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A B S T R A C T   

Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, 
viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well 
as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular mem-
branes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic 
ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. 
Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a 
liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm 
shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication 
compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell 
machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular 
innate immune response, of which several components also form membrane-less condensates in infected cells.   

1. Introduction 

During their replication cycle, many viruses induce the formation of 
specialized intracellular compartments in the host cell. These structures 
often referred as viral inclusions, viral factories or viroplasms, con-
centrate viral proteins, nucleic acids and specific cellular factors. In 
many cases, those viro-induced compartments harbor essential steps of 
the viral cycle and constitute a platform facilitating viral replication 
and assembly but also protecting the viral genome from cellular defense 
mechanisms. Such viral factories have been now identified for a variety 
of non-related viruses [1–3]. 

Viral factories are very heterogeneous. They can be associated with 
membranes from diverse organelles (mainly endoplasmic reticulum 
-ER-, late endosomes, lysosomes, and mitochondria) that they re-
arrange. This is the case for positive-strand RNA viruses leading to the 
formation of double-membrane vesicles (Coronaviridae, Arteriviridae, 
Picornaviridae and Flaviviridae) or spherules derived from diverse 
cellular membranes (Togaviridae, Nodaviridae and Flaviviridae) 
(Fig. 1). 

However, for several negative-strand RNA, double stranded RNA 
and DNA viruses, viral factories are devoid of membranes. These 

compartments can be either cytosolic or nuclear and, in several in-
stances, have been demonstrated to have properties like those of liquid 
organelles (Fig. 1). 

Membrane-less liquid organelles contribute to the compartmentali-
zation of the eukaryotic cell interior [4–7]. They are referred as droplet 
organelles, proteinaceous membrane-less organelles or biomolecular 
condensates and are involved in a wide range of cell processes. They 
can be either located in the cytosol (for stress granules - SG [8,9] and P- 
bodies [5]) or in the nucleus (which is the case for Cajal bodies [10], 
nucleoli [11,12] and nuclear speckles [13]). They are very dynamic 
structures, extremely sensitive to their physicochemical environment, 
which assemble and disassemble much more rapidly than membrane- 
delimited organelles. Finally, they are highly enriched in some proteins 
that are much more concentrated in those structures than in the cytosol, 
as a result of liquid-liquid phase separation (LLPS) [7]. With the rapid 
identification of cellular membrane-less compartments and proteins 
that undergo LLPS in vitro, a major challenge in the field is to demon-
strate unambiguously that a specific structure is indeed a phase-sepa-
rated liquid body in the cellular context. Currently, common criteria for 
defining such a structure are that it is spherical, fuses, reversibly de-
forms when encountering a physical barrier, and recovers from 
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photobleaching [14]. 
Here, we will review membrane-less viral compartments with a 

focus on those that have liquid organelles properties. We will discuss 
their composition and their interactions with the host cell machineries, 
particularly those of the innate immune system, of which several 
components also form membrane-less condensates in infected cells, and 
of the cytoskeleton. 

2. Mononegavirales viral factories 

2.1. The Mononegavirales order 

Mononegavirales (MNV) constitute a viral order which contains 
several viruses causing important human diseases (including rabies 
virus - RABV, Ebola virus - EBOV, measles virus - MeV, mumps virus - 
MuV, human respiratory syncytial virus - RSV). Their genome consists 
of a negative sense, single-stranded RNA molecule ranging from 10 to 
15 kb, starting and ending with a non-coding leader and trailer se-
quence, respectively. The viral RNA is tightly associated with the nu-
cleoprotein (N or NP) to form the helical ribonucleoprotein (RNP) 
(Fig. 2). The RNP recruits the viral RNA-dependent RNA polymerase 
(RdRp) complex, composed of the protein L (the polymerase which 
bears polyribonucleotidyltransferase and methyltransferase activities) 
and its non-enzymatic cofactors (P for rhabdoviruses, paramyxoviruses, 
and pneumoviruses, VP35 for filoviruses), to form the nucleocapsid. In 
the nucleocapsid, P acts as a tether between L and the RNP. The nu-
cleocapsid is enwrapped by a lipid bilayer that is derived from a host 
cell membrane during the budding process. The matrix protein (M, 
VP40 for filoviruses) is located beneath the viral membrane and bridges 
the RNP and the lipid bilayer, which contains one or two 

transmembrane glycoproteins that are involved in viral entry. 
The cell cycle of MNV is entirely cytoplasmic (with the notable 

exception of that of the Bornaviridae family members). The negative 
sense RNP, once released in the cytoplasm, constitutes the template for 
viral gene expression and replication by the RdRp complex. In this 
complex, P is bridging L and the template-associated nucleoproteins. 
Transcription begins at the 3′ end of the genomic RNA and results in the 
synthesis of a positive, uncapped and short leader RNA and capped and 
polyadenylated messenger RNAs (mRNAs). Viral mRNAs are then 
translated by the host cell translation machinery providing a source of 
N protein necessary to encapsidate the nascent RNA. This results in the 
switch of the activity of the RdRp complex from transcription to re-
plication to produce RNPs containing full-length antigenomic RNA 
(positive sense), which in turn serve as templates for the synthesis of 
genomic RNA (negative sense). During the replication stage, when not 
bound to the viral genomic or antigenomic RNA, N is kept soluble by 
binding the amino-terminal region of P thus forming the so-called N0P 
complex (Fig. 2B, D) [15–17]. 

2.2. Inclusion bodies formed during MNV infection have liquid properties 

Inclusion body (IB) formation is a hallmark of infection by members 
of the MNV. The most emblematic ones are the Negri bodies (NB) which 
are formed in the cytoplasm of neurons infected by RABV. They have 
been discovered by Adelchi Negri in 1903 [18,19] and are easily ob-
served using Seller's staining. These structures have a diameter up to a 
few micrometers and have been used for decades as a histological proof 
of RABV infection. 

In the case of rhabdoviruses (RABV and vesicular stomatitis virus - 
VSV) [20–22], filoviruses [23] and RSV [24], these IBs contain all the 

Fig. 1. Diversity of viro-induced compartments. 
Those compartments are viral factories that host essential steps of the viral cycle and shield viral components from host defenses. These viral replication com-
partments can be membrane-delimited or membrane-less compartments. 
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RNP components (N, L and P) as well as viral RNAs (genomic, anti-
genomic, and messengers) which are synthesized inside. Therefore, 
these inclusions are bona fide viral factories. It is also supposed that 
cytoplasmic IBs formed by paramyxoviruses such as MeV [25], MuV 
[26] or parainfluenza viruses [27,28] harbor similar viral activities. 
However, the IBs formed during Nipah virus (NiV, which also belongs 
to the Paramyxoviridae family but is a member of the Henipavirus 
genus) infection do not seem to support viral RNA synthesis. They are of 
two kinds: the first ones are in the periphery of the nucleus and recruit 
newly synthesized NiV genomes encapsidated by N proteins, which are 
then further transported to square-shaped crystalline inclusions located 
beneath the plasma membrane [29]. 

The viral factories of rhabdoviruses [30,31], paramyxoviruses 
[25,28,32] and filoviruses [23,33] as well as the peripheral NiV IBs [29] 
and the nuclear IBs formed by Borna disease virus phosphoprotein [34] 
are spherical (at least during the initial stages of infection), suggesting that 
they could be liquid organelles formed by phase separation. This liquid 
nature was confirmed by live-cell imaging for RABV [30], VSV [31] and 
MeV [25]. First, it was shown that when two spherical inclusions contact 
one another, they readily fuse and round up into a single larger spherical 
one [25,30,31]. They also reversibly deform when encountering a phy-
sical barrier and disappear when exposed to an osmotic shock [30]. Fi-
nally, fluorescence recovery after photobleaching (FRAP) measurements 
are also in agreement with the liquid nature of MNV IBs [25,30,31] and 
reveal that P, although more concentrated in the inclusions, can reversibly 
exchange with a cytoplasmic pool [25,30,31,34]. 

2.3. Segmented negative strand RNA viruses also forms IBs 

Beyond the MNV order, IBs are also observed during segmented 
negative strand RNA virus infections. Indeed, it has been shown that 
cells infected by influenza A virus contain inclusions located in the 
vicinity of the ER exit site. These inclusions, which have been proposed 
to be involved in the control of the assembly process, have liquid 
properties [35]. Similarly, the spherical aspect of the granules, which 
concentrate the three Bunyavirus genome segments [36], suggests the 
possibility that they also have liquid properties. 

2.4. Minimal systems recapitulating the liquid properties of MNV IBs 

Co-expression of N and P proteins of paramyxoviruses and RABV 
after cell transfection also leads to the formation of spherical inclusions 
[25,30,37,38]. In the case of VSV, the presence of L protein is also re-
quired for such inclusions to be formed [31] whereas in the case of 
EBOV, NP alone is sufficient for IB generation [39]. For both RABV and 

MeV, the N-P inclusions formed in this minimal system have the same 
liquid characteristics as the viral factories [25,30]. In the other cases, 
the spherical aspect of the inclusions is a strong argument in favor of 
their liquid nature, but additional experiments are necessary to defi-
nitively conclude on this point. 

RABV and MeV minimal systems were used to identify P and N 
domains that are essential for inclusion formation. The phosphoprotein 
of paramyxoviruses and rhabdoviruses share a common modular or-
ganization [40–42] (Fig. 3). The N-terminal part of the protein is in-
volved in the formation of the N0P complex [43–45] (Figs. 2B, D, 3C) 
and, for rhabdoviruses, in the interaction with the L protein [46,47] 
(Fig. 3B, D). The C-terminal domain (PCTD for RABV and VSV, XD for 
MeV) binds N associated with RNA [48–50] (Fig. 3). The XD domain of 
paramyxoviruses can also bind L [51]. Two central intrinsically dis-
ordered domains (IDD1 and IDD2 for RABV, Ptail and Ploop for MeV) are 
flanking an oligomerization domain. Rhabdovirus P is dimeric in so-
lution [52,53] (Fig. 3B, C) whereas paramyxovirus P form tetramers 
[54] (Fig. 3E). Despite the absence of sequence similarity and the dif-
ferences in the domain structures (Fig. 3), for both RABV and MeV P, it 
has been shown that the oligomerization domain, the second in-
trinsically disordered domain (IDD2/PLoop) and the C-terminal domain 
(PCTD/XD) are required for IB formation whereas the N-terminal part 
and the first intrinsically disordered domain are dispensable [25,30]. 

More recently, it has been shown that MeV N (produced in asso-
ciation with the 50 first amino-terminal residues of P and thus in the 
form N0P50) and P expressed in E. coli form liquid-like membrane-less 
organelles upon mixing in vitro under physiological salt and protein 
concentrations [55]. As in the cell [25], the oligomerization domain, 
PLoop and XD are required for LLPS. In this system, it was also shown 
that the interaction between the disordered C-terminal part of N (NTail 

residues 400–525) and XD of P is essential for droplet formation. In-
deed, a mutation of N (S491L) abrogating the NTail:PXD interaction and 
known to significantly decrease viral transcription in vivo resulted in 
suppression of phase separation. Finally, when RNA was added, it 
concentrated in the N-P droplets and was encapsidated by N protomers 
to form nucleocapsid-like particles. The rate of encapsidation within 
droplets was enhanced compared to the dilute phase, which suggests a 
function of LLPS in MeV replication [55]. 

Finally, in the case of EBOV, the C-terminal domain of NP (NP-Ct) is 
necessary for IB formation when NP is expressed alone. However, co- 
expression of the nucleocapsid component VP35 overcomes deletion of 
NP-Ct in triggering IB formation. This effect is mediated by an inter-
action between VP35 and NP implicating a central domain (CD, re-
sidues 480–500) of NP enriched in acidic residues and the interferon 
(IFN) inhibitory domain of VP35 [39]. 

Fig. 2. Structures of rhabdovirus (VSV) and paramyxovirus (MeV) nucleoproteins. 
A) Bar diagram showing the domain organization of VSV nucleoprotein. 
NTD stands for N-terminal domain CTD and CTD for C-terminal domain. 
B) Structure of VSV nucleoprotein. 
Left part: Space-filling model of VSV N-RNA complex (X-Ray structure of a 10 N subunit ring (in shades of purple) associated with 90 RNA bases (in red) (2GIC.pdb) 
[158]. Each VSV N subunit interacts with 9 RNA bases. In this conformation, the RNA molecule is clamped at the interface of the NTD and the CTD. Each N subunit is 
shown in a different color indicating that the NTD arm from the nth subunit reaches over to the (n − 1)th sub-unit and its CTD arm reaches over to the (n + 1)th sub- 
unit. This arrangement leads to the interaction of both (n + 1)th NTD and (n − 1)th CTD with each other and the surface of sub-unit nth. 
Middle part: Ribbon diagram of a N protomer associated with 9 RNA bases (in orange). Two small subdomains (NTD arm and CTD arm) emerge from NTD (in purple) 
and CTD (in green) resp. 
Right part: Ribbon diagram of VSV N°P RNA free structure (3PMK.pdb) [44]. VSV NΔ21 (lacking the NTD arm) was crystallized in complex with the 60 first residues 
of VSV P (P60) in orange. P60 folds upon binding to N and avoid RNA binding by filling the RNA-binding groove of N. 
C) Bar diagram showing the domain organization of MeV nucleoprotein. 
Same abbreviations than in A; MoRE stands for molecular recognition element. 
D) Structure of MeV Nucleoprotein. 
Left part: Space-filling model of the structure of the MeV Ncore-RNA helical nucleocapsid (side view and top view) obtained by cryoEM (4UFT.pdb) [159]. The top 
view allows the visualization of the protomers. The RNA molecule is in red. 
Middle part: Ribbon diagram of a MeV Ncore promoter associated with 6 RNA bases (in red). 
Right part: Ribbon diagram of MeV N°P RNA free complex (5E4V.pdb [45]). Ncore (lacking the 21 first amino acids) was crystallized in complex with the 48 first 
residues of P (P48). P48 chaperone N°, preventing both binding to RNA and self-assembly. 
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Globally, MNV IBs share several features with cellular liquid orga-
nelles. Indeed, as other liquid organelles, MNV IBs contain RNAs (viral 
RNAs in infected cells or cellular ones in the minimal systems in which 
N is associated with cellular RNAs and forms N-RNA rings and short 
RNP-like structures [43,56]), RNA-binding proteins (N in this case) and 
proteins containing IDDs (P and sometimes N in this case). For several 

cellular proteins that phase-separate, cation-pi interactions between 
arginine and aromatic residues have been shown to be key in the pro-
cess [57,58]. It is not known whether similar residues mediate the weak 
interactions that drive LLPS for MNV condensates. A comparison be-
tween RABV, MeV and EBOV nucleoprotein and phosphoprotein se-
quences with a focus on their IDDs do not reveal conserved specificities 

Fig. 3. Structures of rhabdoviruses (RABV and VSV) and paramyxovirus (MeV) phosphoproteins. 
A) Bar diagram showing the conserved domain organization of RABV and VSV P. NTD stands for N-terminal domain and CTD for C-terminal domain. IDD is for 
intrinsically disordered domain and DD for dimerization domain. 
B) RABV P dimer. Only the X-ray structures of its dimerization domain (3L32.pdb and CTD (1VYI.pdb [50]) are known so far. RABV L interacts with the IDD1 of P. L 
is composed of an RNA-dependent RNA polymerase (RdRp) domain, capping (CAP) domain, connector domain (CD), methyltransferase (MT) domain, and C-terminal 
domain (CTD) (6UEB.pdb [47]). 
C) VSV P dimer. The X-ray structure of the dimerization domain is indicated (2FQM.pdb [53]). The CTD (2K47.pdb [160]) binds to N-RNA complex. VSV L interacts 
with the N-terminal part of P (6U1X.pdb [46]). VSV RNA free N sub-units interacts with the P NTD (3PMK.pdb [44]) preventing RNA binding in the N RNA cavity. 
D) Bar diagram showing the modular organization of MeV P. Same abbreviations than in A. TD strands for tetramerization domain. 
E) MeV P tetramer associates via its oligomerization domain (3ZDO.pdb [161]).The P NTD binds to the N° RNA free sub-units (5E4V.pdb [45]). The XD C-terminal 
domain of P folds into a small helix bundle that interacts with a MoRE located in the extremity of the Ntail domain of N-RNA nucleocapsid (1T6O.pdb [162]). 

Q. Nevers, et al.   BBA - Molecular Cell Research 1867 (2020) 118831

5



besides a slight enrichment in positive residues in RABV IDD2 and MeV 
Ploop (both required to observe LLPS in the minimal systems) (Table 1). 
Furthermore, alignment of the sequences of lyssaviruses phosphopro-
teins reveal a poor conservation of IDDs compared to the rest of the 
protein sequence in the viral genus [30]. 

3. Beyond MNV: membrane-less replication compartments of DNA 
and other RNA viruses 

3.1. DNA viruses 

The first viral factories which were characterized were those of 
large DNA viruses such as the Poxviridae, the Iridoviridae and the 
Asfarviridae [59–62]. Those cytoplasmic factories are devoid of mem-
brane and located near the microtubule organizing center. They have 
several characteristics reminiscent of those of the cellular aggresomes 
which concentrate misfolded proteins in the cell [63]. They recruit 
mitochondria in their vicinity, contain molecular chaperones such as 
heat-shock proteins (HSP) and are surrounded by a vimentin cage [64]. 
However, no data are supporting the possible liquid nature of those 
cytoplasmic structures. 

Other DNA viruses belonging to Herpesviridae, Adenoviridae, 

Parvoviridae, Polyomaviridae and Papillomaviridae families induce the 
formation of membrane-less assemblies inside the nucleus termed viral 
replication compartments (or centers), hereafter referred as VRCs [65], 
which concentrate viral proteins and nucleic acids, incoming viral 
genomes and host proteins. Herpesviruses and adenoviruses VRCs also 
coalesce as infection progresses and can fuse together in a liquid-like 
manner [66–69]. However, unlike many other cellular liquid organelles 
[70–72], HSV-1 VRCs are not disrupted by treatment with 1,6-hex-
anediol and a model of their formation, not based on LLPS, has been 
proposed [69]. However, sensitivity to hexanediol is insufficient to 
unequivocally demonstrate that a structure is formed via LLPS [14] and 
the identification of the physicochemical principles underlying HSV-1 
VRCs remains an open issue. On the other hand, EBNA2 and EBNA-LP 
proteins of Epstein-Barr virus (EBV) have been shown to form punctate 
inclusions in the nucleus having properties of liquid organelles. Fur-
thermore, mixing EBNA2 and EBNA-LP in vitro was sufficient to induce 
liquid phase separation. This phase separation of EBNA2 and EBNA-LP 
was proposed to be important for their transcription factor activity 
[73]. 

The property of DNA viruses to form viro-induced compartments 
devoid of membranes can be extended to bacteriophages. Indeed, 
Pseudomonas chlororaphis phage 201φ2-1 assembled a compartment 
that separates viral DNA from the cytoplasm. However, this compart-
ment in which DNA replication and transcription occur is not formed by 
LLPS but is rather completely enclosed by an apparently contiguous 
protein shell [74]. 

3.2. dsRNA viruses 

Double strand RNA (dsRNA) viruses are also known to induce the 
formation of membrane-less cytosolic electron-dense inclusions. This is 
particularly documented for the Reoviridae family of viruses which 
contain 10 (for reoviruses) or 11 (for rotaviruses) segments of genomic 
dsRNA. Those organelles are referred as viroplasms. They constitute the 
site of viral genome transcription and replication, as well as the site of 
packaging of the newly synthesized pregenomic RNA segments into the 
viral cores [75–78]. Viroplasms appear to be spherical and can fuse 
together [79,80] which indicates that they have liquid properties. For 
rotaviruses, viroplasms are nucleated by two essential non-structural 
proteins, NSP2 and NSP5, and the inner virion capsid protein VP2, with 
NSP5 being crucial for both the recruitment of viroplasmic proteins and 
the architectural assembly of the viroplasms. In non-infected cells, co- 
expression of NSP5 either with NSP2 or VP2 leads to the formation of 
viroplasm-like structures [81,82]. Interestingly, NSP5 shares several 
characteristics with the phosphoproteins of MNV as it is phosphory-
lated, forms oligomers and contains intrinsically disordered segments 
[83]. Similarly, for reoviruses, the expression of the non-structural 
protein μNS alone leads to the formation of large inclusions that are 
similar to the viroplasms [84]. However, unlike NSP5, μNS is not pre-
dicted to contain long intrinsically disordered segments. 

3.3. Positive strand RNA viruses 

Although the viral factories of positive stand RNA viruses are as-
sociated with membranes, several of those viruses also form spherical 
intracytoplasmic inclusions that might have liquid properties. For ex-
ample, depending on their genus, coronavirus nucleocapsid proteins 
(N) can form inclusion either in the cytoplasm [85] or in the nucleus in 
association with the nucleolus [86,87]. In keeping with this idea, it has 
been shown in vitro that the SARS-CoV-2 N protein contains disordered 
regions and phase separates with RNA [88–91]. The phase separation is 
regulated by N phosphorylation [91]. Interestingly, in vitro, N also 
partitions into liquid phases formed by several human RNA-binding 
proteins [89], which is reminiscent of coronavirus N ability to associate 
with the nucleolus. These observations made in acellular systems re-
main to be consolidated by data obtained in infected cells. 

Table 1 
Some characteristics of nucleoproteins and phosphoproteins of MNV involved 
in condensates formation.        

Protein 
(UniProt 
identifier) 

Sequence Asp/Glu 
frequencya 

Lys/Arg 
frequencyb 

Net 
charge 
per 
residuec 

Phe/Tyr/ 
Trp 
frequencyd  

RABV P 
(P22363) 

Full length 
1–297 

20/29 
16.5% 

20/17 
12.5% 

−0.040 11/6/3 
6.7% 

IDD1 
59–90 

5/6 
35.5% 

2/2 
12.9% 

−0.218 1/1/0 
6.5% 

IDD2 
132–182 

1/4 
9.8% 

4/5 
17.6% 

+0.078 2/0/0 
3.9% 

MeV P 
(P03422) 

Full length 
1–507 

32/41 
14.4% 

31/27 
11.4% 

−0.029 7/7/2 
3.2% 

P tail 
38–304 

16/24 
15% 

8/14 
8.3% 

−0.068 3/4/1 
3.0% 

P loop 
376–449 

5/3 
10.8% 

8/5 
17.6% 

+0.068 1/0/0 
1.35% 

EBOV VP35 
(Q05127) 

Full length 
1–340 

17/20 
10.9% 

16/18 
10% 

−0.009 9/6/3 
5.3% 

IDD1 
48–81 

1/1 
5.9% 

2/1 
8.8% 

+0,029 0/1/0 
2.9% 

IDD2 
159–213 

1/9 
18.2% 

1/3 
7.3% 

−0,109 1/2/1 
7,3% 

RABV N 
(P16285) 

Full length 
1–450 

22/32 
12% 

26/23 
10.9% 

−0,011 27/21/3 
11.3% 

MeV N 
(Q89933) 

Full length 
1–525 

37/36 
13.9% 

17/42 
11.2% 

−0.112 17/12/5 
6.5% 

Ntail 
392–525 

13/11 
17.9% 

3/15 
13.43% 

−0,045 1/2/0 
2.2% 

EBOV NP 
(P18272) 

Full length 
1–739 

59/59 
16% 

38/33 
9.6% 

−0.063 26/21/4 
6.9% 

NTail 
413–640 

41/16 
25% 

7/11 
7.9% 

−0.171 2/5/0 
3% 

Both full length and IDD sequences have been analyzed. 
RABV N do not contain IDDs. Putative IDDs for EBOV NP and VP35 have been 
identified using IUPred2A [151]. 

a Number of Asp residues and number of Glu residues. Frequency of nega-
tively charged residues. 

b Number of Lys residues and number of Arg residues. Frequency of posi-
tively charged residues. 

c Net charge per residue = (number of Arg residues + number of Lys re-
sidues − number of Asp residues − number of Glu residues) / total number of 
residues in the sequence. 

d Number of Phe residues, number of Tyr residues and number of Trp re-
sidues. Frequency of aromatic residues.  
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4. Interaction of viral liquid IBs with host-cell machineries 

4.1. Viral IB proteomes 

LLPS is an efficient process for viral factories enrichment in specific 
cellular factors. They can be recruited by two different ways. First, their 
properties can induce their preferential partitioning in the dense phase. 
Second, they may be recruited by a viral or cellular protein which itself 
preferentially partitions in the IBs. 

For RABV, several cellular proteins are concentrated in NBs. This 
includes Hsp70 [21,92], the focal adhesion kinase (FAK) [93], cha-
peronins CCTα and CCTγ [94,95], endothelial nitric oxide synthase 
[96] and ubiquitinylated proteins [21]. Globally, the cellular proteins 
identified in MNV IBs are extremely diverse. Another heat shock protein 
(Hsp72) is found associated with MuV IBs [26]. The WD repeat-con-
taining protein 5 (WDR5), a subunit of histone H3 lysine 4 methyl-
transferase, as well as the actin-modulating protein cofilin [97,98] 
concentrate in MeV ones. The phosphorylated mitogen-activated pro-
tein kinase p38, a key regulator of cellular inflammatory and stress 
responses, and the O-linked N-acetylglucosamine (OGN) transferase, an 
enzyme that catalyzes the posttranslational addition of OGN to protein 
and is also involved in stress response, are sequestered in RSV IBs [99]. 
Finally, EBOV NP recruits several proteins into the IBs, which include 
the nuclear RNA export factor NFX1 to drive viral protein synthesis 
[100] and the histone-lysine-methyltransferase SMYD3 [101] as well as 
the CAD protein [102] to facilitate mRNA transcription and replication. 

Mass spectrometry analyses of pull-down complexes of tagged NSP2 
and NSP5 from human rotavirus incubated with extracts from unin-
fected rotavirus-permissive MA104 cells revealed the presence of sev-
eral host heterogeneous nuclear RNPs (hnRNPs) and AU-rich element- 
binding proteins (ARE-BPs) [103]. Finally, the composition of HSV-1 
VRC has been investigated by immunoprecipitation of ICP8 that ap-
pears as one of their most important components. This has allowed the 
identification of more than 50 viral and cellular proteins, mainly in-
volved in DNA replication, DNA repair, chromatin remodelling, tran-
scription, and RNA processing [104]. 

In conclusion, although a significant number of proteins have been 
found associated with viral IBs, the precise role of those associations 
with, or sequestrations in, IBs or VRCs as well as the underlying mo-
lecular mechanisms remain to be determined and will certainly con-
stitute a new field of research in the coming years. 

4.2. Interactions of viral factories with the cytoskeleton and cellular 
membranes 

The cytoskeleton plays an important role in the morphogenesis and 
evolution all along the cycle of viral factories. The formation of the 
cytoplasmic viral factories of large DNA viruses requires an intact mi-
crotubule network and induces the redistribution of the intermediate 
filament protein vimentin that forms a cage around the viral assembly 
site [64] (Fig. 1). 

For MNV, the dependence on the microtubule network may vary 
depending on the viral family. In the case of RABV, the viral nucleo-
capsids, once ejected from the NBs, are transported further away along 
the microtubule network where they can form new viral factories which 
are detected as NBs of intermediate size. In the presence of Nocodazole 
(NCZ), a drug that depolymerizes microtubules, RABV NBs of inter-
mediate size are no more detected and a single exceptionally large NB is 
observed [21,30]. In fact, in the presence of NCZ, RNPs are still ejected 
from NBs but cannot be transported further away and the newly formed 
viral factories remain located in the vicinity of, and rapidly fuse with, 
the initial NB which then becomes much larger [30]. For MeV, the 
initial small and spherical IBs progressively coalesce and fuse in the 
nucleus periphery to form bigger inclusions that lose their spherical 
shape and most probably their liquid properties. In the presence of 
specific inhibitors of dynein motor function, the vast majority of IBs 

remains small, spherical, and uniformly distributed throughout the 
cytoplasm [25]. This suggests a role of the microtubule network in the 
transport and maturation of the initial IBs. A remarkably similar ob-
servation has been made on the Reoviridae family as, here again, the 
perinuclear condensation of the viral factories is strictly dependent on 
an intact microtubule network [80]. 

The role of actin filaments in IB formation and maturation has not 
been investigated so far but in the presence of the actin depolymerizing 
agent Cytochalasin D, RABV NBs appear to be more fragmented and 
smaller [30]. 

Finally, at the late stages of RABV infection, NBs become wrapped 
by a double membrane, seemingly derived from rough ER [21]. They 
lose their spherical shape [21,30] and virions are observed that bud 
from NBs into the compartment delimited by the associated double 
membrane [21,105]. The molecular bases of this association between 
NBs and cell membranes are unknown and whether such an association 
can be extended to other MNV factories is still an open question. In-
terestingly, ER contains contact site domains, which tether cytoplasmic 
liquid organelles such as P-bodies and drive their fission in an active 
process [106]. It is not excluded that RABV has hijacked a cellular 
machinery specifically involved in this process or that the same basic 
physicochemical principles are at work in both cases. 

5. Interplay between viral IBs and innate immunity 

5.1. MNV proteins counteract innate immunity 

The ubiquitous nature of liquid viral factories among negative- 
strand RNA viruses makes them a signature of infection and one might 
hypothesize that the cells have evolved a mechanism allowing the 
sensing of such structures and/or their destabilization by the product of 
some interferon-stimulated genes (ISG). On the other hand, the se-
questration of viral RNAs (and particularly double-stranded RNA ex-
posing 5′triphosphate) inside the viral factories raises the question of 
their accessibility to cytosolic pathogen recognition receptors such as 
RIG-I and MDA-5 [107]. 

The subtle interplay between viral IBs and innate immunity is par-
ticularly exemplified by RABV for which P is not only one of the major 
component of the NBs but also the major viral counteractant of the 
innate immune response [108]. First, P has a critical role in suppression 
of IFN production by blocking the phosphorylation of the transcription 
factor interferon regulatory factor 3 (IRF-3) [109]. Second, the inter-
action of P with STAT1 leads to the inhibition of IFN signaling by dif-
ferent processes including inhibition of STAT1-DNA binding [110] and 
STAT1 sequestration away from the nucleus [111]. 

Similarly, EBOV VP35, which is concentrated in the IBs largely 
counteracts the innate immunity. It binds double-stranded RNA and 
inhibits IFN production induced by RIG-I signaling [112,113], prevents 
PKR activation [114] and impairs the function of IFN regulatory factor- 
activating kinases IKKε and TBK-1 [115]. 

In the case of paramyxoviruses, the proteins that inhibit IFN pro-
duction and counteract IFN response, although expressed from the P 
gene, are distinct from P [116]. They are either expressed from an al-
ternate reading frame or from an alternate transcript due to the pre-
sence of an editing site. C protein of MeV corresponds to the former case 
and has a completely different amino-acid sequence from P whereas V 
protein corresponds to the latter case and has the same amino-terminal 
part as P but a distinct C-terminal domain. Consequently, V is missing 
the P domain required to associate with IBs and V protein has primarily 
a diffuse nuclear distribution [117]. 

Therefore, MNV evolved different strategies to counteract innate 
immunity. Some viruses may sequester the proteins involved in those 
pathways inside the viral IBs whereas others keep them away from the 
viral factory. 
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5.2. Innate immunity sensors are found in membrane-less condensates 

Several cytosolic sensors of the innate immunity are also associated 
with liquid organelles. The best characterized of those organelles are 
the SGs which are formed when the cell is under a cytoplasmic stress. 
They are storage sites containing translationally silenced mRNPs that 
can be released to resume translation after the stress subsides. SGs can 
be induced by viral infections [9,118] and are thought to have antiviral 
activities as they contain RIG-I and MDA-5 [119–121]. Interestingly, 
during RABV infection, SGs come into close contact with NBs [9] but do 
not fuse with them [30]. This indicates that NBs and SGs are made of 
non-miscible liquid phases. However, they exchange some material as 
the mRNAs (but not the genomes and antigenomes) are transported 
from NBs, where they are synthesized, into SGs [9]. For VSV, it has been 
shown that SGs associated proteins such as Poly(RC) Binding Protein 2 
(PCBP2), T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-re-
lated protein (TIAR) are associated with the viral factories. However, 
the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or 
eIF4A were not present in the factory [122]. In accordance with these 
results, it is worth noting that TIA-1 exerts an antiviral effect on both 
RABV [9] and VSV [122]. 

Similarly, mammalian orthoreovirus (MRV) infection also induces 
the formation of SGs [123]. However, as infection proceeds, normal SG 
puncta are disrupted, and SG-associated proteins localized to the per-
iphery of viral factories [124]. SGs alteration is due to MRV σNS protein 
association with Ras-GAP SH3-binding protein 1 (G3BP1) [124], a 
double-stranded nucleic acid helicase which is a master regulator of SG 
formation [125]. By comparing MRV replication on wild-type and 
G3BP1−/− MEFs, it was shown that G3BP1 inhibits viral growth [124]. 
It has been suggested that G3BP1 relocalization to the viral factory 
periphery induced by σNS induces SG disruption in order to facilitate 
MRV replication in the host translational shutoff environment [124]. 
On the other hand, for rotaviruses, which also belong to the Reoviridae 

family, it appears that most of the main SG components are present in 
the viroplasms but that there is a selective exclusion of G3BP1. This 
sequestration promotes progeny virus production [126]. Taken to-
gether, all those examples indicate that there is a general, although 
remarkably diverse, interplay between SGs and viral factories. 

More recently, it has been shown that the cyclic GMP-AMP synthase 
(cGAS, which leads to the production of the secondary messenger cyclic 
GMP-AMP), a major sensor of cytosolic DNA from invading viruses 
which triggers innate immune responses, induced the formation of li-
quid-like droplets by binding DNA in which cGAS was activated [127]. 
In a cellular context, the liquid phase separation and the IFN response 
to intracellular DNA are both dependent on the presence of G3BP1, 
which binds cGAS. Finally, an RNA-dependent association with PKR 
promoted the formation of those G3BP1-dependent, membraneless cy-
toplasmic structures necessary for the DNA-sensing function of cGAS in 
human cells [128]. Thus, the nucleic acid sensing pathways involved in 
viral infection detection require the formation of specialized subcellular 
structures having liquid properties. 

5.3. MxA and PML, two ISG products, form membrane-less condensates 

Several ISG products also form membrane-less condensates. This is the 
case of human MxA, a cytoplasmic 70-kDa dynamin-family large GTPase 
which is induced in cells exposed to type I and III IFNs and has a broad 
spectrum of antiviral activities [129]. Even in uninfected cells, MxA forms 
spherical or irregular bodies of variable size, filaments, and sometimes a 
reticulated network that reversibly disassemble/reassemble within min-
utes of sequential decrease/increase, respectively, in tonicity of extra-
cellular medium [71]. Furthermore, in VSV-infected Huh7 cells, pre-
viously transfected with a plasmid expressing GFP-MxA, N protein is 
associated with spherical GFP-MxA condensates. Moreover, in the GFP- 
MxA positive cells, N is much less expressed than GFP-MxA negative cells 
present in the same cell layer indicating a strong antiviral effect of MxA. 

Table 2 
Membrane-less viral factories. MeV: measles virus; HPIV3: human parainfluenza virus 3; PIV5: parainfluenza virus 5; NiV: Nipah virus; MuV: mumps virus; SV5: 
simian virus 5; hRSV: human respiratory syncytial virus; hMPV: human metapneumovirus; VSV: vesicular stomatitis virus; RABV: rabies virus; BoDV: Borna disease 
virus; EBOV: Ebola virus; IAV: influenza A virus; RVFV: Rift Valley fever virus; ReoV: reovirus; RotaV: rotavirus; EBV: Epstein-Barr virus; HSV-1: herpes virus 1; 
HCMV: human cytomegalovirus; KSHV: Kaposi's sarcoma herpes virus; VZV: varicella zoster virus; VV: vaccinia virus; ASFV: asfavirus.          

Genome organization Order Family Virus Liquid properties Viral proteins found in IBs Minimal system available (viral 
proteins required) 

References  

Non-segmented - ssRNA Mononegavirales Paramyxoviridae MeV Yes N, P, L Yes (N, P) [25,55] 
HPIV3 Yes N, P Yes (N, P) [28,152] 
PIV5 Suspected N No [27] 
NiVa Suspected N, P, L Yes (N, P) [29] 
NiVa Crystalline 

inclusions 
N, P, M Yes (N, P, M) [29] 

MuV Suspected P No [26] 
SV5 Suspected N, P No [32] 

Pneumoviridae hRSV Suspected N, P, L Yes (N, P, L, M2-1) [24,153] 
hMPV Suspected N, P Yes (N, P) [37,154] 

Rhabdoviridae VSV Yes N, P, L Yes (N, P, L) [31] 
RABV Yes N, P, L Yes (N, P) [30] 

Bornaviridae BoDV Suspected P No [34] 
Filoviridae EBOV Suspected VP24, VP30, VP35, VP40, 

NP, L 
Yes (NP) [23,155] 

Segmented - ssRNA Articulavirales Orthomyxoviridae IAV Yes RNPs No [35] 
Bunyavirales Bunyaviridae RVFV Suspected Unknown No [36] 

Segmented dsRNA Reovirales Reoviridae ReoV Suspected σNS, μNS Yes (μNS) [78,84] 
RotaV Yes NSP5, NSP2, VP2 Yes (NSP5, NSP2, VP2) [78,79,81] 

dsDNA Herpesvirales Herpesviridae EBV Yes EBNA2, EBNALP Yes (EBNA2, EBNA-LP) [73] 
EBV Unknown BZRF, BNRF1 No [156] 
HSV-1 Unknownb ICPs 0, 4, 8, 27, UL9, U42 No [156] 
HCMV Unknown IE1, IE2, UL112–113 No [156] 
KSHV Unknown LANA, Orfs 6, 9, 59 No [156] 

Chitovirales Poxviridae VV Unknown RNA Pol, VITF-3 No [60,62,157] 
Asfuvirales Asfaviridae ASFV Unknown DNA Pol, ligase, helicase No [64] 

a For NiV, two types of inclusions are observed. 
b For HSV-1, a model of VRC formation that is not based on liquid-liquid phase separation has been proposed [69].  
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Promyelocytic leukemia protein (PML), which is the organizer of 
the PML nuclear bodies, is also induced by IFN. PML nuclear bodies also 
contain two other resident proteins, the ISG product speckled protein of 
100 kDa (Sp100) and death-associated dead protein (Daxx), as well as 
several other proteins transiently recruited in PML bodies in response to 
different stimuli [130]. PML bodies as other nuclear bodies exhibit li-
quid-like properties [131,132]. The initiation of VRCs of DNA viruses 
occurs at sites near PML-nuclear bodies. Human papillomavirus (HPV) 
infection requires the presence of PML protein suggesting that PML 
bodies are essential to establish infection [133,134]. However, Sp100 
and DAXX, which act as transcriptional repressors, restrict viral gene 
expression in ADV [135], HPV [136], HSV-1 [137], and HCMV [138] 
infections. Therefore, it is not surprising that most of the DNA viruses 
that replicate in the nucleus have evolved strategies to disrupt the PML 
bodies and to degrade or inhibit their components [138–141]. As a 
well-characterized example, incoming HSV-1 genomes transiently co- 
localize with PML nuclear bodies [142], which surround and en-
capsulate incoming viral genomes before being disrupted by newly 
synthesized ICP0 viral proteins [137,139,143]. The antiviral action of 
PML nuclear bodies is also observed on RNA viruses including dengue 
virus [144], influenza virus [145] and rhabdoviruses [146,147]. Here 
again, viruses have evolved mechanisms that counteract PML function. 
As an example, RABV P interacts with PML and retains it in the cyto-
plasm to alter PML nuclear bodies [148] and consequently is thought to 
counteract the antiviral effect of isoform PML IV against RABV [146]. 

6. Conclusion 

The discovery that several viro-induced membrane-less compart-
ments have liquid properties and are formed by LLPS is a paradigm shift 
in the field (Table 2). Indeed, these compartments provide a functional 
microenvironment, of which the physicochemical properties remain to 
be characterized, for the optimal working of the viral replication ma-
chinery. Understanding the molecular basis of the weak interactions 
that keep the cohesion of those compartments might lead to the de-
velopment of drugs that destabilize the viral factories or that con-
centrate inside to target the viral enzymes more efficiently. 

An exciting field of research is the identification of the proteome of 
those compartments. Until now, only a few specific cellular factors, 
which directly interact with viral proteins such as the nucleoproteins 
and phosphoproteins of MNV, have been shown to concentrate in these 
structures. The proteome of the viral factories is probably much larger 
and some proteins might also preferentially partition in the organelle 
liquid phase due to their physicochemical properties without strongly 
interacting with any viral protein. As the liquid nature of MNV viral 
factories precludes their purification, original techniques will be re-
quired to map the complete proteome. A promising approach is proxi-
mity labeling which has already been used to map the proteome of SGs 
and processing bodies [125,149,150]. 

Interactions between viral factories and several cellular components 
such as the cytoskeleton and the cellular membrane compartments and 
their role at distinct stages of the cycle also remain to be finely char-
acterized. Here again, understanding those processes may contribute to 
the development of novel antiviral strategies. 

However, it is very likely that the most significant impact of the 
discovery of the liquid nature of viral factories will be in the area of 
innate immunity. Indeed, the liquid nature of viral factories as well as 
the increasing number of innate immunity actors that have been de-
monstrated to form biomolecular condensates, invite us to revisit the 
interactions between the viral infection and the cellular defenses. This 
interplay is certainly much more subtle than currently thought. 
Therefore, we look forward to an integrated vision of the interactions 
between viruses and innate immunity that takes into account all the 
novel data of this booming field. 
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