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Abstract

In this study, we developed a multi-scale Convolutional neural network based Automated 

hippocampal subfield Segmentation Toolbox (CAST) for automated segmentation of hippocampal 

subfields. Although training CAST required approximately three days on a single workstation with 

a high-quality GPU card, CAST can segment a new subject in less than 1 min even with GPU 

acceleration disabled, thus this method is more time efficient than current automated methods and 

manual segmentation. This toolbox is highly flexible with either a single modality or multiple 

modalities and can be easily set up to be trained with a researcher’s unique data. A 3D multi-scale 

deep convolutional neural network is the key algorithm used in the toolbox. The main merit of 

multi-scale images is the capability to capture more global structural information from down-

sampled images without dramatically increasing memory and computational burden. The original 

images capture more local information to refine the boundary between subfields. Residual learning 

is applied to alleviate the vanishing gradient problem and improve the performance with a deeper 

network. We applied CAST with the same settings on two datasets, one 7T dataset (the UMC 

dataset) with only the T2 image and one 3T dataset (the MNI dataset) with both T1 and T2 images 

available. The segmentation accuracy of both CAST and the state-of-the-art automated method 

ASHS, in terms of the dice similarity coefficient (DSC), were comparable. CAST significantly 

improved the reliability of segmenting small subfields, such as CA2, CA3, and the entorhinal 

cortex (ERC), in terms of the intraclass correlation coefficient (ICC). Both ASHS and manual 

segmentation process some subfields (e.g. CA2 and ERC) with high DSC values but low ICC 

values, consequently increasing the difficulty of judging segmentation quality. CAST produces 

very consistent DSC and ICC values, with a maximal discrepancy of 0.01 (DSC-ICC) across all 

subfields. The pre-trained model, source code, and settings for the CAST toolbox are publicly 

available.

*Corresponding author. Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA. 
cordesd@ccf.org (D. Cordes).
CRediT authorship contribution statement
Zhengshi Yang: Conceptualization, Methodology, Validation, Writing - original draft, Software. Xiaowei Zhuang: Methodology, 
Validation. Virendra Mishra: Resources. Karthik Sreenivasan: Resources. Dietmar Cordes: Supervision, Conceptualization, 
Methodology, Writing - review & editing.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.116947.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2020 September 01.

Published in final edited form as:
Neuroimage. 2020 September ; 218: 116947. doi:10.1016/j.neuroimage.2020.116947.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.neuroimage.2020.116947


Keywords

Hippocampal subfields; Automated segmentation; Convolutional neural network; Residual 
learning

1. Introduction

The segmentation of hippocampal subfields in MRI has gained great interest in the last 

decade. These anatomic subregions were found in recent studies to contribute distinct 

functional roles, for example, CA1 in memory integration and inference (Schlichting et al., 

2014), CA3 in memory recall (Chadwick et al., 2014), dentate gyrus (DG) and CA3 in 

pattern separation (Baker et al., 2016; Berron et al., 2016; Leutgeb et al., 2007). The highly 

specialized function suggests that these subregions are potentially affected differently by 

normal aging, Alzheimer’s disease, schizophrenia, epilepsy, major depressive disorder, and 

posttraumatic stress disorder. However, manual delineation of hippocampal subregions is 

extremely labor-intensive and time-consuming, consequently limiting studies to a small 

sample size. The inter-rater and intra-rater reliability also can influence the statistical power 

of a study. Wisse et al. (2016) observed that CA2 has an intra-rater reliability with a mean 

dice coefficient as low as 0.66, and the entorhinal cortex (ERC) has inter-rater reliability 

with an intraclass correlation coefficient as low as 0.27. In addition, the segmentation 

protocols vary between research centers, thereby presenting undue challenges to comparing 

results reported in published studies.

The limitations mentioned above could be overcome with the use of automated algorithms. 

Two major (semi-)automated methods were proposed for hippocampal subfield 

segmentation from distinct perspectives, parametric and non-parametric. The parametric 

method proposed in Iglesias (2015) (publicly available in FreeSurfer 6.0 https://

surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields) first combines the manual labels 

from the in vivo and ex vivo data into a single computational atlas and then uses a 

generative, parametric method to model the spatial distribution of hippocampal subregions 

and surrounding brain structures from the labeled training data. Because segmentation is 

connected to the observed image data through a generative process of image formation 

without assumptions about MRI acquisition, this method was claimed to be adaptive to any 

MRI pulse sequence and resolution. The non-parametric method developed by Yushkevich et 

al. (2015b) (publicly available at https://www.nitrc.org/projects/ashs) applies strict nonlinear 

whole-brain and hippocampus-regional registration, multi-atlas joint label fusion, and voxel-

wise learning-based error correction to propagate manual labels from a set of atlases to an 

unlabeled image. This non-parametric method takes advantage of the prior information 

about the distribution of image intensities derived from training data for automated labelling, 

which is ignored in FreeSurfer 6.0.

Both methods are applicable for multiple modalities, for example, T1 and T2 weighted 

images together for segmentation. However, each method has its own limitations. The atlas 

in FreeSurfer 6.0 was built using in vivo and ex vivo data from elderly subjects. Thus its 

reliability in studies of younger populations is required to be tested. Further improving the 
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segmentation performance by training this method with a set of imaging data is impossible, 

because the MRI contrast is discarded (Mueller et al., 2018). ASHS has a few atlas sets, and 

more effort was dedicated to expanding the population from elderly healthy subjects and 

mild cognitive impairment patients to young adults (Berron et al., 2017). ASHS achieved 

reasonable results with data acquired from multiple magnets, e.g. ADNI data (http://

adni.loni.usc.edu). However, optimal segmentation results could require a customized 

population specific atlas from the same magnet (Mueller et al., 2018). In addition, these two 

methods are computationally expensive and thus infeasible for applications requiring 

instantaneous segmentation.

In this study, we present a multi-scale Convolutional neural network based Automated 

hippocampal subfield Segmentation Toolbox (CAST) for fast and automated segmentation 

of hippocampal subfields. Deep learning has emerged as a promising technique for 

neuroimaging analysis in the last decade. Multiple studies have demonstrated the capability 

of deep learning in segmenting the whole hippocampus in both healthy subjects and disease 

populations (Goubran et al., 2020; Liu et al., 2020; Nogovitsyn et al., 2019; Novosad et al., 

2020; Thyreau et al., 2018). Zhu et al. (2019) successfully applied dilated dense U-net for 

segmenting the hippocampal subfields of infants and adults. Nevertheless, a robust and fast 

hippocampus subfield segmentation pipeline remains unavailable. CAST is designed to 

provide a publicly available, computationally efficient, and flexible toolbox for segmenting 

hippocampal subfields with the capability for multiple imaging modalities. When CAST is 

applied to segment a new subject with an optimized model, this toolbox requires only a raw 

image as input and outputs the segmented image in less than 1 min. Its computational 

efficiency is applicable for large sample size and instantaneous segmentation. CAST can be 

easily trained on a single workstation with a high-quality GPU card to generate a customized 

segmentation model for a unique dataset.

A 3D multi-scale deep convolutional neural network (CNN) is the key algorithm used in the 

CAST toolbox. This network is based on the Tensorflow package (https://

www.tensorflow.org) and the DeepMedic project (Kamnitsas et al., 2017). Residual learning 

is applied to alleviate the degradation problem and improve the performance with a deeper 

network depth. In contrast to the ASHS technique, the CAST toolbox does not rely on a 

strict nonlinear transformation to register individual subjects to multiple atlases during both 

training and segmentation pipelines. Instead, CAST tolerates the variability between 

subjects, thereby eliminating the time cost for nonlinear registration. This property becomes 

more valuable when the deformation is severe and the segmentation could fail at the 

nonlinear coregistration step. While training the network in CAST remains computationally 

expensive, the absence of any nonlinear coregistration in CAST has substantially improved 

its time efficiency compared to ASHS and Freesurfer when segmenting a new subject. In 

fact, since the imaging data in each dataset used in this study were acquired with the same 

acquisition protocol and roughly in the same orientation, no linear or nonlinear 

transformations are applied in either the training or segmentation process. An affine 

transformation is sufficient when a new subject with different acquisition orientation is used 

in the segmentation process. When training the multi-scale CNN, the original image is 

down-sampled by two different sampling factors. Then, the original and two down-sampled 

images are fed to their corresponding 8-layer convolutional pathways (the same architecture 
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but distinct parameters). The main merit of multi-scale data is its ability to capture more 

global structural information from down-sampled data, because of its larger field of view, 

without dramatically increasing the memory and computational burden. The down-sampled 

images achieve coarse labelling and reduce the risk of mislabeling non-hippocampus voxels 

as subregions, and the original images can capture more local information to refine the 

boundary between subregions. The outputs from these three convolutional blocks are 

concatenated as the input to three more layers, with the final layer as classification layer. We 

have provided the pre-trained model for multiple data at github (https://github.com/

pipiyang). The source code and settings for the CAST toolbox are also publicly available to 

researchers who would prefer to train the model with their own unique dataset.

2. Material and methods

2.1. Data acquisition and preprocessing

We validated the CAST segmentation method on two publicly available datasets, one 7T 

dataset with T2 structural images as the single input imaging modality and one 3T dataset 

with both T1 and T2 structural images available to demonstrate the multi-modality 

capability. The first dataset (Package UMC Utrecht 7T in https://www.nitrc.org/projects/

ashs/) contained 26 subjects (59 ± 9 years; male/female 12/14), named as UMC dataset 

(Wisse et al., 2016) and were collected on a 7T Philips MRI scanner (Philips Healthcare, 

Best, the Netherlands) with a 32-channel head coil (Nova Medical, Wilmington, MA). 3D 

T2-weighted TSE images were acquired with 0.7 × 0.7 × 0.7 mm3 isotropic voxel size, TR = 

3158 ms, TE = 301 ms, flip angle 120°, TSE factor = 182, and matrix size 356 × 357 × 272. 

The T2 images were interpolated to a spatial resolution of 0.35 × 0.35 × 0.35 mm3 isotropic 

voxel size by zero-filling during reconstruction. While cropped T1 images are also available 

in this dataset, because the cropped T1 image is in the template space but the T2 and manual 

segmentation map is in the subject’s space, T1 is not used in CAST segmentation for this 

dataset to avoid potential registration error. The tse_native_chunk images (available in the 

ASHS data repository), which are cropped T2-weighted images including the entire 

hippocampus in the native space, were used in our analysis. These images were demeaned 

and normalized to eliminate imaging intensity differences before being input to the neural 

network. Note that the CAST method does not enforce all subjects in the same space. Thus, 

no nonlinear coregistration is involved in the automated segmentation process. Affine 

transformation is also not required because the imaging orientation is roughly in the same 

direction, and resolution is the same for all subjects. The cornu ammonis (CA) fields CA1, 

CA2, CA3, DG, subiculum (SUB), ERC (even though ERC is usually not considered part of 

the hippocampus), cyst and tail were manually segmented by the corresponding 

investigators. CA4 is also included in the DG label.

The second dataset (https://www.nitrc.org/projects/mni-hisub25/) contained 25 healthy adult 

subjects (21–53 years, mean ± std age = 31.2 ± 7.5 years; male/female = 12/13), named as 

MNI dataset (Kulaga-Yoskovitz et al., 2015) and were collected on a 3T Siemens Tim Trio 

MRI scanner (Siemens, Erlangen, Germany) with a 32-channel head coil. Submillimeter T1 

and T2 images were acquired for all subjects. The 3D MPRAGE T1 image was acquired 

with spatial resolution of 0.6 × 0.6 × 0.6 mm3 (isotropic voxel size), TR = 3000 ms, TE = 
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4.32 ms, TI = 1500 ms, flip angle = 7°, matrix size = 336 × 384, FOV 201 mm × 229 mm, 

240 axial slices with 0.6 mm slice thickness. The T2 image was acquired with a 2D turbo 

spin-echo sequence with acquisition parameters TR = 10, 810 ms, TE = 81 ms, flip angle = 

119°, matrix size 512 × 512, FOV = 203 mm × 203 mm, 60 coronal slices angled 

perpendicular to the hip pocampal long axis with slice thickness = 2 mm, resulting in 0.4 × 

0.4 × 2.0 mm3 voxel size. The T1 and T2 images were linearly registered to MNI-ICBM152 

template and resampled to a resolution of 0.4 × 0.4 × 0.4 mm3, which are the images 

available in the dataset. Then the T1 and T2 images in the template space were cropped to 

include the left and right hippocampus separately. These images were demeaned and 

normalized to eliminate imaging intensity differences before being input to the neural 

network. Because these images are in template space, no nonlinear or linear registration is 

applied in our analysis. The manual segmentation protocol for this dataset separated 

hippocampus into three labels, namely SUB, a combination of CA1, CA2, and CA3 (CA1–

3), and a combination of CA4 and DG (CA4+DG).

The delineation of the subregions varies with different automated segmentation methods and 

the manual segmentation protocols from different centers. Mueller et al. (2018) and the 

Supplementary Fig.S1 have demonstrated that both have different subregion names and 

distinct boundaries between subregions were observed across their manual segmentation and 

automated segmentation methods, including Freesurfer 6.0, and ASHS, due to their varying 

segmentation protocols. Using the manual segmentation maps from the UMC and MNI 

datasets described above as ground truth is inappropriate for evaluating Freesurfer’s 

performance. Therefore, Freesurfer 6.0 is not used for comparison in our study, and each 

dataset is analyzed separately. Given the potential structural difference between the left and 

right hippocampus, the left and right hippocampus are trained and segmented separately.

2.2. CNN: A multi-scale residual neural network

A 3D three-scale convolutional neural network is the key deep learning algorithm used in 

this toolbox for hippocampal subfield segmentation. Residual learning is implemented in the 

algorithm to alleviate the degradation problem and improve the performance with a deeper 

network depth.

2.2.1. Deep residual learning—For classification, deep neural networks traditionally 

stack multiple layers of neurons in sequential order, leading to a more complex feature 

representation encoded at a deeper layer, with the classifier as the last layer (Goodfellow et 

al., 2016; LeCun et al., 2015). While stacking more layers may provide more comprehensive 

features, simply adding more layers does not always improve classification accuracy. A 

deeper neural network has gradients that vanish more rapidly than its shallower counterpart, 

and thus becomes more difficult to train and even stops the neural network from further 

training. Deep residual learning using residual connections was recently shown to be a 

simple but powerful approach to overcoming the vanishing gradient problem in a deeper 

neural network and thus facilitate optimizing the network (He et al., 2016). and Jégou et al. 

(2017) successfully trained a very deep residual network with over 100 layers with 

increasing accuracy. The residual connection allows the output from one specific layer to 

skip multiple layers and directly add to the output from another layer without adding extra 
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parameters or increasing the computational burden. Fig. 1 shows one convolutional layer 

with residual connections in the CAST neural network framework. The upper plot in Fig. 1 

indicates that the input to the L-1st convolutional layer is directly added to the output of the 

L-th convolutional layer and forms the final output of the convolutional layer with a residual 

unit. Mathematically, the output from the L-th layer can be expressed as

xL = xL − 2 + xl = xL − 2 + ℱ xL − 1, W L , (1)

where xl = ℱ xL − 1, W L  and xL = xL–2 + xl denote the output from the L-th convolutional 

layer before and after residual connection, and xL–2 is the input to the L-1st layer. WL is a 

set of weight parameters in the L-th convolutional layer. For simplicity, we marked the 

output from the Lth layer with residual connection with a ⊕ symbol, as shown in the bottom 

plot in Fig. 1. This simplified notation was used to describe the architecture of CAST.

2.2.2. 3D CNN for semantic segmentation—Semantic segmentation refers to the 

process of classifying each voxel in a 2D image or a 3D volume to a certain label. 

Convolutional neural networks (CNNs) predict voxel-wise labels in semantic segmentation 

by taking the information from a voxel and its neighboring voxels into account. The element 

involved in carrying out the convolution operation in a convolutional layer is called a filter. 

Numerous CNNs have been developed with 2D filters because most of these studies examine 

natural images. With volumetric MRI data, the CNN should strengthen the volumetric 

feature representation learning. Thus, 3D filters are implemented in the network. Observing 

that a small filter has the advantage of computational efficiency and is capable to encode the 

features in the data (Simonyan and Zisserman, 2014), we have employed small 

convolutional filters (filter size as 33 or 13) in the CAST network. During the convolution 

operation, the filter is applied on a proportion of the image over which the filter is hovering 

and then the filter shifts to another location simultaneously across all channels. This process 

repeats until the entire volume is traversed. The shifting step along each dimension is 

defined as a stride, and a stride length of 1 along x, y, and z direction is used in our analysis. 

The number of filters in the convolutional layers determines the number of output channels. 

Therefore, the weight parameters for a convolutional layer are of the dimension input 
channels × filter size × output channels. With the input data of 313 resolution and 40 

channels in Fig. 1, the weight parameters WL for the convolutional layer is 40 × 33 × 50 if 

this layer is specified with 50 filters. When a filter with a size of 13 is used in a 

convolutional layer, this layer is equivalent to a fully connected layer, where each voxel’s 

output channels are all connected to its own input channels, without considering any 

neighboring voxels.

2.2.3. Architecture of the CNN—The CNN has the original resolution image (blue) 

and two down-sampled images with factor of 3 and 5 (green and purple, respectively) as 

input. The architecture of the network with both T1 and T2 as input imaging modalities is 

shown in Fig. 2. The green and purple boxes indicate the size of the down-sampled images 

in the original resolution, and the cropped input images have a dimension of 373 × 2, 233 × 2 

and 213 × 2. The factor of 2 corresponds to the two input imaging channels in the network, 

as in MNI dataset. The factor becomes 1 for the single-modality UMC dataset. Image 
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cropping is a commonly used technique in deep learning to reduce the GPU memory cost, 

and the imaging dimensions are specified to maximally use available memory. These three 

cropped images are fed to three separate pathways with the same network architecture but 

independent parameters. Each pathway consists of eight convolutional layers with a filter 

size of 33 and filters are numbered 30, 30, 40, 40, 40, 40, 50 and 50 in this order. The 

network is designed with unary filter stride and no padding. The 4th, 6th, and 8th layers are 

the convolutional layers with residual connection, as explained in Fig. 1. Because the outputs 

from these three 8-layer pathways have different sizes, the outputs from the two down-

sampled pathways are up-sampled to match the dimension of the output from the original 

pathway and concatenated with a dimension of 150 × 213 for the following concatenated 

convolutional block. The concatenated convolutional block consists of three convolutional 

layers, and residual connection is enabled for the second layer. The first layer has a filter size 

of 33, and the second and the final layer has filter size 13, which significantly reduces the 

memory and computational requirements compared to filter size 33. The final layer is the 

classification layer, and each channel outputs the probabilistic maps for a certain subfield. A 

50% dropout rate is used to alleviate over-fitting, and pReLU (He et al., 2015) is the 

activation function used in the network. The red box indicates the final output image size of 

213 for this image patch, and the corresponding manual labelling is used to calculate multi-

class cross-entropy, which is the loss function minimized to optimize the network 

parameters. While using zero padding in the intermediate layers can make the network 

segment all voxels within the original resolution image (blue box) instead of only the 

centering voxels (red box), zero padding may lead to less accurate labelling for the voxels 

between the blue and red box because less valid information is used for segmentation. In 

addition, when there is no zero padding, the input image size can be slightly larger to contain 

more information because of the memory limit. Therefore, no zero padding is used in the 

network. Zero padding is directly added to the input image patch, but not to the network, to 

enable estimating the voxels on the boundary of the cropped images. Note that applying the 

network in Fig. 2 with multiple imaging modalities (for example, the MNI dataset), instead 

of single imaging modality (for example, the UMC dataset), has negligible influence on 

memory cost. Only the input data are required to update from a single channel to multiple 

channels, the rest of the network remains the same, and the size of the input data is much 

smaller than the output of intermediate layers. Theoretically, the input to the network can 

extend beyond two modalities.

This multi-scale CNN consists of approximately 2 million parameters and was developed 

based on the TensorFlow package (https://www.tensorflow.org) and the DeepMedic project 

(https://github.com/deepmedic/deepmedic) (Kamnitsas et al., 2017). TensorFlow is an open 

source platform for machine learning, particularly deep learning. DeepMedic provides a 

general framework for a multi-scale convolutional neural network.

2.3. CAST training and segmentation pipeline

For the UMC dataset, a single imaging channel using T2 weighted data and the manual 

segmented hippocampal subfields treated as ground truth was used to train the network. For 

the MNI dataset, instead, two imaging channels containing T1 and T2 weighted data were 

used together to train the network. The CAST training and segmentation pipeline with a 

Yang et al. Page 7

Neuroimage. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.tensorflow.org/
https://github.com/deepmedic/deepmedic


single T2 imaging modality as example was shown in Fig. 3. For both training and 

segmentation, common processing steps, including affine transformation, image cropping, 

intensity normalization and down-sampling were carried out. Affine transformation (e.g. 

ANTS 3 −m MI[…,…,1,32] −i 0) using the publicly available software ANTS (Avants et al., 

2008) is applied to acquire data from different subjects in approximately the same 

orientation using a certain subject as reference. Other software packages, such as FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and SPM (https://www.fil.ion.ucl.ac.uk/spm/), also can 

be used for the linear transformation. We observed that CNN can handle variability between 

subjects and did not use nonlinear co-registration in the entire pipeline, regardless of training 

or segmenting on a new subject. Affine transformation is not required if data are acquired 

with the same acquisition orientation. To reduce computational cost, the whole-brain images 

are cropped to regional images with the entire hippocampus included. The cropped images 

are intensity-normalized before fed to the network to eliminate the inter-subject variation of 

images. CAST automatically partitions the input cropped images to small imaging patches 

(purple, green and blue boxes in Fig. 2) and iterates through the entire cropped image for 

training and segmentation, thus the input images for the training and segmentation process 

are not required to have the same size and shape for each subject in the dataset (e.g. the 

UMC dataset has different sizes for each subject). Partitioning input images to small-size 

image patches is a technique commonly used in deep learning to reduce GPU memory 

overload. In our implementation, the original resolution image patch has a size of 373, and 

two down-sampled images have sizes of 233 and 213 after being down-sampled by a factor 

of 3 and 5, respectively. The CNN is trained with these image patches as input and 

optimized by minimizing the cross-entropy between the output of soft probabilistic maps 

from the network and manual segmentation. Training a model on a Tesla K40c GPU card 

requires approximately three days.

The input to the segmentation pipeline is the raw imaging data (the same input imaging 

modalities as used in the training pipeline) from a new subject. When the CAST is applied 

on a new subject for automated segmentation, after passing through the common processing 

steps, the trained network is applied and outputs the probabilistic maps for each subregion. 

Then, a reverse affine transformation is applied to have the probabilistic map projected to the 

subject space. Finally, a hard segmentation map is generated by assigning each voxel to the 

subfield with the highest probability. The segmentation pipeline can be applied with or 

without GPU support. CAST segments a new subject in about 10 s with GPU enabled and 

less than 1 min when GPU is unavailable.

2.4. Statistical analysis

A five-fold cross validation technique was used to evaluate the performance of CAST. The 

subjects are divided into five folds, each fold approximately (in case the number of subjects 

are not integrally divisible by five) has the same number of subjects. The subjects within 

four folds were used to train the network and the subjects within the remaining one fold 

were automatically segmented. Among the training data, one subject was randomly selected 

for validation to monitor if severe overfitting occurred in the training process. The process 

was repeated until all subjects were automatically segmented once. The dice similarity 

coefficient (DSC) was applied to evaluate the accuracy of CAST. The DSC was calculated 
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for each subfield separately, and a generalized DSC score (Crum et al., 2006) was computed 

with all subfields considered jointly. The reliability of automated segmentation was 

measured with an intraclass correlation coefficient (ICC), which measures the absolute 

agreement under a two-way random effects from a single measurement (Koo and Li, 2016). 

The Jaccard similarity coefficient was also used to assess the performance of automated 

segmentation. Note that these metrics (e.g. ICC and DSC) cannot be compared across 

different datasets, even for the same subregion, because the criteria for delineating 

subregions vary in the manual segmentation protocols.

Unlike traditional machine learning, which usually considers each subject as a sample, 

CAST is trained with each voxel as a sample with a “ground-truth” labelling from manual 

segmentation. Each voxel has its own unique neighboring voxel environment, and overfitting 

to the voxels seen in the training data is unlikely to perform well with the large number of 

samples (voxels) in segmenting a new subject. In traditional machine learning applications, 

leave-one-out cross validation analysis was observed to have a high risk of overfitting to the 

priors and achieve unrealistic results because only a single sample was tested in each trained 

model. We have tested CAST with leave-one-out and five-fold cross validation on left 

hippocampus of the UMC dataset with the observation that five-fold cross validation had 

average generalized DSC score 0.005 lower than the score of the leave-one-out technique. 

While the ICC and DSC scores for ASHS segmentation reported in Wisse et al. (2016) and 

compared in this study was computed with leave-one-out technique, five-fold cross 

validation was used and reported for CAST segmentation to reduce the repetitions of 

training the model, leading to decreased computational time.

3. Results

3.1. Automated segmentation for UMC data

By running CAST with a five-fold cross validation technique, the DSC and ICC coefficient 

for the 26 subjects in UMC data are shown in Fig. 4. The ICC and DSC of ASHS-automated 

versus manual rater (named as ASHS) with a leave-one-out technique, of 2 independent 

raters (named as inter-rater) and of a single rater (named as intra-rater) were directly 

extracted from Table 2 in Wisse et al. (2016). Note that the values for manual segmentation 

are based on a proportion of subjects instead of the entire data. For UMC dataset, ASHS is 

trained by Wisse et al. (2016) with both T1 and T2 weighted data, and CAST is trained with 

only T2 weighted data. The intra-rater metrics represent the upper limit of automated 

segmentation, because the automated method is trained with manual segmentation. As 

expected, the intra-rater metrics have higher DSC and ICC scores than CAST, ASHS, and 

inter-rater metrics of manual segmentation except the ICC of CA2 in the right hippocampus. 

Overall, automated methods CAST and ASHS achieve comparable performance in terms of 

DSC for all subregions. However, the ICC value for each method differs. For both CAST 

and ASHS, the mean generalized DSC across all subfields is 0.80 ± 0.03 in the left 

hippocampus, and 0.78 ± 0.03 and 0.79 ± 0.03 respectively for the right hippocampus. 

Along with calculating the DSC for subfields, we also calculated the DSC for background 

(label = 0, non-hippocampus region). The DSC of background in CAST is above 99.4% for 

all subjects, thus indicating that few background voxels were misclassified as hippocampal 
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subfields. The remaining maximum 0.6% discrepancy could be explained by more or less 

regions being segmented than by manual segmentation.

Compared to ASHS segmentation, CAST substantially improved the ICC coefficients for 

CA2, CA3, SUB, and ERC in left hippocampus relatively by 17%, 40%, 7%, and 49%, 

respectively and for CA3 and ERC in right hippocampus by 29% and 42%, respectively, 

based on the measure (ICC(CAST)-ICC(ASHS))/ICC(ASHS) × 100%. However, compared 

to CAST, ASHS appears less sensitive to the variation of CA1 in the atlas, which allows 

ASHS to tolerate the disagreement between subjects and make subregion CA1 have much 

higher ICC score than CAST segmentation. CAST had a worse ICC coefficient for CA1 

compared to ASHS by 11% (ICC of CA1: CAST 0.83, ASHS 0.93) for left hippocampus 

and 16% (ICC of CA1: CAST 0.82, ASHS 0.97) for right hippocampus. By comparing the 

difference between ICC and DSC scores (DSC - ICC) in Fig. 4, the inter-rater metrics of 

manual segmentation shows discrepant DSC and ICC values for CA2 (left: DSC 0.65, ICC 

0.34; right: DSC 0.66 ICC 0.88), DG (left: DSC 0.83, ICC 0.92; right: DSC 0.81, ICC 0.89) 

and ERC (left: DSC 0.71, ICC 0.27; right: DSC 0.72, ICC 0.54). ASHS shows discrepant 

DSC and ICC values for CA2 (left: DSC 0.64, ICC 0.55), CA3 (left: DSC 0.58, ICC 0.43; 

right: DSC 0.54, ICC 0.45) and ERC (left: DSC 0.75, ICC 0.49; right DSC 0.75, ICC 0.51). 

In contrast, the DSC and ICC values are highly consistent for CAST segmentation with a 

maximal discrepancy of 0.01. The example plot of the CAST-automated and manual 

segmentation from the subject with the best, median, and worst generalized DSC score as 

0.85, 0.79 and 0.74 respectively across left and right hippocampus are shown in Fig. 5. The 

3D rendering plot of CAST and manual segmentations with median generalized DSC score 

is shown in Fig. 6. The automated segmentation overall is very similar to the manual 

segmentation but with small localized differences observed at the boundary among subfields 

or between subfields and background.

To further investigate the different ICC values for the CA1 subfield, we have visually 

inspected the manual segmentations and observed that the boundary between CA1 and SUB 

was defined differently across subjects based on the geometric rule in the protocol. The 

manual segmentations from two subjects are shown in Fig. 7, and the different boundaries 

between CA1 and SUB are pointed out by white arrows. The challenge for CAST to learn 

some criteria used in manual segmentation is also observed with UMag dataset (see 

Supplementary), where distinct segmentation rules are applied when a certain hard threshold 

is met, e.g. the depths of the collateral sulcus in the range >10 mm, 7–10 mm, 4–7 mm or <4 

mm for Area 35. The difficulty to strictly follow some criteria in manual segmentation could 

explain why manually enforcing some criteria on CAST segmented maps (CAST-post in 

Supplementary) improves the segmentation performance slightly.

For UMC dataset, the mean Jaccard similarity coefficient over all subjects for CA1, CA2, 

CA3, DG, SUB, and ERC are 0.71,0.47, 0.42, 0.74, 0.65 and 0.58 respectively for the left 

hippocampus and 0.70, 0.47, 0.40 0.71, 0.62, and 0.57 respectively for the right 

hippocampus.

The DSC and ICC scores for hippocampus cyst and tail were not reported in Wisse et al. 

(2016). CAST had the scores of these two subregions varying considerably between 
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subjects. We concatenated the manual and CAST segmentation maps of all subjects and 

evaluated CAST segmentation of cyst with DSC score as 0.55/0.50 and of tail with DSC 

score as 0.67/0.59 for left/right hippocampus. Consistent with all other subregions, the 

difference between DSC and ICC scores is below 0.01 for cyst and tail.

3.2. Automated segmentation for the MNI dataset

Five-fold cross validation technique was also applied to the MNI dataset, and automated 

segmentation maps for 25 subjects were obtained. The DSC, ICC, and Jaccard coefficient 

for CAST segmentation are shown in Table 1. The DSC and ICC scores of a single rater and 

two independent raters were directly extracted from Kulaga-Yoskovitz et al. (2015) and 

listed in Table 1 with gray background. The left and right hippocampus were analyzed 

together in Kulaga-Yoskovitz et al. (2015), thus a single score for each subject was obtained 

for each subfield. Consistent with the performance in the UMC dataset, the DSC and ICC 

scores achieved by CAST overall were lower than the corresponding intra-rater scores of 

manual segmentation. However, the ICC scores for CA1–3 in bilateral hippocampus were 

comparable between CAST and intra-rater manual segmentation (CAST: 0.912/0.914 for left 

and right hippocampus; manual segmentation: 0.91/0.91 for inter-rater and intra-rater 

scores). Notably, automated segmentation of SUB had ICC score 0.16 higher than the inter-

rater ICC score (CAST: 0.887/0.886; inter-rater: 0.73), and automated segmentation of 

CA4+DG had ICC score 0.02 less than the inter-rater ICC score (CAST: 0.880/0.875; inter-

rater: 0.90). CAST had DSC score slightly (approximately 0.01) higher than the inter-rater 

DSC score for all the other subfields, except CA4+DG in right hippocampus (CAST: 0.875 

for CA4+DG in right hippocampus; inter-rater: 0.876 for CA4+DG in bilateral 

hippocampus). Compared to the surface patch-based segmentation method (Caldairou et al., 

2016), CAST achieved substantially improved DSC score. CAST had the mean (standard 

deviation) Jaccard coefficient of 0.848(0.019)/0.850(0.022) for CA1–3, 0.802(0.029)/

0.800(0.032) for SUB and 0.787(0.032)/0.779(0.039) for CA4+DG in left/right 

hippocampus. For all the subfield-specific metrics except inter-rater and intra-rater ICC, 

CA1–3 always had the highest score, and CA4+DG had the lowest score regardless of 

whether automated or manual segmentation is carried out. While CAST and intra-rater ICC 

scores are very close, CAST has the ICC scores of SUB and CA4+DG considerably lower 

than the corresponding intra-rater ICC, which could be because of the difficulty of 

delineating the boundary between SUB and CA4+DG, especially considering the slightly 

lower DSC scores for these two labels. The left and right hippocampus had the same 

generalized DSC score 0.906 with results for the left hippocampus being slightly more 

stable (less standard deviation). As with the UMC dataset, the discrepancy between DSC 

and ICC was below 0.01 for all subregions. The plot of best, median, and the worst 

automated segmentation based on generalized DSC score is shown in Fig. 8.

4. Discussion

In this study, a Convolutional neural network based Automated hippocampal subfield 

Segmentation Toolbox (CAST) is developed. We have demonstrated that CAST is feasible 

for automated segmentation on one 7T dataset and one 3T MRI dataset without revising the 

network architecture and parameters settings, suggesting that CAST is generalizable and 
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could potentially be used to train other data without modification. The CAST segmentation 

achieves DSC scores comparable with the inter-rater score of manual segmentation and even 

has lower disagreement than 2 independent raters following the same segmentation protocol 

for some subfields, particularly CA2 and ERC in the UMC dataset and SUB in the MNI 

dataset. No nonlinear registration occurs in the entire process, and, once a model is trained, 

CAST can segment one subject in less than 1 min. Therefore, CAST is useful for studies 

with large sample sizes and applications requiring fast processing time. In contrast, ASHS 

and Freesurfer 6.0 are computationally intensive and more time-consuming for segmenting a 

single subject. As with the automated segmentation methods in ASHS and Freesurfer 6.0, 

CAST is also applicable for multiple imaging modalities. Theoretically, more than two 

modalities can be fed to CAST for training and segmentation without substantially 

increasing memory and computational cost. Furthermore, the parameters in the deep neural 

network are independent of the input image size. Therefore, CAST does not restrict input 

images to the same size in both training and segmentation pipelines, as long as these images 

have the same resolutions. ASHS and manual segmentation are observed to have distinct 

DSC and ICC values for certain subfields (e.g. CA3 and ERC), the discrepancy makes 

judging the quality of segmentation difficult. In contrast, CAST has very consistent DSC and 

ICC values, with a maximal discrepancy of 0.01 for all subregions in both the UMC and 

MNI datasets. A summary of the comparison between these three automated segmentation 

methods is shown in Table 2.

To evaluate the necessity of each down-sampled pathway in the multi-scale CNN, we tested 

the network with only one down-sampled pathway. Regions were mislabeled as 

hippocampal subfields when the pathway with input down-sampled by a factor of 5 (the 

third pathway) or 3 (the second pathway) was removed. We also tested the CNN with 

different architectures, and no statistically significant improvement was observed when 

further increasing the number of layers or pathways in the network.

Instead of down-sampling input images and using multiple pathways to extract more global 

information from far-distance pixels/voxels, using a dilated convolutional filter (Yu and 

Koltun, 2015) and an intermediate down-sampling layer are common techniques used in 

deep learning to extract multi-scale features in the application of natural images. Both a 

dilated convolutional filter and an intermediate down-sampling layer require a larger input 

image size to acquire more global information with the cost of an exponentially increased 

memory requirement. In contrast, down-sampling input images allows extracting global 

information from coarse images with the memory cost linearly increasing with the number 

of pathways in the network. In this study, we have attempted to segment hippocampal 

subfields using other deep neural networks with a dilated convolutional filter or an 

intermediate down-sampling layer enabled. VoxResNet (Chen et al., 2018) is a 25-layer 

voxelwise residual network for 3D medical image segmentation, which down-samples 

images three times at intermediate layers and concatenates outputs from four intermediate 

layers as a final feature set to segment brain as white matter, gray matter, or ventricle. 

VoxResNet achieved the best performance in the MICCAI MRBrainS challenge. However, 

VoxResNet had a high false positive rate when applied for hippocampal segmentation and 

misclassified non-hippocampus voxels as hippocampal subfields. Similar phenomena were 

observed when we extended the 2D tiramisu network (Jégou et al., 2017), a very deep, fully 
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convolutional neural network, to 3D with a dilated convolutional layer enabled for 

hippocampal subfield segmentation. For both networks, maximal input image size within the 

limit of memory is used for both the training and segmentation processes.

Although a high field MRI scanner is used, the hippocampus has a much lower contrast 

between subfields than the contrast in natural images or the contrast between gray matter, 

white matter, and ventricles. In addition, the structure of the hippocampal subfield is highly 

anisotropic and delicate, which makes the segmentation more challenging. Furthermore, 

some criteria in manual segmentation of hippocampal subfields are based on information 

from a third-party region relatively far away from the hippocampus itself, e.g. appearance of 

colliculi (Berron et al., 2017). While using another region as a landmark is common for 

segmenting hippocampal subfields, this third-party information is barely considered for 

either natural image processing (e.g. identifying humans, cars, traffic lights and so on) or 

other brain segmentation applications (e.g. segmenting brain images into gray matter, white 

matter and cerebrospinal fluid) in deep learning segmentation. These three reasons, along 

with memory limit on the input image size and the unconventional design of multi-scale 

CNN, could explain why CAST has superior performance in hippocampal subfield 

segmentation over the two other deep learning algorithms. Conditional random field (CRF) 

is a commonly used post-processing step in natural imaging processing for refining 

segmented images with neighboring information. We implemented a 3D fully-connected 

CRF with pairwise Gaussian potential (Krähenbühl and Koltun, 2011) to further process the 

probabilistic maps for subfields (see Fig. 3) before the hard segmentation. Surprisingly, no 

statistically significant improvement was observed based on either the DSC or the ICC 

values, possibly because CAST has captured enough neighboring information, and the effect 

of CRF becomes less prominent.

One drawback in CAST is that CAST appears more sensitive to the anatomical variability of 

CA1 between subjects and achieves lower ICC scores for the UMC dataset. The border 

between CA1 and SUB shifts to the most medial point of the most anterior DG as soon as 

DG becomes visible in the segmentation protocol (Wisse et al., 2012). Since the location of 

the DG differs between subjects, the border between CA1 and SUB differs as well. The 

superior performance of ASHS in segmenting CA1 may be because ASHS registers a new 

subject to all atlases separately and then uses a joint label fusion method to determine the 

final segmentation (Wisse et al., 2016), which allows ASHS to tolerate the variations 

between subjects in the atlases. Instead, CAST achieves a single model by learning the 

common rules from all atlases, which may compromise the variation between subjects and 

lead to lower ICC values. In addition, the hard threshold based on the anatomical variability, 

e.g. the depths of the collateral sulcus used in UMag dataset (see Supplementary), is easy to 

measure and improves the reliability in manual segmentation, but learning such a hard 

threshold is challenging in machine learning or deep learning algorithm, which is the reason 

why enforcing some criteria used in manual segmentation on CAST segmented map (namely 

CAST-post in Supplementary) improves the performance slightly. More manually segmented 

subjects to train the network potentially can be beneficial for further improving the 

performance of CAST segmentation. However, that CAST does not strictly follow criteria in 

manual segmentation may be because it is adaptive to anatomical variation. In UMag dataset 

(see Supplementary), the manual segmentation of CA2 and CA3 is fixed to start 4 slices (4.4 
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mm) before the end of the hippocampal head, CAST segments the anterior border of CA3 in 

the head 3 to 5 slices (3.3–5.5 mm) away from the start of the body, which is consistent with 

the finding from Ding and Van Hoesen (2015). Certainly, there is no evidence to prove if the 

variation in the anterior border of CA3 as segmented by CAST matches the underlying 

anatomy since no histological annotations are available for these subjects.

CAST segmentation in no way underemphasizes the importance of manual segmentation. 

Instead, we cannot overemphasize the critical nature of manual segmentation. While CAST 

does not know the exact criteria in the manual segmentation protocols, CAST encodes the 

manual labelling information in the network by minimizing the discrepancy between 

estimated and manual labelling and then generalizes the labelling to a new subject. The 

performance of automated segmentation, in fact, heavily relies on the reliability of manual 

segmentation. As with UMC dataset, low DSC scores for CA2 and CA3 in measuring intra-

rater reliability directly leads to low DSC scores for both CAST and ASHS segmentation. 

Because of the varying segmentation protocols across different institutes, CAST-segmented 

subfields cannot be directly compared with the result from Freesurfer 6.0 or a different atlas 

set in the ASHS repository (e.g. the results from UMC and UMag datasets are not 

comparable). Harmonizing different protocols for hippocampal and parahippocampal 

subfields (Wisse et al., 2017; Yushkevich et al., 2015a) will facilitate comparison between 

studies and is the key to eliminating the discrepancy between automated segmentation 

toolboxes. Another limitation of both CAST segmentation and ASHS is that automated 

segmentation may not perform well when a pre-trained model is directly applied to images 

with distinct acquisition parameters or from different scanners, especially having different 

magnetic strength. A set of subjects with imaging data acquired from different scanners (e.g. 

7T and 3T scanners) with different acquisition parameters (e.g. flip angles and TE) but 

segmented by following the same manual segmentation protocol would be particularly 

valuable to create a more generalizable model for both CAST and ASHS segmentation. 

However, CAST easily can be trained on a single workstation with a decent GPU card (e.g. 

Tesla K40c) when a set of manual segmentations for that dataset is available, likely without 

revising the network architecture. A transfer learning technique, which initializes a new 

model with the parameters from the optimized model of other data, could further shorten 

training time. Instead of using only T1 and T2 structural images for segmenting 

hippocampal subfields, Wu et al. (2018) demonstrated the possibility of combining resting-

state functional magnetic resonance imaging together with structural images for improved 

segmentation performance. We will explore the possibility of embedding functional and 

structural information into CAST architecture in our future research.

5. Conclusion

In this study, we present a fast automated hippocampal subfield segmentation method based 

on a multi-scale deep convolutional neural network, which can segment a new subject in less 

than 1 min. Compared to current state-of-art methods, this method achieves comparable 

accuracy in terms of dice coefficient and is more reliable in terms of the intraclass 

correlation coefficient for most subfields. CAST segmentation is a flexible and adaptive 

method, and we successfully applied this method to datasets from two different MRI scanner 

vendors with different acquisition parameters without revising any settings and network 
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architecture. Both the scripts and trained model are publicly available at https://github.com/

pipiyang/CAST.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example plot of residual connection in the convolutional neural network. The top panel 

shows that the input to the L-1st convolutional layer (xL–2) is connected (added) to the 

output of the Lth layer to form the output xL. The bottom panel indicates the output after a 

residual connection is marked with a symbol ⊕ for simplicity in the architecture of the deep 

neural network.
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Fig. 2. 
Architecture of the multi-scale 3D convolutional neural network with two imaging 

modalities as input. The original and two down-sampled image patches are fed to three 

pathways. Each pathway consists of 8 sequential 3D convolutional layers but independent 

parameters, where the 4th, 6th, and 8th layers have residual connections as described in Fig. 

1. The output from these down-sampled pathways are up-sampled to match the size of the 

original pathway. Then, these three outputs are concatenated for the following three layers in 

the concatenated convolutional block. The red box indicates the final output image size.
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Fig. 3. 
CAST training and segmentation pipeline with a single T2 imaging modality as input.
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Fig. 4. 
Dice coefficients (DSC) and intraclass correlation coefficient (ICC) for all subfields from 

UMC dataset. The DSC and ICC values for ASHS-automated versus manual rater (named as 

ASHS) with a leave-one-out technique, of 2 independent raters (named as inter-rater) and of 

a single rater (named as intra-rater) are directly taken from Wisse et al. (2016). The intra-

rater and inter-rater metrics are based on a part of subjects instead of the entire data. Five-

fold cross validation, instead of leaving one out as in ASHS, is used in CAST to reduce the 

repetitions of training the model. Both T1 and T2 weighted images are used in ASHS, but 

only T2 weighted is used in CAST. Compared to ASHS segmentation, CAST substantially 

improved the ICC coefficients for CA2, CA3, SUB, and ERC in the left hippocampus 

relatively by 17%, 40%, 7%, and 49%, respectively, and for CA3 and ERC in the right 

hippocampus by 29% and 42%, respectively, based on the measure (ICC(CAST)-

ICC(ASHS))/ICC(ASHS) × 100%. However, CAST had a worse ICC coefficient for CA1 

compared to ASHS by 11% and 16% for the left and the right hippocampus. The DSC and 

ICC values are highly consistent for CAST segmentation with a maximal discrepancy of 

0.01 for DSC - ICC.
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Fig. 5. 
Example plot of T2 weighted image, manual and CAST segmentations from the subject 

having best (right hippocampus), median (right hippocampus) and worst (right 

hippocampus) generalized DSC coefficient across left and right hippocampus in UMC 

dataset. Top panel: generalized DSC 0.85, right hippocampus; middle panel: generalized 

DSC 0.79, right hippocampus; lower panel: generalized DSC 0.74, right hippocampus.
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Fig. 6. 
3D rendering of manual and CAST segmentation with median generalized DSC score of the 

UMC dataset. Note that the manual segmentation is blind to CAST when using CAST to 

segment the corresponding subject. The video of the 3D rendering is attached as 

Supplementary information.
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Fig. 7. 
Example plots of the boundary between CA1 and SUB varying across subjects in UMC 

dataset. The white arrows point to the distinct boundary between CA1 and SUB in two 

subjects.
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Fig. 8. 
Plot of the automated segmentation from the five-fold cross validation method with the best, 

median and the worst generalized dice similarity coefficient (DSC) scores. Upper panel: 

generalized DSC 0.928, right hippocampus; middle panel: generalized DSC 0.907, left 

hippocampus; lower panel: generalized DSC 0.877, right hippocampus.
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Table 1

Evaluation of CAST automated segmentation in the MNI dataset.

Left/Right hippocampus

Metrics CA1–3 SUB CA4+DG

CAST DSC 0.917(0.011)/0.919(0.013) 0.890(0.017)/0.889(0.020) 0.881(0.021)/0.875(0.025)

Inter-rater DSC
a 0.903 (0.036) 0.871 (0.053) 0.876 (0.048)

Intra-rater DSC
a 0.929 (0.010) 0.905 (0.016) 0.900 (0.019)

CAST ICC 0.912/0.914 0.887/0.886 0.880/0.875

Inter-rater ICC
a 0.91 0.73 0.90

Intra-rater ICC
a 0.91 0.94 0.96

CAST Jaccard coefficient 0.848(0.019)/0.850(0.022) 0.802(0.029)/0.800(0.032) 0.787(0.032)/0.779(0.039)

CAST 0.906(0.011)/0.906(0.014)

 Generalized

 DSC

a
The DSC and ICC scores of a single rater (intra-rater) and two independent raters (inter-rater) were directly extracted from Kulaga-Yoskovitz et al. 

(2015) and marked with gray background. All the rest metrics are calculated from CAST segmentation.
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