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The prediction of outcomes in patients at Clinical High Risk 
for Psychosis (CHR-P) almost exclusively relies on static 
data obtained at a single snapshot in time (ie, baseline data). 
Although the CHR-P symptoms are intrinsically evolving 
over time, available prediction models cannot be dynami-
cally updated to reflect these changes. Hence, the aim of 
this study was to develop and internally validate a dynamic 
risk prediction model (joint model) and to implement this 
model in a user-friendly online risk calculator. Furthermore, 
we aimed to explore the prognostic performance of extended 
dynamic risk prediction models and to compare static 
with dynamic prediction. One hundred ninety-six CHR-P 
patients were recruited as part of the “Basel Früherkennung 
von Psychosen” (FePsy) study. Psychopathology and transi-
tion to psychosis was assessed at regular intervals for up to 
5 years using the Brief Psychiatric Rating Scale-Expanded 
(BPRS-E). Various specifications of joint models were 
compared with regard to their cross-validated prognostic 
performance. We developed and internally validated a joint 
model that predicts psychosis onset from BPRS-E disorgan-
ization and years of education at baseline and BPRS-E pos-
itive symptoms during the follow-up with good prognostic 
performance. The model was implemented as online risk 
calculator (http://www.fepsy.ch/DPRP/). The use of ex-
tended joint models slightly increased the prognostic accu-
racy compared to basic joint models, and dynamic models 
showed a higher prognostic accuracy than static models. 
Our results confirm that extended joint modeling could im-
prove the prediction of psychosis in CHR-P patients. We 
implemented the first online risk calculator that can dynam-
ically update psychosis risk prediction.

Key words:   psychosis/prediction/risk calculator/joint 
model/schizophrenia/clinical high risk

Introduction

Preventive interventions in patients with a clinical high 
risk for psychosis (CHR-P)1 offer a promising opportu-
nity for ameliorating the course of psychotic disorders.1,2 
However, recent network meta-analyses3,4 have indicated 
that one-size-fits-all preventive treatments are not effec-
tive, as the CHR-P group is heterogeneous,5,6 with only 
about 20% developing frank psychosis7 and about one-
third having a clinical remission within the first 2 years 
of the follow-up.8 Hence, an important line of research 
in recent years has been to develop multivariable risk pre-
diction models to estimate the risk of psychosis on an 
individual level, thereby enabling more effective patient-
tailored treatments.9–11

Although several risk prediction models for CHR-P 
patients have been published,12,13 the clinical application 
of these models remains challenging.10 The key obstacles 
are the use of small sample sizes and poor modeling 
strategies,10,13 lack of internal or external validation,10,13 
and reliance on predictors that are hard to obtain in clin-
ical practice.10,14 To solve this problem, some studies have 
developed15,16 and internally17 or externally18–21 validated 
prediction models that are based on a priori clin-
ical knowledge and easy to obtain predictors and have 
implemented them as online risk calculators (eg, http://
riskcalc.org:3838/napls/, http://www.psychosis-risk.net, 
https://link.konsta.com.pl/psychosis, last accessed June 
14, 2019). However, these risk calculators are all static be-
cause they exclusively rely on data obtained at the time 
of clinical service entry.22 Thus, they cannot take the dy-
namic psychopathological changes23 of the CHR-P state 
into account and their risk prediction cannot be dynam-
ically updated during the follow-up when new informa-
tion becomes available. Models taking dynamic follow-up 
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data into account could predict transition to psychosis 
with considerably higher prognostic accuracy.22

Joint modeling methods24 are a relatively recent statis-
tical innovation that allow flexibly relating a longitudinal 
process (eg, change in CHR-P symptoms over time) to a 
time-to-event outcome (eg, time to transition to psychosis) 
and thus can dynamically update predictions over time. 
So far, only 3 studies have applied joint models to predict 
transition to psychosis,25–27 with 2 of them25,26 having largely 
overlapping samples. However, these studies were limited 
by the use of basic joint models in small effective samples 
(determined by the number of the transitions:10 21,25 22,26 
and 4027), relatively short follow-up durations (1 year), and 
lack of internal and external validation, which can lead to 
overoptimistic performance estimation.10,13

We overcome these caveats by developing and in-
ternally validating the first robust dynamic prognostic 
model to forecast psychosis onset in CHR-P patients. We 
use a different and slightly larger effective sample, a con-
siderably longer follow duration, and various extensions 
of joint models,24 which would better allow incorporating 
the psychopathological changes over time. Our first hy-
pothesis was that using extended model specifications of 
joint models,24 such as modeling changes in symptoms 
over time with a nonlinear function, would have a better 
prognostic performance than basic joint models. Our 
second hypothesis was that joint models would forecast 
psychosis onset more accurately than a traditional model 
that only relies on baseline data.

Methods

Setting and Recruitment

CHR-P patients were recruited between March 1, 2000 
and May 31, 2017 as part of the “Basel Früherkennung 
von Psychosen” (FePsy) study. The FePsy study is an 
open, prospective clinical study of all consecutive referrals 
to a specialized outpatient clinic for the early detection 
of psychosis at the Psychiatric University Hospital Basel. 
A detailed description of the study design can be found 
elsewhere.28,29 The study was approved by the local ethics 
committee and conformed to the Declaration of Helsinki.

Patients were included in this study if  they met CHR-P 
criteria (see below) and did not meet any of the following 
exclusion criteria: age <18 years, insufficient knowledge 
of German, IQ <70, treatment with antipsychotics for >3 
weeks or exceeding lifetime cumulative chlorpromazine 
equivalent dose of 2500 mg,30 psychotic symptoms clearly 
due to organic reasons or substance abuse, or psychotic 
symptomatology within a clearly diagnosed affective psy-
chosis or borderline personality disorder.

Screening

Screening was performed with the Basel Screening 
Instrument for Psychosis (BSIP),31,32 which has been 

specifically designed to identify patients with a CHR-P 
or first episode of psychosis and has been shown to 
have comparable prognostic accuracy to other CHR-P 
instruments33 (see supplementary methods).

Follow-up

CHR-P patients who agreed to participate in the FePsy 
study were reassessed at regular intervals to examine 
whether transition to psychosis had occurred. At each 
follow-up visit, psychopathology was assessed with the 
Brief  Psychiatric Rating Scale-Expanded (BPRS-E).34 
Transition to psychosis was assessed according to the 
original criteria of Yung et al.35 During the first follow-up 
year, CHR-P patients were assessed monthly, during the 
second and third years 3 monthly, and thereafter annu-
ally. Follow-up assessments were terminated after tran-
sition to psychosis had occurred or—if no transition 
occurred—after 5 years. Some patients were followed-up 
for more than 5 years as part of other ongoing studies.36 
For this study, follow-up data were truncated at 5 years. 
Patients received treatment according to needs, case man-
agement, and supportive psychotherapy during the fol-
low-up without any antipsychotic treatment.

Statistical Analysis

Model development and validation was conducted in ac-
cordance with the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD) statement.37 To predict transition to psychosis 
using both baseline (static) and follow-up (dynamic) data, 
we used joint models for longitudinal and time-to-event 
data (for an introduction to this model type, see 24,38). Joint 
models are utilized where interest is in associating a lon-
gitudinal process (eg, repeatedly measured symptoms over 
time) with events (eg. transition to psychosis) and time-to-
event outcomes (eg, time to transition).39 Joint models are 
suitable when the time-dependent covariate (ie, longitudinal 
change in symptoms) is endogenous, ie, when it is (1) meas-
ured on the patients themselves at a regular or irregular se-
quence of time points, (2) its existence and/or future path 
is directly related to the event status, and (3) it is measured 
with error.24 These assumptions are fully met in the case of 
CHR-P symptoms measured during the follow-up.

Model Development and Specification. 
Joint models consist of 2 linked submodels: a survival 
model and a longitudinal model (ie, mixed effects model). 
In a first step, we developed suitable submodels and then 
estimated these models jointly within the joint modeling 
framework using the R package JMbayes,39 which fits 
joint models under a Bayesian approach using Markov 
chain Monte Carlo algorithms.

For the survival submodel, a relative risk model with 
penalized-spline-approximated baseline risk function was 
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used. Suitable baseline predictor variables for the survival 
submodel were automatically selected among a priori 
predictors using the least absolute shrinkage and selec-
tion operator (LASSO) for the Cox model40 (see supple-
mentary methods).

The a priori predictors included 3 sociodemographic 
(ie, age, sex, and years of school education) and 6 clinical 
variables (ie, 5 BPRS-E subscales and the BPRS-E total 
score; see supplementary methods). These predictors were 
selected a priori because they are known to be associated 
with the risk of psychosis41,42 and because they are easy to 
obtain in clinical practice (in fact, there were no missing 
values in these variables in our data set at baseline).

Longitudinal submodels were fitted for each of the 
6 BPRS-E scales that were also collected over time. 
Additionally, for each BPRS-E scale, change over time 
was modeled both linearly (standard dynamic model) 
and nonlinearly (extended dynamic model; see supple-
mentary methods).

Each of these 6  × 2  =  12 different longitudinal 
submodels was then jointly modeled with the survival 
submodel using 5 different association structures such 
that a total of 60 different joint models were fitted and 
compared. Specifically, the hazard for transition at any 
time t was assumed to be related to the

1.	 current level
2.	 current rate of change (ie, slope)
3.	 cumulative effect (ie, area under the curve [AUC])
4.	 current level + current rate of change
5.	 current level + cumulative effect

of the respective BPRS-E scale score at the same time 
point t. To avoid collinearity, the respective BPRS-E scale 
that was used in the longitudinal submodel was excluded 
from the survival submodel.

Model Performance and Internal Validation. 
For each of the 60 joint models, both discrimination and 
calibration were assessed. Discrimination at 1, 2, 3, 4, and 
5 years after baseline and different amounts of follow-up 
information was assessed using time-dependent areas 
under the receiver-operating characteristics (ROC) curves 
(AUC). Additionally, we used the dynamic discrimina-
tion index (DDI),43 which summarizes the discriminative 
ability over the whole follow-up period (see supplemen-
tary methods). We calculated DDIs with prognostic win-
dows of 0.5, 1, 1.5, and 2 years because most transitions 
occur within these time frames.44,45 For calibration assess-
ment, we calculated the prediction error (PE) at 1, 2, 3, 
4, and 5 years after baseline as well an integrated predic-
tion error (IPE) for the whole follow-up period using a 
weighted average of PEs that corrects for censoring.

To protect against overoptimism, all models were in-
ternally validated. Specifically, all performance meas-
ures were calculated using 5-fold cross validation with 20 
repetitions.

The joint model with the highest cross-validated dis-
crimination (as determined by the highest average DDI 
across all 4 prognostic windows) was chosen as the final 
model. This also allowed testing the prognostic perfor-
mance of standard vs extended definitions of models.

The prognostic performance of the final joint model 
was then compared to a Cox model with the same base-
line predictors using cross-validated time-dependent 
AUC values (see supplementary methods). To facilitate 
external validation and clinical application, the final 
model was implemented as online risk calculator.

Results

Sociodemographic Sample Characteristics

Seven hundred and fifty-three individuals with a suspected 
CHR-P were screened, of whom 313 were identified as 
having a CHR-P. Of these, 196 provided written informed 
consent and had at least 1 BPRS-E assessment and thus 
were included in this study. The 117 excluded patients did 
not differ from the included patients with regard to sex 
and age but were significantly older (29.2 vs 25.0 years on 
average). Sociodemographic and clinical characteristics 
of the included patients are shown in table 1.

Follow-up and Outcome

Forty-two CHR-P patients transitioned to psychosis 
within the 5-year follow-up period (CHR-P-T) and 154 
did not (CHR-P-NT). The Kaplan–Meier transition risks 
were 16.3%, 19.2%, 22.5%, 24.8%, and 30.4% at 1, 2, 3, 
4, and 5  years, respectively. Mean follow-up time was 
2.7 years (median 2.8, range 0–5) for CHR-P-NT patients 
and 1.2  years (median 0.7, range 0–4.9) for CHR-P-T 

Table 1.  Sociodemographic and clinical sample characteristics

CHR-P

 N = 196

Gender  
  Women 59 (30.1%)
  Men 137 (69.9%)
Age 25.0 (6.9)
Years of education 11.7 (2.8)
Attenuated psychotic symptoms 133 (67.9%)
Brief  limited intermittent psychotic symptoms 15 (7.7%)
Genetic risk and deterioration syndrome 47 (24.0%)
Unspecific risk category only 38 (19.4%)
BPRS-E activation 3.8 (1.8)
BPRS-E positive symptoms 5.4 (2.2)
BPRS-E negative symptoms 5.4 (2.7)
BPRS-E affect 6.7 (2.9)
BPRS-E disorganization 3.9 (1.4)
BPRS-E total 39.0 (9.6)

Note: CHR-P, Clinical high risk for psychosis; BPRS-E, Brief  
Psychiatric Rating Scale-Expanded. Continuous variables are 
described by means and standard deviation in parentheses. 
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patients. Individual and averaged trajectories of BPRS-E 
scale scores are presented in figure 1.

Selection of Baseline Predictors

BPRS-E positive symptoms, BPRS-E disorganization, 
and years of school education were selected by the 
LASSO Cox regression and used as baseline (ie, static) 
predictor variables.

Association between BPRS-E during the Follow-up and 
Psychosis Onset

The size of the associations between the longitudinal and 
event process for the 60 different joint models are shown 
in supplementary figure 1. The longitudinal processes of 
BPRS-E positive symptoms and the BPRS-E total tended 
to have the strongest positive association with transition 
to psychosis.

Influence of Joint Model Specifications on Prognostic 
Performance

The cross-validated DDI values for the 60 different joint 
models are shown in figure 2 (for the IPE, see supplemen-
tary figure 2).

Regarding the choice of the time-dependent pre-
dictor, we found that the inclusion of BPRS-E total as 
time-dependent predictor led to the best average cross-
validated discriminative performance (DDI  =  0.645), 
followed by BPRS-E positive symptoms (DDI = 0.644), 
and affective symptoms (DDI = 0.632). In terms of cal-
ibration, the best performance was achieved by negative 
symptoms (IPE = 0.067), followed by affective symptoms 
(IPE = 0.068) and the total score (IPE = 0.069).

Discrimination on average was higher when 
change in symptoms over time was modeled linearly 
as compared to nonlinearly (average DDI  =  0.631 
vs 0.611), whereas calibration was very similar 
(IPE = 0.070 vs 0.069).

Regarding association structures, the current value 
(DDI = 0.627) on average discriminated better than the rate 
of change (DDI = 0.611) and AUC (DDI = 0.598), whereas 
calibration was very similar (average IPE: 0.070, 0.069, and 
0.069, respectively). Combining the current value with the 
rate of change (DDI = 0.637) or the AUC (DDI = 0.633) 
led to a slightly better discriminative performance.

Final Joint Model

The best cross-validated discrimination for the prog-
nostic time windows of  0.5, 1, and 1.5 years was achieved 
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Fig. 1.  Trajectories of log transformed Brief  Psychiatric Rating Scale-Expanded scores in patients with a clinical high risk for psychosis 
with (above) and without (below) transition to psychosis during the follow-up. The black lines are the individual trajectories, the blue 
lines are the averaged trajectories using a linear function, and the red lines are the averaged trajectories using natural cubic splines with 
2 degrees of freedom.
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by the joint model that included the positive symptoms 
as dynamic predictor, modeled the change over time as 
linear, and used the current value and AUC as associa-
tion parameters (DDI0.5 years = 0.729; DDI1 year = 0.715; 
DDI1.5  years  =  0.703). The best discrimination for the 
prognostic time windows of  2  years was achieved by 
a model that used the BPRS-E total as dynamic pre-
dictor and otherwise used the same specification 
(DDI2 year = 0.656). Because the first model had a better 
average performance (mean DDI = 0.701 vs 0.688) and 
may be easier to use in clinical practice (ie, only 4 items 
instead of  24 need to be repeatedly assessed), we chose 
this model as our final model (table 2). This model was 
implemented in a web-based risk calculator (http://www.
fepsy.ch/DPRP/, last accessed June 14, 2019).

The cross-validated prognostic performance of the 
final joint model as compared to a traditional Cox model 
including only years of education, BPRS-E disorganiza-
tion, and BPRS-E positive symptoms as static predictors 
is shown in figure 3. As can be seen from figure 3, the joint 
model achieved better discriminative and calibrative per-
formance than the Cox model for most time points and 
lengths of follow-up.

Because BPRS-E disorganization was not a signifi-
cant baseline predictor in the final joint model, we also 
evaluated the prognostic performance when this predictor 
was removed from the final model. The performance did 
neither improve nor worsen when this predictor was 
eliminated (see supplementary table 1).

Discussion

This is the first study to develop and validate a dynamic 
prognostic model to predict psychosis onset in CHR-P 
individuals over a relatively long follow-up period of 5 years. 
Sixty different dynamic prognostic models were compared 
to each other and to a static prognostic model with regard 
to their internally validated prognostic performance. This 
study demonstrated that using extended specifications of 
joint models improved the prognostic performance and dy-
namic prediction fared better than static prediction.

Our first aim was to identify the most important time-
dependent predictors of psychosis onset in CHR-P 
patients and to explore the prognostic performance of 
various extensions of joint models.24 Our study revealed 
that (1) BPRS-E positive symptoms and the BPRS-E 
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total score were the most important time-dependent 
predictors, (2) modeling the change in symptoms over 
time with a nonlinear function did not improve predic-
tion, and (3) the hazard of transition was more strongly 
associated with the current severity of repeatedly assessed 
psychopathological symptoms over time than with their 
current rate of change or their cumulative effects since 
baseline. However, a slightly superior performance was 
achieved by combining the current severity with the cu-
mulative effect or current rate of change. Hence, our pri-
mary hypothesis was confirmed.

Our finding that BPRS-E total and BPRS-E positive 
symptoms are the strongest time-dependent predictors is 

consistent with the results of Yuen et al,27 who also found 
that these 2 variables had the strongest effect among all 
tested variables. However, while Yuen et al27 evaluated the 
prognostic accuracy only at the 1-year follow-up, we cal-
culated the cross-validated DDI over a follow-up period 
of 5 years using different prognostic windows and thereby 
could also disentangle the value of these variables for dif-
ferent scopes of prognostication. Our results suggest that 
positive symptoms during the follow-up tend to better 
predict the near future, whereas BPRS-E total tends to 
better predict the more distant future. This makes intu-
itive sense because BPRS-E positive symptoms consists 
of the 4 BPRS-E items that were also used to determine 
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Fig. 3.  Cross-validated time-dependent area under the receiver operating characteristic curves values and prediction errors for the best 
performing joint survival model (red, solid line) and a cox regression model predicting transition to psychosis from baseline variables 
only (blue, dotted line).

Table 2.  Summary of final joint model

Coef P value HR CI

Longitudinal submodel
  Intercept 0.40 <.001***   
  Time (years) -0.15  .053   
Survival submodel
  BPRS-E disorganization -0.04  .926 0.96 (0.59–1.43)
  Years of school education -0.22  .026* 0.80 (0.65–0.97)
  Assoc. (current value) of positive symptoms 4.97 <.001*** 144.08 (33.74–1004.08)
  Assoc. (area under the curve) of positive symptoms -1.12 .002** 0.33 (0.17–0.63)

Note: Coef, regression coefficient; HR, hazard ratio; CI, 95% confidence interval of HR; BPRS-E, Brief  Psychiatric Rating Scale-
Expanded; Assoc., association parameter.
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transition to psychosis. The BPRS-E total scale on the 
other hand is a measure of general psychopathology. It 
might therefore be that for the prediction of the far fu-
ture, disease-unspecific factors are more important.

Although there is increasing recognition that psy-
chopathological symptoms change dynamically rather 
than gradually before disease onset and that this could 
be exploited to improve the prediction of full-threshold 
disorders,22 nonlinear modeling of change in symptoms 
did not lead to improved prediction in this study. One 
possible explanation is that our effective sample size—al-
though slightly larger than in previous studies25–27—was 
not large enough and the signal-to-noise ratio was too 
small to reliably estimate such complex relationships and 
therefore a simpler model was preferred.

This study also explored 5 different association 
structures between the longitudinal and survival 
submodels and thereby could gain important insights into 
the specific relationships between psychopathological 
symptoms during the follow-up and psychosis onset. We 
found that for the most important predictors (ie, BPRS-E 
positive symptoms and total score), the current value in 
these variables at any time t was more strongly associated 
with the hazard of transition at the same time t than the 
current rate of change (ie, slope) or the cumulative effect 
(ie, AUC). However, it should be noted that all 3 showed 
a positive and significant relationship. Furthermore, cur-
rent value models fared only slightly better than rate of 
change models and the best performance was achieved by 
models combining the current value with the cumulative 
effect or current rate of change.

Accordingly, the overall best performing model in-
cluded BPRS-E disorganization and years of education 
as static predictors and the current and cumulative values 
of BPRS-E positive symptoms as dynamic predictors. 
This model was therefore implemented as an online risk 
calculator (Dynamic Psychosis-Risk Prediction, DPRP). 
Whereas the current value of BPRS-E positive symptoms 
was significantly positively associated with the hazard of 
transition, the cumulative effect was significantly neg-
atively associated. Thus, the model predicts a partic-
ularly strong risk of transition if  the patient currently 
experiences a high level of BPRS-E positive symptoms 
and at the same time had relatively few such symptoms 
during the previous follow-up period or, in other words, 
if  the severity of BPRS-E positive symptoms is currently 
unusually high for that patient. Although BPRS-E disor-
ganization was selected as important baseline predictor 
by the LASSO, it was no longer a significant baseline pre-
dictor in the final joint model and its omission did not 
change the prognostic performance, suggesting that its 
prognostic information becomes redundant when current 
and cumulative values of BPRS-E positive symptoms are 
included as dynamic predictors.

In accordance with our secondary hypothesis, we 
could demonstrate that the final joint model predicted 

psychosis with a considerably higher accuracy than a 
traditional Cox model using only the static predictors. 
For example, when using follow-up data up to 1 year, the 
joint model predicted psychosis at 2 years with a time-
dependent cross-validated AUC value of 0.709, whereas 
the corresponding value of the Cox model was 0.648. 
According to Šimundić,46 this indicates a “good” accu-
racy for the joint model and a “sufficient” accuracy for 
the Cox model. The joint model outperformed the Cox 
model particularly in terms of calibration.

Strengths and Limitations

Our study has the following strengths: First, compared 
to the existing studies applying joint models to CHR-P 
samples,25–27 the follow-up duration was considerably 
longer. Second, whereas previous studies only applied 
basic joint models (ie, only considered the current value of 
a linear longitudinal process), this study explored various 
extensions of joint models. Third, while previous studies 
have only assessed the apparent prognostic performance, 
which can be overoptimistic due to overfitting,10 we cal-
culated the internally validated prognostic performances. 
Fourth, in addition to discrimination, we also assessed 
calibration, which is an important aspect of predictive 
performance that is often neglected.10,13,47 Fifth, our final 
model was implemented as web-based risk calculator.

One limitation is that the model implemented in our 
risk calculator has not yet been externally validated. 
Hence, it is unknown how well it predicts transition to 
psychosis when applied to data collected at different 
early detection centers. A further limitation is that the ef-
fective sample size, albeit slightly larger than in previous 
studies applying joint models to CHR-P data,25–27 might 
not have been large enough to appropriately test more 
complex joint models. Future studies should therefore 
use larger samples to explore whether more complex 
joint models would improve prediction. Another poten-
tial limitation is that we also included patients fulfilling 
only the unspecific risk category (URC) of  the BSIP, 
which has been shown to be associated with a lower 
transition risk compared to other CHR-P subgroups.32 
Furthermore, the average age of  our sample might be 
slightly higher than in other studies as we have excluded 
patients younger than 18  years and did not have an 
upper age restriction. However, because only 19.4% of 
the sample met the URC and because the overall tran-
sition risk was in accordance with the most updated 
meta-analytical estimate,7 we believe that our sample is 
still comparable to other CHR-P samples. It should also 
be noted that follow-up visit intervals increased with 
increasing follow-up duration in this study. Although 
this does not violate assumptions of  the joint model, 
it might have led to a more reliable estimation of  the 
longitudinal process at the beginning of  the follow-up 
as compared to later time points. A further limitation 
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is that to ease applicability in clinical routine and re-
strict overfitting, only a small set of  sociodemographic 
and clinical baseline predictors were considered in this 
study. Future studies should also explore the potential 
prognostic advantage of  using additional important 
sociodemographic and clinical variables that are likely 
to be associated with later transition and easy to obtain 
in clinical practice, such as functioning, urbanicity, im-
migration status, and race. The prognostic performance 
might also be improved by including baseline predictors 
from other domains, particularly neurocognition, elec-
trophysiology, neuroimaging, and blood biomarkers.12 
At the same time, because these predictors are harder 
to obtain in clinical practice and the clinical utility for 
predicting the onset of  psychosis in CHR-P is not com-
pletely clear, the ultimate added prognostic values of 
these measures must be carefully examined.10,14

Conclusion

This study confirmed that the use of extended joint 
models can improve the prediction of psychosis onset in 
CHR-P patients. We developed the first online risk cal-
culator predicting psychosis onset using joint modeling. 
The risk calculator can be easily applied in clinical prac-
tice as only few sociodemographic and clinical data are 
required and its predictions can be continuously updated 
during the follow-up.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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