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Abstract

Deep learning is the state-of-the-art machine learning approach. The success of deep learning in 

many pattern recognition applications have brought excitement and high expectations that deep 

learning, or artificial intelligence (AI), can bring revolutionary changes in health care. Early 

studies of deep learning applied to lesion detection or classification have reported superior 

performance compared to those by conventional techniques or even better than radiologists in 

some tasks. The potential of applying deep-learning-based medical image analysis to computer-

aided diagnosis (CAD), thus providing decision support to clinicians and improving the accuracy 

and efficiency of various diagnostic and treatment processes, has spurred new research and 

development efforts in CAD. Despite the optimism in this new era of machine learning, the 

development and implementation of CAD or AI tools in clinical practice face many challenges. In 

this chapter, we will discuss some of these issues and efforts needed to develop robust deep-

learning-based CAD tools and integrate these tools into the clinical workflow, thereby advancing 

towards the goal of providing reliable intelligent aids for patient care.
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1. Introduction

Medical imaging is an important diagnostic tool for various diseases. Roentgen discovered 

that x-rays could non-invasively look into the human body in 1895 and x-ray radiography 

became the first diagnostic imaging modality soon after. Since then many imaging 

modalities were invented, with computed tomography, ultrasound, magnetic resonance 

imaging, and positron emission tomography among the commonly used, and more and more 

complex imaging procedures have been developed. Image information plays a crucial role in 

decision making at many stages in the patient care process, including detection, 

characterization, staging, treatment response assessment, monitoring of disease recurrence, 

as well as guiding interventional procedures, surgeries, and radiation therapy. The number of 
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images for a given patient case increases dramatically from a few two-dimensional (2D) 

images to hundreds with 3D imaging and thousands with 4D dynamic imaging. Application 

of multi-modality imaging further increases the amount of image data to be interpreted. The 

increasing workload makes it difficult for radiologists and physicians to maintain workflow 

efficiency while utilizing all the available imaging information to improve accuracy and 

patient care. With the advances in machine learning and computational techniques in recent 

years, the potential and the need of developing computerized methods to assist radiologists 

in image analysis and diagnosis has been recognized as an important area of research and 

development in medical imaging.

The attempt of using computers to automatically analyze medical images emerged as early 

as the 1960’s [1–4]. Several studies demonstrated the feasibility of applying computer to 

medical image analysis but the work did not attract much attention, probably because of the 

limited access to high quality digitized image data and computational resources. Doi et al. in 

the Kurt Rossmann Laboratory at the University of Chicago began systematic development 

of machine learning and image analysis techniques for medical images in the 1980’s [5], 

with the goal to develop computer-aided diagnosis (CAD) as a second opinion to assist 

radiologists in image interpretation. Chan et al. developed a CAD system for detection of 

microcalcifications on mammograms [6] and conducted the first observer performance study 

[7] that demonstrated the effectiveness of CAD in improving breast radiologists’ detection 

performance of microcalcifications. The first CAD commercial system was approved by the 

Food and Drug Administration (FDA) for use as a second opinion in screening 

mammography in 1998. CAD and computer-assisted image analysis have been a major area 

of research and development in medical imaging in the past few decades. CAD methods 

have been investigated for various applications including disease detection, characterization, 

staging, treatment response assessment, prognosis prediction, and risk assessment for 

various diseases and with various imaging modalities. The work in the CAD field has been 

steadily increasing as can be seen from the trend of publications in peer-reviewed journal 

articles found by literature search in the Web of Science (Fig. 1).

Although the research in CAD has been increasing, very few CAD systems are used 

routinely in the clinic. One of the major reasons may be that CAD tools developed with 

conventional machine learning methods may not have reached the high performance that can 

meet physicians’ needs to improve both diagnostic accuracy and workflow efficiency. With 

the success of deep learning in many machine learning applications such as text and speech 

recognition, face recognition, autonomous vehicles, chess and Go game, in the past several 

years, there are high expectations that deep learning will bring breakthrough in CAD 

performance and widespread use of deep-learning-based CAD, or artificial intelligence (AI), 

to various tasks in the patient care process. The enthusiasm has spurred numerous studies 

and publications in CAD using deep learning. In this chapter, we will discuss some issues 

and challenges in the development of deep-learning based CAD in medical imaging, as well 

as considerations needed for the future implementation of CAD in clinical use.
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2. Deep learning for medical image analysis and CAD

CAD systems are developed with machine learning methods. Conventional machine learning 

approach to CAD in medical imaging used image analysis methods to recognize disease 

patterns and distinguish different classes of structures on images, e.g., normal or abnormal, 

malignant or benign. CAD developers design image processing and feature extraction 

techniques based on domain knowledge to represent the image characteristics that can 

distinguish the various states. The effectiveness of the feature descriptors often depends on 

the domain expertise of the CAD developers and the capability of the mathematical 

formulations or empirical image analysis techniques that are designed to translate the image 

characteristics to numerical values. The extracted features are then used as input predictor 

variables to a classifier, and a predictive model is formed by adjusting the weights of the 

various features based on the statistical properties of a set of training samples to estimate the 

probability that an image belongs to one of the states. Conventional machine learning 

approach has limitations in that the human developer may not be able to translate the 

complex disease patterns into a finite number of feature descriptors even if they have seen a 

large number of cases from the patient population. The hand-engineered features may also 

have difficulty to be robust against the large variations of normal and abnormal patterns in 

the population. The performance of the developed CAD system is often limited in its 

discriminative power or generalizability, resulting in high false positive rate at high 

sensitivity or vice versa.

Deep learning has emerged as the state-of-the-art machine learning method in many 

applications. Deep learning is a type of representation learning method in which a complex 

multi-layer neural network architecture learns representations of data automatically by 

transforming the input information into multiple levels of abstractions.[8] For pattern 

recognition tasks in images, deep convolutional neural networks (DCNN) are the most 

commonly used deep learning networks. With a sufficiently large training set, DCNN can 

learn to automatically extract relevant features from the training samples for a given task by 

iteratively adjusting its weights with backpropagation. DCNN therefore discovers feature 

representations through training and does not require manually designed features as input. If 

properly trained with a large training set that are representative of the population of interest, 

the DCNN features are expected to be superior to hand-engineered features in that they have 

high selectivity and invariance [8]. Importantly, since the learning process is automated, 

deep learning can easily analyze thousands or millions of cases that even human experts may 

not be able to see and memorize in their lifetime. Deep learning can therefore be more 

robust to the wide range of variations in features between different classes to be 

differentiated as long as the training set is large and diverse enough for it to analyze.

CNN can trace its origin to the neocognitron proposed by Fukushima et al in the early 

1980’s [9]. LeCun first trained a CNN by backpropagation to classify patterns of 

handwritten digits in 1990 [10]. CNN was used in many applications such as object 

detection, character and face recognition in the early 1990’s. Lo et al. first introduced CNN 

to the analysis of medical images in 1993 and trained a CNN for lung nodule detection in 

chest radiographs [11, 12]. Chan et al. applied CNN to microcalcification detection [13, 14] 

on mammograms in the same year and to mass detection in the following year [15–18]. 
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Zhang et al. applied a similar shift-invariant neural network for the detection of clusters of 

microcalcifications in 1994 [19]. Although these early CNNs were not very deep, the pattern 

recognition capability of CNN in medical images were demonstrated.

Deep CNN was enabled by several important neural network training techniques developed 

over the years, including layer-wise unsupervised pretraining followed by supervised fine-

tuning [20–22], use of rectified linear unit (ReLU) [23, 24] as activation function in place of 

sigmoid-type activation functions, pooling to improve feature invariance and reduce 

dimensionality [25], dropout to reduce overfitting [26], and batch normalization [27] that 

further reduces the risk of internal covariate shift, vanishing gradient and overfitting, as well 

as increases training convergence speed. These techniques allow neural networks with more 

and more layers and containing millions of weights to be trained. In 2012, Krizhevsky et al 

[28] proposed a CNN with five convolutional layers and 3 fully connected layers (named 

“AlexNet”) containing over 60 million weights and achieved breakthrough performance in 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [29] that classified over 

1000 classes of everyday objects on photographic images. AlexNet demonstrated the pattern 

recognition capability of the multiple layers of a deep structure. DCNNs with increasing 

depth were developed since AlexNet. He et al. [30] proposed residual learning and showed 

that a residual network (ResNet) with 110 to 152 layers could outperform several other 

DCNNs and won the ILSVRC in 2015. Sun et al. [31] showed that the learning capacity of a 

DCNN increased with depth but the capacity could be utilized only with sufficiently large 

training data.

The success of deep learning or AI in personal devices and social media, self-driving cars, 

chess and Go game have raised unprecedented expectations of deep learning in medicine. 

Deep learning has been applied to many medical image analysis tasks for CAD [32–34]. The 

most common areas of CAD application using deep learning include classification of disease 

and normal patterns, classification of malignant and benign lesions, and prediction of high 

risk and low risk patterns of developing cancer in the future. Other applications included 

segmentation and classification of organs and tumors of different types, classification of 

changes in tumor size or texture for assessment of treatment response or prediction of 

prognosis or recurrence. Because there are relatively large public data sets available for chest 

radiographs, thoracic CT, and mammograms, a large number of studies were conducted for 

lung diseases and breast cancer using the public data sets. Deep learning based image 

analysis has also been applied to fundus images or optical computed tomography for 

detection of eye diseases [35], or histopathological images for classification of cell types 

[36]. Most of the studies reported very promising results, further boosting the hype of deep-

learning-based CAD. This new generation of CAD is called AI although these CAD tools 

still behave like a very complex mathematical model that memorizes information in its 

millions of weights and far from being “intelligent”.

3. Challenges in deep-learning-based CAD

CAD or AI is expected to be useful decision support tools in medicine in the near future. 

Other than detection and characterization of abnormalities, applications such as pre-

screening and triaging, cancer staging, treatment response assessment, recurrence 
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monitoring, and prognosis or survival prediction are being explored. Although no CAD 

systems with new AI techniques have been subjected to large scale clinical trials to date, 

experiences from CAD use in screening mammography may provide some insights into 

what may be expected of CAD tools in the clinic [37].

The conventional machine-learning-based CAD for detection of breast cancer in screening 

mammography is the only CAD application in widespread clinical use to date. These 

systems have been shown to have sensitivity comparable to or higher than that of 

radiologists, especially for microcalcifications, but they also mark a few false positives per 

case on average [38]. Although the performances of CAD systems are moderate, they may 

detect lesions of different characteristics than those by radiologists. The complementary 

detections by the radiologist and CAD can improve the overall sensitivity when radiologist 

reads with CAD. Studies have shown that radiologists’ accuracy was improved significantly 

when reading with CAD [5]. CAD systems were therefore approved by FDA for use as a 

second opinion but not as a primary reader or pre-screener. Early clinical trials [39, 40] to 

compare single reading with CAD to double reading showed promising results. In the 

CADET II study by Gilbert et al. [39], they conducted a prospective randomized clinical 

trial at three sites in the United Kingdom. A total of over 28,000 patients were included. The 

screening mammograms of each patient were independently read in two arms; one was 

single reading with CAD and the other was their standard practice of double reading. The 

experiences of the single readers in the CAD arm were matched to those of the first readers’ 

in the double reading arm. Arbitration was used in cases of recall due to the second reader or 

CAD. They found that arbitration was performed in 1.3% of the cases in single reading with 

CAD. The average sensitivity in the two arms were comparable at 87.2% and 87.7%, 

respectively. The recall rates at two centers were comparable in the two arms, 3.7% versus 

3.6% and 2.7% versus 2.7%, respectively, but one of the centers had a significantly higher 

recall rate for single reading with CAD, 5.2% versus 3.8%. The overall recall rate therefore 

increased in the single reading with CAD from 3.4% to 3.9%. Gromet et al. [40] performed 

a respective review of the sensitivity and recall rate by single reading with CAD after CAD 

implementation in comparison to those of double reading before CAD use as historical 

control for the same group of nine radiologists in a single mammography facility. The first 

reading in their double reading protocol was also analyzed and treated as single reading 

without CAD. The study cohort contained over 110,000 screening examinations in each 

group. Arbitration by a third subspecialty radiologist was a part of their standard double 

reading protocol. A second radiologist was consulted for 2.1% of the cases interpreted by 

single reading with CAD but the consult might or might not be related to CAD marks. They 

reported that the sensitivity of single reading with CAD was 90.4%, higher than the 

sensitivities of either single reading alone (81.4%) or double reading (88.0%). The recall rate 

was 10.6% for single reading with CAD, slightly higher than the recall rate of single reading 

alone (10.2%) but lower than that of double reading (11.9%). These relatively well-

controlled studies showed that single reading with CAD is potentially an alternative to 

double reading, with a gain in sensitivity but at the expense of increased recalls, which can 

be reduced by arbitration similar to that in double reading.

Taylor et al. [41] conducted a meta-analysis of clinical studies comparing single reading 

with CAD or double reading to single reading alone. They compared the cancer detection 
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rate per 1000 women screened (CDR) and the recall rate, and estimated the average odds 

ratios weighted by sample size over the studies in each group (Table 1). The results showed 

that double reading with arbitration improved the CDR without increasing the recall rates. 

Single reading with CAD for the matched studies increased the CDR but with a wide 

variation; however, without the benefit of arbitration, the recall rate increased significantly. 

The increase in recall rate for double reading without arbitration was more than twice of that 

for single reading with CAD.

Taylor et al. revealed that there are large variations in the impact of CAD on the cancer 

detection rate ranging from 0% to 19%, and the recall rate ranging from 0% to 37%. Other 

than the differences in the study designs and radiologists’ experiences in the studies, the 

variations may also be attributed to the varied ways that radiologists used CAD in the clinic. 

Some users might have misunderstood the limitations and performance of the CAD systems. 

They might have over-relied on the CAD marks and thus did not maintain their vigilance in 

searching for lesions while increasing their recalls. Others might have used CAD as a pre-

screener or first reader to increase workflow. Although there were no systematic studies of 

how CAD was used in the clinic, Fenton et al.[42] noted that “radiologists with variable 

experience and expertise may use CAD in a nonstandardized idiosyncratic fashion”, and 

“Some community radiologists, for example, may decide not to recall women because of the 

absence of CAD marks on otherwise suspicious lesions”. Lehman et al.[43] compared 

reading digital mammograms with and without CAD by 271 radiologists in 66 facilities of 

the Breast Cancer Surveillance Consortium (BCSC). They reported that the average 

sensitivity decreased by 2.3% and the recall rate increased by 4.5% with the use of CAD. 

The decrease in sensitivity was a clear indication that the radiologists did not use CAD as a 

second opinion, which require the users to maintain their vigilance in interpretation, but 

over-relied on the CAD marks for recall decisions. The authors acknowledged that “Prior 

reports have confirmed that not all cancers are marked by CAD and that cancers are 

overlooked more often if CAD fails to mark a visible lesion” and that “CAD might improve 

mammography performance when appropriate training is provided on how to use it to 

enhance performance”.

The study by Cole et al.[38] demonstrated another facet of using CAD. They conducted an 

observer study to compare single reading with and without CAD using two commercial 

CAD systems applied to 300 screening cases (150 cancers and 150 benign or normal) from 

the Digital Mammographic Imaging Screening Trial (DMIST). All participating readers 

were experienced breast radiologists and had been using CAD in their clinical practice. As 

summarized in Table 2, they found that the changes in the radiologists’ sensitivity or 

specificity with CAD were only 1% to 2%. The standalone sensitivity of both CAD systems 

were 25% higher than the radiologists with or without CAD but had an average of more than 

2 false positive marks per case. These results were very different from those observed in the 

early days of CAD development when radiologists were enthusiastic about CAD. They 

appeared to show that after radiologists used CAD in the clinic for a period of time, the 

many false positive CAD marks they have seen may have desensitized their attention and 

most of the marks were dismissed including true positives. In a screening setting, the time a 

radiologist has to spend to exclude over 2000 false positive marks in order to gain one or two 

cancers per 1000 examinations is considered not cost-effective by many radiologists. This 
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study indicated that the specificity of a decision support tool has to be high to avoid inducing 

fatigue on clinicians’ response to the computer’s recommendations.

Although these clinical experiences of CAD were observed from screening mammography, 

they reveal the many challenges of implementing CAD or AI tools in the clinic and may 

provide some guidance on the development of the new generations of CAD for various 

applications in general. Accuracy and workflow efficiency are important considerations in 

clinical practice. User training is crucial to ensure their understanding of the limitations and 

capability of CAD and thus avoid improper use or disillusion. Clinicians’ experiences and 

level of enthusiasm with CAD also strongly impact on whether they will accept a CAD tool 

and how they may respond to its recommendation. Performance standards and acceptance 

testing should be established to ensure the CAD tool can meet certain criteria before routine 

clinical use. Quality assurance is needed to monitor the consistency and accuracy of the 

CAD tool over time, as well as to prevent improper use that may impact patient safety. Fully 

automated medical decision systems are ideal, but experienced clinicians’ supervision is 

vital as many clinical cases may not evolve following a statistical model and require human 

intelligence to determine the best course of action based on the individual patient’s 

conditions and medical history. The AI community has recently scaled back the expectation 

and define a less ambitious term as “narrow AI”, recognizing the supporting role of 

machine-learning algorithms. Regardless of CAD, narrow AI, or general AI, there are many 

challenges of developing machine-learning-based tools for medicine. Some of the challenges 

are discussed below.

3.1 Data collection

The majority of the studies to date on the application of deep learning to medical imaging 

reported very promising results that often exceeded clinicians’ performance, raising high 

expectations of AI tools. However, most of the studies used small training set and the trained 

models have not been subjected to rigorous validation with large real world test data. The 

generalizability of these deep learning models to new patients or to different clinical settings 

is still unknown.

One of the basic requirements to develop a robust machine learning algorithm is a 

sufficiently large training sample set with verified reference truth that are representative of 

the characteristics of the population of interest. Training deep learning is even more 

demanding because of the extremely large number of weights in a DCNN structure. Even 

with effective regularization methods to reduce overfitting, how general the feature 

representations it has learned still depends on how much the training set covers. AlexNet has 

over 60 million weights and the “ImageNet” data set for training includes over 1.2 million 

images with annotations. Sun et al. [31] showed that the performance of a DCNN increased 

linearly with the orders of magnitude of the training data and the performance of a DCNN 

with large learning capacity continued to increase even when the training set increased to 

over 300 million images.

Collection of medical imaging data that are representative of the patient population and with 

reliable annotation or reference truth is costly. While it is relatively easy to collect a large 

number of normal cases for a screening modality, it is difficult to collect sufficient abnormal 
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cases, especially that the different classes in the data set ideally should be balanced. For 

example, for disease such as breast cancer that is the most prevalent cancer in women, there 

are only several cases per thousand in the screening population. It is difficult to collect 

enough breast cancer mammograms or tomosynthesis that can cover the variabilities in 

image features due to factors such as patient age, breast density and size, habitus, race, 

ethnicity, imaging protocols and processing methods. The collection of normal and abnormal 

cases with special imaging modalities such as MR or PET is even more challenging because 

a relatively small number of patients will have these examinations and the availability may 

depend on the protocols for different types of diseases in different health systems.

Studies have demonstrated the feasibility of collecting a large number of annotated cases by 

data mining and natural language processing of the electronic medical record (EMR) [44] 

and clinical annotations in picture archiving and communication system (PACS) [45]. The 

accuracy and usefulness of the labels or annotations obtained from these methods not only 

depend on the methods used but also how the information is generated and stored in the 

systems. It has been shown that automatically mined disease labels or annotations can 

include substantial noise in a data set, as in the large public set of chest radiographs [46]. In 

the Digital Mammography DREAM Challenge (2016–2017) that aimed at building a model 

to help reduce the recall rate for breast cancer screening [47], the participants were provided 

with over 640,000 training mammograms from over 86,000 women. The training set only 

included breast-level labeling without lesion annotation. The winning teams all used deep 

learning approach but the highest performance only reached an area under the receiver 

operating characteristic curve (AUC) of 0.8744, and a sensitivity of 80% at specificity of 

80.8%. The false positive rate, and thus potentially the recall rate, was much higher than that 

of an experienced breast radiologist at comparable sensitivity even for the top deep learning 

model. This example illustrates that, although the total number of images appeared to be 

large, the lack of high quality labeling may reduce its effectiveness in deep learning training. 

In general, weakly supervised training, unsupervised training, or using training set with 

substantial labeling errors is not as effective as supervised training with well-curated cases 

for the same training sample size; a much larger sample size is required to achieve similar 

performance for a DCNN model as a well-curated training set.

Data mining of the unstructured text and non-standardized reporting in current EMR or 

PACS systems is challenging, especially for more complex CAD task such as treatment 

response monitoring, in which a case may include multiple stages of diagnosis and treatment 

involving multiple imaging examinations and clinical tests. To generate reference standards 

for CAD development, one needs to correlate the imaging and clinical test data with 

outcomes at the various stages. It is a difficult process even if performed manually. 

Automation will be useful but it may require the development of an intelligent data mining 

tool. For patient cases that have been transferred between different hospitals, the incomplete 

prior or follow-up information may introduce errors into data curation. To facilitate 

collecting big data for development of AI towards precision medicine in the future, it will be 

prudent for the vendors and users to establish standardized reporting methods and structures 

among the various data archiving systems. In addition, establishing standardized protocols 

for secure electronic transmission of patient files among hospitals for referral patients will 

not only improve the health care of referral patients by transferring patient data accurately 
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and efficiently, but also improve the accuracy of data mining for these cases. Ultimately, 

multi-institutional collaboration may be the best approach to building big database, which 

can cover the wide ranges of heterogeneous imaging protocols and equipment, clinical 

settings, and patient characteristics, to accelerate the development of robust deep learning 

models for each type of diseases that may be more readily applicable to various clinical 

environments.

3.2 Transfer learning

Transfer learning is a common approach that deep learning developers use when the training 

set was small. In transfer learning, a DCNN that has been well-trained with a large training 

set from a source domain is adapted to a new target task by fine-tuning the DCNN using a 

relatively small training set from the target domain. DCNN is considered a feature extractor 

that learns representation of the input data by extracting multiple levels of abstractions by its 

convolutional layers. Yosinski et al.[48] showed that the learned features in the shallow 

layers are more generic, whereas the learned features in the deeper layers become 

increasingly specific to the task that the DCNN is being trained for. Since the features are 

decomposed into numerous components in a DCNN, and most images are composed of 

some common basic elements, the knowledge learned by a trained DCNN in extracting 

features is shown to be transferrable to images from different domains. The transferability of 

features decreases as the differences between the source domain and the target domain 

increase. However, even for very different source and target tasks, transfer learning by 

initializing a DCNN with weights trained for another source task can outperform the same 

DCNN trained with randomly initialized weights for the target task.

For training deep learning models in medical imaging, the majority of studies used transfer 

learning due to the limited data available. To date, the largest annotated public data set 

available is the ImageNet data, which contained photographic images containing over 1000 

classes of everyday life objects such as animals, vehicles, plants, ships, planes, etc. Most of 

the DCNN models in medical imaging were trained by transfer learning using models 

initialized with ImageNet-pretrained weights and fine-tuned by limited medical image data. 

In some cases, the pretrained DCNNs were used as feature extractor without fine-tuning; the 

deep features extracted from deploying the pretrained DCNN to the image data of the target 

domain were used as predictor variables to train an external classifier for the target task. 

Transfer learning was generally found to be useful in improving the training convergence 

and robustness of the DCNNs.

Although transfer learning can alleviate the problem of limited data to a certain degree, a 

large training set is still needed to achieve a high performance DCNN model for a given 

target task. Samala et al. [49] conducted a study to evaluate the effect of training set size on 

the performance of a transfer-trained DCNN for the target task of classifying malignant and 

benign breast masses in digital breast tomosynthesis (DBT). The ImageNet-pretrained 

AlexNet with 5 convolutional layers and 3 fully connected layers was appended with 2 

additional fully connected layers (total of 5 fully connected layers) to reduce the classes 

from over 1000 to 2 (malignant and benign) and transfer-trained for the target task. Because 

the DBT data set was small and mammogram data were relatively abundant, the pretrained 
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AlexNet was transfer-trained in the first stage for the classification of masses on 

mammograms, which brought the AlexNet from an unrelated classification task on non-

medical ImageNet data to a task (mammography) much closer to the target task (DBT). A 

small DBT set was then used for a second-stage transfer training to the target task. Their 

mammography set contained 2242 unique views (craniocaudal or mediolateral oblique) with 

2454 regions of interest (ROIs) containing breast masses. The DBT set contained 324 unique 

views with 1585 ROIs (5 slices or ROIs from each mass), which was partitioned into a 

training set of 1140 ROIs and an independent test set of 445 ROIs. Each ROI was flipped 

and rotated to obtain 8 augmented versions to reduce noise. To evaluate the training sample 

size effects on stage 1 and stage 2 fine-tuning, several transfer learning strategies were 

compared: (A) single-stage transfer learning with mammography data, in which the first 

convolutional layer (C1) of AlexNet was frozen and all other layers were allowed to be fine-

tuned, (B) two-stage transfer learning with mammography data in stage 1 and DBT training 

set in stage 2, in which C1 was frozen in both stages, (C) two-stage transfer learning similar 

to (B) except that convolutional layers C1 to F4 were frozen in stage 2, and (D) single-stage 

transfer learning with DBT training set, in which C1 was frozen, was also trained as a 

baseline for comparison. The results are summarized in Figure 2 to Figure 5.

Figure 2 shows the dependence of the test performance, in terms of AUC, of the transfer 

trained AlexNet on the number of layers being frozen during transfer training for the 

classification of masses on mammograms. The AUC was the highest when only C1 was 

frozen. However, if all layers were allowed to be re-trained (C0), the transfer trained 

AlexNet did not perform well, probably because the mammography data was not large 

enough to fine-tune the large number of weights. Fig. 3 shows the dependence of the test 

AUC on the sample size of the training mammography data. The test AUC was obtained by 

applying the AlexNet transfer-trained with mammography data directly to classify the 

masses on DBT without the second-stage fine-tuning with DBT. The test AUC increased 

steadily as the training sample size increased. For a given training set size, the test AUC 

decreased as more and more layers were frozen, indicating that the learning capacity of the 

DCNN was restricted and insufficient knowledge was learned from the mammography data. 

Furthermore, the test AUC on the DBT set (Fig. 3) was higher than that on the 

mammography test set (Fig. 2) at the corresponding training sample size and frozen layers, 

indicating that mammography is an effective auxiliary domain for transfer training to DBT 

and that malignant and benign masses in DBT are easier to be distinguished by DCNN, 

similar to that by human vision.

Figure 4 and Figure 5 compared the two-stage transfer learning to one-stage transfer 

learning on the classification of masses in the DBT test set. Several observations can be 

made. First, the test AUC increases with training sample size either in stage 1 or stage 2. 

Second, when the training set in the target domain is small, the additional stage of pre-

training with data of auxiliary domain can improve the overall performance at all training 

sample sizes in the range studied (compare curves A and B in Fig. 4, and curves B and D in 

Fig. 5). Third, when too many layers are frozen during transfer learning, the performance of 

the DCNN after two-stage training may not reach the same level as that of the DCNN with 

less layers frozen using the same training sample sizes (compare curves B and C in Fig. 4), 

indicating that the DCNN cannot learn adequately from the training data if the learning 
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capacity of the DCNN is overly restricted. Fourth, on the other hand, when the DCNN is 

well trained in the source domain and the training set in the target domain is very small, 

freezing most of the layers during transfer training may be beneficial by avoiding the loss of 

the pre-trained knowledge without adequate learning from the target domain data (compare 

the small sample size region of curves B and C in Fig. 5). Although one can expect that the 

training sample size required for transfer training for a given task will depend on many 

factors such as the complexity of the tasks and the DCNN structure, the differences in the 

characteristics between the source and the target domains, the relative training sample sizes 

between the tasks, the relative trends observed from this study will likely be applicable to 

many transfer learning applications, and multi-stage transfer training with data from similar 

domains should be helpful if the training data of the target domain is too scarce.

3.3 Data augmentation

Data augmentation generates multiple slightly different versions of images from each image 

in the original training set. Data augmentation may use techniques such as flipping the 

image in various directions, translating the image within a range of distance, cropping the 

image in different ways, rotating the image within a range of angles, scaling the image over 

a range of factors, generating shape- and intensity-transformed images by linear or non-

linear methods. Data augmentation can be implemented on-line or off-line and an 

augmentation operation in a specified range can be performed randomly or by fixed 

increments. For off-line augmentation, the augmented versions of the images are pre-

generated and mixed with the original data into a larger training set, which is randomly 

grouped as mini-batches for the DCNN training. If the various techniques are applied in 

combinations, the apparent number of training images can increase easily to hundreds or 

thousands of times. For on-line augmentation, the various augmentation techniques are 

usually implemented as a part of the DCNN pipeline with user-selectable probability and 

range. The original training set is input in mini-batches but each image in a batch is 

randomly altered according to the pre-selected probability and range of the augmentation 

techniques. The number of times an image is augmented in a given training run will depend 

on the number of training epochs chosen and the pre-selected probabilities for the different 

augmentation techniques. The choice between off-line and on-line augmentation may 

depend on the tradeoffs between computational resources and storage space or memory; off-

line augmentation is more practical if the available training set is small as it requires more 

space and memory for the augmented set, while on-line augmentation is preferred for large 

training sets if computational resource is plentiful. Data augmentation introduces variations 

or jittering to the original data, thereby reducing the risk of overfitting to a small training set 

and improving generalizability [28, 50, 51]. However, it is important to note that augmenting 

the training set to a certain size is not equivalent to having a set of independent training 

samples of comparable size. Since the features in the augmented versions of an image are 

highly correlated and the CNN learning is invariant to many of these small variations, the 

augmented images does not provide much new knowledge for the DCNN to learn in 

comparison to new independent images. In particular, if the original small training set does 

not include representative samples of certain characteristics, data augmentation will not 

generate samples of the missing types for the DCNN training; for example, if there are no 

spiculated nodules in the original data, augmentation cannot generate spiculated nodules for 
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the DCNN to learn. Other more sophisticated data augmentation methods are also being 

considered, such as generative adversarial networks (GANs) that can generate images with 

mixed features learned from different images after training on the available sample images 

[52], digitally generate artificial lesions inserted into normal images [53, 54] or inserting real 

lesions to other locations of normal or abnormal images [55]. Investigations are needed to 

evaluate issues such as how effective the data augmentation methods are compared to one 

another for a given sample size, whether the features learned from the artificial lesions, 

especially texture features, may help or hinder DCNN learning of real features, whether real 

lesions inserted at other locations can contribute new features to learn, and whether the 

usefulness of the augmented data for deep learning depends on the target task.

3.4 Training, validation, and independent testing

During training of a machine learning model including deep learning, a validation set is 

generally used for guiding the optimization of the parameters. The validation set is used to 

compare the performances of models with different parameter sets, or to monitor the 

changes in the performance or cost during iterative training of the model weights. The 

validation set may be split from the training set by cross validation or by hold-out. 

Regardless of the methods, the validation set is a part of the training process because it is 

repeatedly used to guide training, and the model structure and parameters are usually chosen 

to maximize the performance on the validation set. It is well known in machine learning that 

the training or validation performance is generally optimistically biased [56–61]. To estimate 

the true performance of the trained model in unknown cases, one has to use an independent 

test set that has not been seen by the model in the training process and is representative of 

the population to which the trained model will be applied. To date, most of the published 

studies only include cross validation results, and even in studies with a “hold-out” test set, 

the test set will be turned into a validation set if the same test set is used for evaluation many 

times during model development and eventually the best model is chosen based on the 

performance of the test set. The American Association of Physicists in Medicine (AAPM) 

CAD Subcommittee (renamed as Computer-Aided Image Analysis Subcommittee in 2018) 

has published an opinion paper to discuss the training and evaluation methodology for 

development of CAD systems [62]. The importance and the strategy of collecting a 

representative independent test set and the potential biases on the reported “test” result due 

to multiple repeated use of the same test set are discussed in more details. Deep-learning-

based CAD or AI follows similar general principles as conventional machine learning 

methods, and the need for independent testing will be even more important due to the vast 

capacity of deep learning to extract and memorize information from the training set.

3.5 Acceptance testing, preclinical testing and user training

If properly trained with a large data set, deep learning is expected to be more robust and 

more accurate than conventional machine learning approaches. However, studies showed 

that deep learning, or machine learning in general, can learn non-medical features that are 

not related to the medical conditions of the patient but other properties such as image 

acquisition protocols or equipment, image processing techniques, or even other markings 

and accessories related to the facilities or patient comorbidity that are recorded in the images 

[63]. As a result, a deep learning algorithm well trained and independently tested showing 
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high accuracy using data collected from the same site(s) may not be generalizable to 

different clinical sites that may have different population or imaging characteristics. Even if 

a CAD or AI algorithm is approved by FDA for clinical use, a clinical site should conduct 

acceptance testing, similar to the installation of a new medical device or equipment, using a 

set of representative local data to verify that its performance for the local patient population 

can pass a certain standard or reference level before clinical implementation. In addition, 

after the AI tool is implemented in the clinical workflow, the users should allow for a test 

period in which they refrain from being influenced by the CAD output. The users should 

familiarize themselves with the output of the CAD tool and quantitatively, if possible, assess 

the performance of the CAD tool on a large number of consecutive clinical cases. The users 

should evaluate critically the strengths and weaknesses of the CAD tool based on follow-up 

review of the outcomes of the cases, so as to recognize the characteristics of cases that the 

CAD tool makes mistakes or the CAD tool makes correct recommendations whereas the 

clinician may have failed. The hands-on experience of the performance of the CAD tool will 

allow the users to learn how to reduce the risk of accepting erroneous recommendation while 

taking advantage of the recommendations for cases that the CAD tool is useful. The test 

period will serve both as a real world evaluation of the CAD tool on the local population and 

user training. With better understanding of the AI’s limitation and capability, the users may 

be able to establish proper expectation and confidence level on the CAD tool and thus 

reducing the risk of improper use or negative outcomes of using CAD.

3.6 Quality assurance and performance monitoring

With the new generation of CAD, there are high expectations that they will be far more 

robust than the conventional CAD systems, especially that many of the studies reported 

performance higher than those of clinicians. Although the initial concerns of AI algorithms 

replacing radiologists have tamped down, the expectations of using AI to improve workflow 

efficiency or reduce workload are prevalent. A recent observer study [64] of breast cancer 

detection in DBT by radiologist alone in comparison to using deep-learning-based CAD as a 

concurrent reader that marked suspected lesions and showed the confidence of malignancy 

on the DBT slices. A data set of 260 DBT cases including 65 cancer, 65 benign, and 130 

normal cases were read by 24 radiologists. The experimental concurrent CAD had a case-

based sensitivity of over 90% and a specificity of over 40%, which are higher than all of the 

CAD tools currently used in screening DM. They demonstrated that reading with CAD 

could provide all the benefits a radiologist would hope for: reducing the average reading 

time by more than 50% for a DBT case, increasing sensitivity and specificity, as well as 

reducing recall rate. In another study [65], researchers developed a DCNN to identify normal 

mammograms from screening cases. With 10-fold cross validation, they showed that the 

DCNN could identify 34% and 91% of the normal mammograms at a negative predictive 

value (NPV) of 0.99 for a cancer prevalence of 15% and 1%, respectively. The study showed 

the potential of using DCNN to improve radiologists’ workflow efficiency by excluding the 

negative mammograms from reading.

For an AI model to be a useful routine clinical tool, it is crucial to validate that its 

performance in clinical settings can meet certain standards and is consistent over time, 

similar to other medical devices, especially for any AI model that is designed to operate as a 
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decision maker, rather than as a decision support tool or a second opinion. The acceptance 

testing or preclinical testing described above can serve as the baseline performance on the 

local population. Since the performance of DCNN is affected by the properties of the input 

images, which may be determined by a number of factors such as the imaging techniques or 

equipment and the image processing or reconstruction software or parameters that may 

change intentionally or unintentionally due to many factors, periodic quality assurance (QA) 

procedures should be established to monitor the performance of the CAD tool as well as the 

performance of clinicians using CAD over time. The AAPM CAD Subcommittee has 

published an opinion paper on the quality assurance and user training on CAD devices in 

clinical use [66]. The discussions have not attracted much attention, probably because of the 

limited use of CAD in the clinic at that time. Currently FDA has no post-market monitoring 

and regulations on the consistency or accuracy of CAD software as second opinion in 

clinical use after it is approved and there is no control of off-label use. As CAD/AI tools are 

anticipated to have widespread use in health care in the future, either as second opinion or 

automated decision maker in some applications such as pre-screening or triaging, their 

impact on patient care or welfare can be much greater. It will be important for organizations 

such as the American College of Radiology (ACR), the Radiological Society of North 

America (RSNA) and AAPM to provide leadership to establish performance standards, QA 

and monitoring procedures, and compliance guidance, to ensure safety and effectiveness for 

implementation and operation of CAD tools in clinical practice.

3.7 Interpretability of CAD/AI recommendations

The DCNN learns multiple levels of feature representations from the input data by using the 

deep architecture of convolution layers. At present a DCNN model is mostly operated like a 

blackbox as there is no easy way to explain how and what the DCNN has learned to perform 

a specific classification task. Researchers have developed methods to visualize the feature 

maps at each convolutional layer [67, 68] and to highlight the target objects recognized by 

the DCNN with a class activation map [69]. The feature maps illustrate the deep features 

[70] extracted by the DCNN and the class activation map may be correlated with the target 

location or the locations of the most important features for classification. These visualization 

tools are the first steps to explore the inner workings of deep learning but they are still far 

from being able to translate the deep learning output to interpretable clinical decisions, 

especially for tasks more complex than lesion detection. For CAD/AI to be more widely 

acceptable as a clinical decision support tool, it should be able to more intelligently present 

the recommendation to clinicians with reasons, correlating the findings with the medical 

conditions and data of the patient, and ideally, be able to present further explanations if the 

clinician has questions on the recommendation. Uncovering the relationship between the 

machine findings with medical conditions of the patient or even utilizing deep learning and 

big data analytics to discover new links between disease and clinical data or symptoms will 

be an important area of research to enable CAD to deliver interpretable diagnosis to 

clinicians and advance CAD towards true AI in medicine.
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4. Summary

Deep learning is expected to revolutionize CAD and image analysis in medicine. Although 

machine learning has been applied to CAD and medical image analysis for over three 

decades, CAD has not been commonly used in the clinic due to the limited performance of 

conventional machine learning approaches. The recent success of deep learning technology 

spurs new efforts to develop CAD or AI tools for many applications in health care. 

Numerous studies have reported promising results. Amid the high expectations of the 

accuracy and efficiency that AI can bring to medicine, many challenges have yet to be 

overcome in order to integrate the new generation of CAD tools into clinical practice and to 

minimize the risk of unintended harm to patients. Big databases have to be collected to 

provide sufficient training and validation samples to develop robust deep learning models 

and independent testing with internal and external multi-institutional data to assess 

generalizability; performance standards, acceptance testing, and quality assurance 

procedures should be established for each type of applications to ensure the performance of 

a deep learning model can meet the requirements in the local clinical environment and 

remains consistent over time; adequate user training in local patient population is vital to 

allow users to understand the capability and limitations of the CAD tool, establish realistic 

expectations and avoid improper use or disillusion; CAD recommendation has to be 

interpretable to allow clinicians to make informed decisions. More importantly, workflow 

efficiency and costs are major considerations in health care. A decision support tool will not 

be acceptable if it requires additional time and/or costs without significant clinical benefits. 

It is important for CAD researchers and developers to understand the preferred mode of 

assistance by clinicians for each type of clinical tasks, design effective CAD tools and 

deliver interpretable outputs by taking into consideration the practical issues in clinical 

settings. If properly developed, validated, and implemented, it can be expected that the 

efficient data analytics from CAD or AI tools can complement the human intelligence of 

clinicians to improve the accuracy and workflow and thus patient care.
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Fig. 1. 
Literature search for publications in peer-reviewed journals by Web of Science from 1900 to 

2019 using key words: ((imaging OR images) AND (medical OR diagnostic)) AND 

(machine learning OR deep learning OR neural network OR deep neural network OR 

convolutional neural network OR computer aid OR computer assist OR computer-aided 

diagnosis OR automated detection OR computerized detection OR Computer-aided 

detection OR automated classification OR computerized classification OR decision support 

OR radiomic) NOT (pathology OR slide OR genomics OR molecule OR genetic OR cell OR 

protein OR review OR survey)).
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Fig. 2. 
The effect of different number of layers of the DCNN being frozen during transfer learning 

of ImageNet-pretrained AlexNet to classify malignant and benign masses on mammograms. 

The area under the receiver operating characteristic curve (AUC) for the test ROIs was plot 

as box-and-whisker plots of 10 repeated experiments under each condition. The training set 

and the test set consists of 12,360 and 7,272 ROIs after augmentation, respectively. C0 

denotes no layer was frozen, i.e., the pretrained weights in all layers were allowed to be 

updated. C1 denotes the first convolutional layer was frozen, C1-Ci (i=2, 3, 4, 5) denotes the 

C1 to Ci convolutional layers were frozen during transfer training. The result shows that C1-

frozen training provided the best test AUC for this task. (reprint with permission [49])
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Fig. 3. 
Dependence of test AUC on mammography training sample size using strategy (A) transfer 

training. The varied training sample size was simulated by random drawing by case of a 

percentage (ranging from 1% to 100%) from the entire set of 19,632 mammography ROIs. 

The ROI-based AUC performance for classifying the 9,120 DBT training ROIs (serve as a 

test set at this stage) for three transfer networks at Stage 1. The data point and the upper and 

lower range show the mean and standard deviation of the test AUC resulting from ten 

random samplings of the training set of a given size from the original set. (reprint with 

permission [49])
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Fig. 4. 
ROI-based AUC on the DBT test set while varying the mammography sample size available 

for transfer training. The data point and the upper and lower range show the mean and 

standard deviation of the test AUC resulting from ten random samplings of the training set 

of a given size from the original set. “A. Stage 1 (MAM:C1)” denotes single stage training 

using mammography data and the C1-layer frozen during transfer learning without stage 2. 

“B. Stage 2 (DBT:C1)” denotes stage 2 C1-frozen transfer learning at a fixed (100%) DBT 

training set size after Stage 1 transfer learning (curve A). “C. Stage 2 (DBT:C1-F4)” denotes 

Stage 2 C1-to-F4-frozen transfer learning at a fixed (100%) DBT training set size after stage 

1 transfer learning (curve A). (reprint with permission [49])
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Fig. 5. 
ROI-based AUC on the DBT test set while varying the simulated DBT sample size available 

for transfer training. The data point and the upper and lower range show the mean and 

standard deviation of the test AUC resulting from ten random samplings of the training set 

of a given size from the original set. “D. Stage 1 (DBT:C1)” denotes single stage training 

using DBT data with the C1-layer frozen during transfer learning without Stage 2. “B. Stage 

2 (DBT:C1)” denotes Stage 2 C1-frozen transfer learning after Stage 1 transfer learning with 

a fixed (100%) mammography training set. “C. Stage 2 (DBT:C1-F4)” denotes Stage 2 C1-

to-F4-frozen transfer learning after Stage 1 transfer learning with a fixed (100%) 

mammography training set. (reprint with permission [49])
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Table 1.

Odds ratios (95% confidence interval) of increase in cancer detection rate and increase in recall rate obtained 

by comparison of single reading with CAD and double reading to single reading alone by Taylor et al.[41]

Odds ratio of increase in cancer detection rate Odds ratio of increase in recall rate

Single reading with CAD

 Matched (N=5) 1.09 (0.92, 1.29) 1.12 (1.08, 1.17)

 Unmatched (N=5) 1.02 (0.93, 1.12) 1.10 (1.08, 1.12)

Double reading

 Unilateral (N=6) 1.13 (1.06, 1.19) 1.31(1.29, 1.33)

 Mixed (N=3) 1.07 (0.99, 1.15) 1.21 (1.19, 1.24)

 Arbitration (N=8) 1.08 (1.02, 1.15) 0.94 (0.92, 0.96)

N: the number of studies included in each group.

Matched studies: the assessment before and after using CAD was on the same mammograms.

Unmatched studies: the performance of mammography facilities after the introduction of CAD was compared to that before CAD implementation 
as historical controls. Different mammograms were interpreted in the two conditions.
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Table 2.

Observer performance study by Cole et al.[38] comparing single reading with and without CAD using two 

commercial CAD systems and 300 screening mammography cases (150 cancer and 150 benign or normal) 

from DMIST. None of the changes were statistically significant. AUC=area under the receiver operating 

characteristic curve. N=number of radiologists in the study.

CAD system A CAD system B

Standalone performance 75% sensitivity at 0.79 FPs/image 73% sensitivity at 0.77 FPs/image

Radiologists N=14 N=15

Without CAD With CAD Without CAD With CAD

Average AUC 0.71 0.72 0.71 0.72

Average sensitivity 49% 51% 51% 53%

Average specificity 89% 87% 87% 86%
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