payment systems, it is 

also problematic to use observed data to evaluate payment systems. R2, predictive ratios, and 

under/overpayment measures of payment system performance evaluate how well plan 

revenues match observed costs, which generally will not be efficient or fair. However, a 

more revealing measure of payment system performance would evaluate how well plan 

revenues track desired levels of spending. Estimation and evaluation methods are clearly 

linked, and if a different estimation approach is warranted, different measures of 

performance are also likely needed.

A strand of the European literature on risk adjustment proposes to address this problem of 

using observed costs to evaluate risk adjustment by instead using “acceptable costs” or 

“normative expenditures” for payment algorithm evaluation (Stam et al., 2010; van de Ven 

and Ellis, 2000). Acceptable costs are those that capture medically necessary care delivered 
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in a cost-effective manner. Our approach is conceptually similar – to set targets for 

acceptable levels of spending that reflect a social policy choice. However, our goals are more 

general in that they allow for a variety of reasons why observed spending may differ from 

efficient spending and we explore a different implementation approach: rather than 

modifying the coefficients assigned to risk adjustment variables, we modify spending data 

based on our beliefs about what acceptable costs should be for the groups we are concerned 

about. An additional, more subtle difference between our approach and the European 

literature is that the existing normative cost approaches focus on removing certain 

(unacceptable) costs when estimating risk adjustment, whereas our method and examples 

involve adding costs that do not occur in the markets generating the observable data. Similar 

to other approaches that make explicit choices about risk factors to subsidize, transforming 

the data may spark political and social debate about which groups should be targeted and 

intervened upon; this debate may be particularly fierce in the U.S. context, where the 

solidarity principle is not well-established.

“Getting the prices right” will be a central problem of health plan payment in health 

insurance markets around the world for years to come. There are many improvements that 

can be made to current methods. Transforming the data itself should be part of any 

policymaker’s toolkit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparing Changes to Net Compensation for Mental Illness Subgroups by Methodological 

Approach. Notes: The “Any Mental Illness” group includes all individuals in the mental 

illness group defined by CCS categories, and the mental illness subgroups are not mutually 

exclusive. The “Baseline OLS” bar shows the average undercompensation for each group 

under status quo conditions, while the remaining bars reflect average net compensation 

under alternative risk adjustment schemes.
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Fig. 2. 
Relationship between Data Transformation Spending Increase for Mental Illness Group and 

Net Compensation, by Chronic Condition.
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Fig. 3. 
Relationship between Data Transformation Spending Increase for Any Chronic Condition 

Group and Net Compensation by Chronic Condition.
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Table 1

Sample Characteristics in 2010 (N = 1.5 million).

Variable Mean (%)

Sex

 Female 55

Age

 <65 17

 65–69 21

 70–74 17

 75–79 16

 80+ 25

Race/Ethnicity

 White 85

 Black 9

 Hispanic 6

Urban/Rural

 Rural 25

Region

 Northeast 18

 Midwest 24

 South 40

 West 17

Chronic Conditions

 Mental illness 22

 Cancer 23

 Heart disease 41

 Diabetes 27

 At least one chronic condition 68

Insurance

 Medicaid 18

Notes: Race/Ethnicity groups are mutually exclusive. Chronic conditions groups are defined using CCS categories. “At least one chronic condition” 
refers to having at least one of four listed major chronic conditions (cancer, diabetes, heart disease, or mental illness).
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