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• Background and Aims Coastal wetlands have evolved to withstand stressful abiotic conditions through the main-
tenance of hydrologic feedbacks between vegetation production and flooding. However, disruption of these feed-
backs can lead to ecosystem collapse, or a regime shift from vegetated wetland to open water. To prevent the loss of 
critical coastal wetland habitat, we must improve understanding of the abiotic–biotic linkages among flooding and 
wetland stability. The aim of this research was to identify characteristic landscape patterns and thresholds of wetland 
degradation that can be used to identify areas of vulnerability, reduce flooding threats and improve habitat quality.
• Methods We measured local- and landscape-scale responses of coastal wetland vegetation to flooding stress 
in healthy and degrading coastal wetlands. We hypothesized that conversion of Spartina patens wetlands to open 
water could be defined by a distinct change in landscape configuration pattern, and that this change would occur 
at a discrete elevation threshold.
• Key Results Despite similarities in total land and water cover, we observed differences in the landscape con-
figuration of vegetated and open water pixels in healthy and degrading wetlands. Healthy wetlands were more 
aggregated, and degrading wetlands were more fragmented. Generally, greater aggregation was associated with 
higher wetland elevation and better drainage, compared with fragmented wetlands, which had lower elevation and 
poor drainage. The relationship between vegetation cover and elevation was non-linear, and the conversion from 
vegetated wetland to open water occurred beyond an elevation threshold of hydrologic stress.
• Conclusions The elevation threshold defined a transition zone where healthy, aggregated, wetland converted to 
a degrading, fragmented, wetland beyond an elevation threshold of 0.09 m [1988 North American Vertical Datum 
(NAVD88)] [0.27 m mean sea level (MSL)], and complete conversion to open water occurred beyond 0.03 m 
NAVD88 (0.21 m MSL). This work illustrates that changes in landscape configuration can be used as an indicator 
of wetland loss. Furthermore, in conjunction with specific elevation thresholds, these data can inform restoration 
and conservation planning to maximize wetland stability in anticipation of flooding threats.

Key words: Aggregation, Anas fulvigula, coastal wetlands, ecological threshold, flooding stress, fragmenta-
tion, hummocks and hollows, hydrologic feedback, landscape configuration, non-linear response, regime shift, 
Spartina patens.

INTRODUCTION

Coastal wetlands provide a bounty of ecosystem services, 
including water quality improvement, carbon sequestration, re-
creation and tourism, commercial fisheries habitat and storm 
surge protection, among others (Barbier et al., 2011). However, 
the sustainability of these key ecosystems is uncertain, espe-
cially along the Northern Gulf of Mexico where rapid and expan-
sive wetland loss is clearly visible within a lifetime (Couvillion 
et al., 2011). In addition to numerous other ecosystem services, 
coastal wetlands along the Northern Gulf of Mexico provide 
critical habitat for ecologically important waterfowl species 
(Moon et  al., 2015). Thus, to prevent the loss of these valu-
able resources, wetland conservation and restoration is a high 
priority for land managers in this region (Coastal Wetland 
Planning, Protection & Restoration Act, 1990; Esslinger and 
Wilson, 2001; Wilson, 2007; RESTORE Act, 2012).

To optimize wetland conservation and restoration planning, 
it is vital first to identify the mechanism(s) of wetland loss or 
degradation. Along the Northern Gulf of Mexico, where rates 
of relative sea level rise are higher than most places globally 
(Penland and Ramsey, 1990; Jankowski et  al., 2017; Sweet 
et  al., 2017) and natural hydrology is significantly altered 
(White and Tremblay, 1995; Turner, 2004), excessive flooding 
under saline conditions can lead to unfavourable biogeochem-
ical conditions causing reduced plant growth and eventual mor-
tality (Mendelssohn and Morris, 2002). Generally, as flooding 
depth and duration increase, marsh resilience declines (Stagg 
and Mendelssohn, 2011).

Although wetland plants have evolved to withstand stressful 
abiotic conditions at the terrestrial–aquatic interface, including 
variable flooding conditions and elevated salinity, the growth and 
survival of individual plant species are bound within a certain 
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range of abiotic conditions (Rozema et al., 1988). Exceeding 
these bounds, or thresholds, can shift community composition 
to more tolerant species, creating distinct, and often predict-
able, zonation patterns along the gradient of increasing stress 
(Pennings et al., 2005). In some cases, changes in abiotic con-
ditions can lead to an abrupt regime shift, defined by an eco-
logical threshold (Scheffer, 2001). The rapid conversion from 
vegetated marsh to open water is characteristic of a non-linear 
relationship, where small changes in an abiotic factor (e.g. 
flooding or salinity) may lead to large changes in critical eco-
system properties (e.g. vegetation productivity and marsh sta-
bility) (Fig. 1) (Marani et al., 2010; Jiang et al., 2012; Osland 
et al., 2014). Ecological thresholds are common in coastal wet-
lands (Folke et al., 2004), and can be used to predict ecological 
responses to stressors, such as flooding (Morris et  al., 2002; 
Kirwan and Megonigal, 2013; van Belzen et al., 2017).

Coastal wetland conversion to open water represents a large 
component of wetland loss in the USA (National Oceanic and 
Atmospheric Administration, 2010), and may be described 
by distinct changes in spatial landscape patterns (Fig. 2) that 
are related to hydrologic and geomorphic feedbacks (Ganju 
et  al., 2017). A  substantial body of research has been pub-
lished identifying ecophysiological and hydrogeomorphic 
mechanisms of wetland stability at the local scale (reviewed by 
Mendelssohn and Morris, 2002; Fagherazzi et al., 2012). More 
recent studies have illustrated that changes in spatial patterns of 
vegetation are not only a result of wetland degradation, but also 
a characteristic of the mechanisms controlling future wetland 
loss (Couvillion et al., 2016; Scheper et al., 2017). However, to 

date, very few studies have explicitly and quantitatively linked 
local- and landscape-scale mechanisms of wetland stability. 
Integrating landscape-scale spatial configuration patterns of 
vegetation with local hydrogeomorphic controls provides foun-
dational knowledge that can be used to identify mechanisms of 
wetland sustainability that are relevant at broader spatial and 
temporal scales.

The aim of this research was to identify characteristic land-
scape patterns and hydrologic thresholds of Spartina patens 
(Aiton) Muhl marsh degradation that can be used to iden-
tify areas of vulnerability, reduce flooding threats and im-
prove habitat quality. We investigated healthy and degrading 
S. patens marshes along the Northern Gulf of Mexico to test 
the following hypotheses: (1) coastal wetland degradation is 
characterized by a distinct change in landscape pattern, where 
degrading wetlands are associated with increasing fragmenta-
tion (Fig. 2); (2) increasing fragmentation is associated with 
flooding stress; and (3) the relationship between elevation and 
vegetation cover along the landscape transition is non-linear, 
and an ecological threshold delineates the conversion from 
healthy to degrading wetland (Fig. 1). Our hope is that the 
conclusions from this research can be used to support man-
agement of S.  patens plant communities at risk of flooding 
stress.

MATERIALS AND METHODS

Study location

The study was conducted in coastal wetlands of the Chenier 
Plain along the Northern Gulf of Mexico (Fig. 3), which has an 
average tidal range of 0.33 m (NOAA https://tidesandcurrents.
noaa.gov/datums.html?units=1&epoch=0&id=8770570&n
ame=Sabine+Pass+North&state=TX; accessed 27 February 
2019) and relative sea level trend of 5.86 mm year–1 (NOAA 
https://tidesandcurrents.noaa.gov/sltrends/; accessed 27 
February 2019). Wetlands dominated by S. patens were selected 
within the McFaddin National Wildlife Refuge (NWR) and J.D. 
Murphree Wildlife Management Area (WMA), where coastal 
wetlands are protected and managed to provide habitat for mi-
gratory birds, especially waterfowl. For this study, we selected 
unmanaged wetlands, or sites that had not been manipulated 
within the last decade.

To provide a baseline of knowledge characterizing wetland 
degradation, we compared landscape composition, environ-
mental parameters and vegetation biomass among healthy and 
degrading S.  patens-dominated wetlands. Three healthy and 
three degrading wetland sites (n = 6) were selected based upon 
habitat quality and initial estimates of vegetation cover abun-
dance. Historically, healthy sites provided high quality habitat, 
such as higher bird counts and nesting sites for priority species, 
like Anas fulvigula (Mottled Duck), compared with poor quality 
habitat in the degrading sites (USFWS NWR A.  fulvigula 
breeding pair survey, unpublished data). Additionally, initial 
field surveys indicated that vegetation cover was more abundant 
in the healthy sites compared with the degrading sites, which 
had a greater abundance of open water cover. Methods and re-
sults for preliminary surveys are available in Supplementary 
data Fig. S1.
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Fig. 1. Hypothesized threshold response of vegetation to a gradient of 
increasing flooding stress. The discrete elevation threshold is represented by a 
solid line and the shaded area represents the elevation threshold zone (i.e. area 

of maximum rate of change).

https://tidesandcurrents.noaa.gov/datums.html?units=1&epoch=0&id=8770570&name=Sabine+Pass+North&state=TX;
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https://tidesandcurrents.noaa.gov/datums.html?units=1&epoch=0&id=8770570&name=Sabine+Pass+North&state=TX;
https://tidesandcurrents.noaa.gov/sltrends/
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Landscape data

To assess differences in landscape composition in healthy 
vs. degrading sites, an unmanned aerial system (UAS) (3DR 
Solo + Ricoh GR II digital single lens camera) collected 
high-resolution imagery data from a polygon (13–16 ha) rep-
resenting each of the six sites (Jones et al., 2018). Remotely 
sensed imagery data were collected during low tide on 6–8 
November 2017 at an altitude of 106 m, in 5 s intervals and at 
a 3 cm resolution. The imagery data were incorporated into a 
seamless orthomosaic of natural colour from the red, green and 
blue visible light spectrum (Fig. 4). Individual orthomosaics 
were analysed to classify individual pixels into land and water 
categories. First, an unsupervised classification was per-
formed using Erdas Imagine Version 16.00 software (Hexagon 
Geospatial, Madison, AL, USA) to group pixels together based 
on their spectral similarity. This analysis specified 75 classes, 
with a maximum of 50 iterations. After the automated classifi-
cation was complete, each class was interpreted and grouped 
into either land or water categories. All areas characterized 
by emergent vegetation, wetland forest, scrub-shrub or up-
lands were classified as land, while open water, aquatics and 
unvegetated sediment were classified as water. Given the high 
resolution of the imagery data, a minimum mapping unit of 69 
pixels was defined based upon our field criteria for identifying 
hollows, or the smallest water cover class (25 × 25 cm = 69 
pixels). Following filtration at the minimum mapping unit, each 
individual image was manually analysed for an 8 h period by 
an expert photo interpreter to correct any misclassifications. An 
accuracy assessment, including a difference image creation and 

a quantitative accuracy assessment, was conducted according 
to Congalton (2001). For the quantitative accuracy assessment, 
50 pixels were randomly selected from each cover class in 
each site and assessed for accuracy using photo interpretation 
(Supplementary data Fig. S2; Table S1). The final classified 
data were used to estimate relative land and water cover for 
each healthy and degrading site.

Ecological data

In the field, we also measured water elevation, marsh ele-
vation and vegetation cover in the three healthy and three 
degrading sites to quantify contributions of environmental fac-
tors to S. patens degradation (Stagg et al., 2019). To capture po-
tential thresholds of marsh stability, we established paired plots 
in three types of transition zones: (1) vegetated marsh transition 
to open water; (2) hummock transition to hollow; or (3) vege-
tated marsh remaining as vegetated marsh (Fig. 5, top panels). 
The vegetated/open water transitions and hummock/hollow 
transitions only occurred in the degrading sites, and the vege-
tated/vegetated transitions only occurred in the healthy sites 
(Fig. 5, bottom panels). A  transition to open water was char-
acterized by a vegetated plot on the marsh platform adjacent to 
open water (open water = unvegetated area ≥2 × 2 m). A hum-
mock to hollow transition was characterized by the relative ele-
vation of a vegetated area (hummock) adjacent to a bare area 
(hollow) on the marsh platform – a hollow was defined as an 
unvegetated area (≤25 × 25 cm) that is at least 10 cm lower than 
the adjacent vegetated area (Windham, 1999). Paired plots were 
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Fig. 2. Process of wetland degradation represented by the relationship between wetland health (top panels) and landscape configuration (bottom panels). Healthy 
wetland (A) characterized by aggregated landscape (C), and degrading wetland (B) characterized by fragmented landscape (D). In the bottom panels, green rep-

resents land and blue represents water.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcz144#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcz144#supplementary-data
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randomly established in clear transition zones along transects 
that initiated from the water level recorder. Randomization of 
plot placement along the transects was ensured by using pre-
selected, random, azimuth directions (0–360°) and distance 
intervals (0–20 m) to locate transition zones. Five paired plots 
were established in each relevant transition zone in each site 
(Fig. 5, bottom panels). In each degrading site (n  =  3), five 
paired plots were established at the vegetated/open water tran-
sition, and five paired plots were established at the hummock/
hollow transition (n = 20 plots per site) for a total of 60 plots in 
the degrading wetlands. In each healthy site (n = 3), five paired 
plots were established in vegetated/vegetated transition (n = 10 
plots per site) for a total of 30 plots in the healthy wetlands, and 
a grand total of 90 plots.

Within each 0.5 × 0.5 m paired plot, vegetation cover and 
marsh surface elevation were measured. When present, vegeta-
tion cover was estimated by measuring total live foliage, dead fo-
liage and bare ground, with additional live species-level canopy 
percentage cover using a visual estimation method (Folse 
et al., 2014). Marsh surface elevation was measured and refer-
enced to the 1988 North American Vertical Datum (NAVD88) 
geodetic datum to centimetre-level precision (1–4  cm) using 

real-time kinematic (RTK) surveying (Gao et al., 2005) with 
a Trimble R10 GNSS System (Trimble Navigation Limited, 
Sunnyvale, CA, USA; Chen et al., 2011), a real-time continu-
ously operating reference station (CORS) network, and Trimble 
Business Center 2.5 software for data post-processing (Trimble 
Navigation Limited). Where relevant, conversions from the geo-
detic datum NAVD88 to the tidal datum mean sea level (MSL) 
(NAVD88 = 0.18 m MSL) were conducted using the nearest 
long-term NOAA tidal station, Sabine Pass North (Station ID 
8770570, PID AV1014), located approx. 15 km from the study 
site (https://www.ngs.noaa.gov/Tidal_Elevation/index.xhtml).

Plot-scale flooding metrics were calculated using marsh 
elevation data collected from the paired plots and site-scale 
water elevation data. Water elevation data were collected 
from permanent water level recorders (Solinst® Canada Ltd, 
LT Levelogger® Edge model 3001), which were installed 
in October 2017 at each site and rectified to geodetic datum 
NAVD88 using RTK surveying methods. A single barometric 
recorder (Solinst® Canada Ltd, LT Barologger® Edge model 
3001)  was installed within 10 km of all six water level re-
corders to correct for variance in barometric pressure (Solinst 
Levelogger Software 4.3.1). Water level data were collected 
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Fig. 3. Location of study sites (polygons) representing healthy (H) and degrading (D) Spartina patens-dominated coastal wetlands along the Chenier Plain of the 
Northern Gulf of Mexico, USA.
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H1. 15.2 ha H2. 13.5 ha H3. 13.9 ha

D1. 16.0 ha
D2. 16.0 ha D3. 16.0 ha

Fig. 4. Seamless orthomosaic of natural colour imagery data collected from three healthy (H1–H3) and three degrading (D1–D3) sites. The total area of each 
polygon is noted below each site panel.

A B C

D E F

V

v v v v v v v v v v

v v v v vo o o o o

V V

Hu

Hu

O Ho

Ho

Hu

Ho

Hu

Ho

Hu

Ho

Hu

Ho

Fig. 5. Top panels: transition zones in degrading sites (A) vegetation (V) to open water (O), (B) hummock (Hu) to hollow (Ho), and transition zones in healthy 
sites (C) vegetation remaining as vegetation. Bottom panels: transect schematic illustrating paired plot placement along transition zones in degrading sites (D) 

vegetation (V) to open water (O), (E) hummock (Hu) to hollow (Ho), and transition zones in healthy sites (F) vegetation remaining as vegetation.
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at 6  min intervals continuously over 1  year (October 2017–
October 2018)  and referenced to geodetic datum NAVD88. 
Minimum daily flood depth, an indicator of marsh drainage, 
was calculated as the difference between the daily minimum 
water elevation and the marsh surface elevation in each plot, 
and annual averages were calculated for the water year (October 
2017–October 2018). As an indicator of flood frequency, per-
centage time flooded was calculated as the proportion of flood 
occurrence days during the water year (October 2017–October 
2018). Daily flood occurrence was defined as the exceedance 
of the daily maximum water elevation above the marsh surface 
elevation in each plot.

Data analyses

To quantify the spatial configuration, or the arrangement 
and position of land and water within the wetland, isolated 
patches comprised of either land or water pixels were ana-
lysed to calculate two landscape metrics. Since the goal was to 
relate the integrity of the wetland landscape to site condition, 
we selected spatial configuration metrics that best reflected 
the landscape pattern of interest, aggregation (or alterna-
tively, fragmentation), and the related process of wetland loss 
(Couvillion et  al., 2016). The aggregation index quantifies 
aggregation and represents the tendency of a patch to equal 
neighbouring patches. The patch density index quantifies 
fragmentation and represents the tendency of a patch to differ 
from neighbouring patches (McGarigal, 2002; Supplementary 
data Table S2).

Simple correlation analyses were used to characterize rela-
tionships between spatial configuration metrics for land and 
water classes and the following environmental data: marsh sur-
face elevation, minimum daily flood depth and percentage time 
flooded (Table 1). In the correlation matrix, land cover class 
metrics were paired with environmental data from the vege-
tated and hummock plots from both healthy and degrading sites 
(n = 6). Because open water and hollow plots were not iden-
tified in the healthy sites (Fig. 5F), water cover class metrics 
were paired with environmental data from the hollow and open 

water plots from the degrading sites (n = 3) for a total sample 
number of nine (n = 9) (Table 1).

We conducted a sigmoidal regression analysis to examine 
the relationship between marsh surface elevation and vegeta-
tion cover using data from transition zone paired plots with the 
following equation:

y (x) =
T

1 + e−(
x−c

b )

Where y  =  the ecological response variable (vegetation cover), 
x =  the independent variable (marsh surface elevation), T =  the 
inflection point, b =  the function growth rate and c =  the upper 
asymptote. To identify thresholds of marsh stability along the tran-
sition from vegetated marsh to open water, we calculated the local 
maxima of the first derivative (T), which represents the point of the 
maximum rate of change. The area of maximum rate of change 
(AMRC) was calculated as the area between the local maximum 
and minimum peaks of the second derivative (Hufkens et al., 2008; 
Frazier and Wang, 2013). Data analyses were performed in SAS 
9.3 (SAS, 2011), and Rstudio (R Core Team, 2018).

RESULTS

Landscape patterns

In the healthy sites, relative land cover of the polygons had a 
range of 74.3–80.3 %, compared with 55.7–76.2 % land cover 
in the degrading sites (Fig. 6). In the degrading sites, relative 
water cover had a range of 23.8–44.3 %, compared with 19.7–
25.7 % water cover in the healthy sites (Fig. 6). Although there 
was a clear difference among healthy and degrading sites (H1 
and D1) at the extremes of the observed range, there was sig-
nificant overlap among most healthy and degrading sites, which 
had similar land to water ratios (H2, H3, and D2, D3).

Despite similarities in total cover of land and water pixels, the 
spatial configuration, or location, of land and water pixels dif-
fered among healthy and degrading sites (Table 1). Degrading 
sites were generally more fragmented compared with healthy 
sites and had lower aggregation index scores. Furthermore, 

Table 1. Spatial configuration metrics calculated for land and water cover classes, marsh elevation (m NAVD88), annual average daily 
minimum flood depth (drainage) and annual average percentage time flooded (flooding frequency) collected in healthy and degrading 

Spartina patens marshes

Site ID Cover class Patch number Aggregation index Patch density Elevation 
(m, ±s.e.)

Daily minimum flood 
depth (m, ±s.e.) 

%Time flooded 
(%, ±s.e.)

H1 Land 1519 99.1 9365 0.20 (0.01) 0.17 (0.01) 72 (6)
H2 Land 665 99.3 4108 0.24 (0.02) 0.15 (0.02) 66 (8)
H3 Land 109 99.4 730 0.21 (0.02) 0.20 (0.02) 82 (8)
D1 Land 2515 96.3 16 069 0.28 (0.01) 0.16 (0.01) 76 (1)
D2 Land 4082 98.6 26 202 0.22 (0.02) 0.19 (0.02) 84 (9)
D3 Land 2182 98.3 13 439 0.29 (0.01) 0.10 (0.01) 25 (2)
H1 Water 10 359 96.8 63 867 – – –
H2 Water 13 753 98.8 84 976 – – –
H3 Water 12 488 98.3 83 725 – – –
D1 Water 25 850 95.4 165 161 0.04 (0.02) 0.40 (0.02) 100 (0)
D2 Water 16 438 96.1 105 515 0.06 (0.01) 0.35 (0.03) 100 (0)
D3 Water 36 493 94.6 224 765 0.08 (0.02) 0.30 (0.04) 84 (8)

Detailed metric descriptions are available in Supplementary data Table S1.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcz144#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcz144#supplementary-data
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degrading sites had higher estimates for patch density, which 
increases with fragmentation, compared with healthy sites.

Abiotic–biotic linkages

Spatial configuration metrics were significantly correlated 
with environmental parameters, including marsh surface eleva-
tion and daily minimum flood depth (drainage) (Fig. 7). Marsh 
elevation was positively correlated with the aggregation index, 
and negatively correlated with patch density. These data indi-
cate that as marsh surface elevation increases, aggregation in-
creases and fragmentation declines (Fig. 7A, D). As expected, 
flooding trends opposed elevation trends. For example, daily 
minimum flood depth, which is the inverse of marsh drainage, 
was negatively correlated with the aggregation index and posi-
tively correlated with patch density, a fragmentation metric 
(Fig. 7B, E). Flood frequency, or percentage time flooded, was 
not significantly correlated with either of the spatial correlation 
metrics (Fig. 7D, F). These data illustrate that lower elevation 
and poor drainage are associated with fragmented landscapes, 
whereas higher elevation and better drainage are associated 
with more solid, aggregated marsh landscapes (Fig. 7).

There was a significant positive sigmoidal relationship be-
tween marsh surface elevation and vegetation cover in S. patens 

marshes (Fig. 8). The discrete elevation threshold (T) for vege-
tation cover in S. patens marshes was 0.09 m NAVD88 (0.27 
m MSL), with a transition zone (AMRC) between 0.03 m and 
0.14 m (0.21 m and 0.32 m MSL). The data illustrate that as 
elevation declines past the transition zone boundaries, small 
changes in elevation lead to large and rapid declines in vegeta-
tion cover and ultimately conversion to open water.

DISCUSSION

As an emergent ecosystem property, the spatial organization 
of a landscape reflects underlying ecosystem processes and 
ecological function (Kupfer, 2011). Therefore, appropriate 
metrics of landscape configuration can be used to assess 
ecosystem health and habitat quality (O’Neill et al., 1997; 
Suir et  al., 2013) and identify mechanisms of ecosystem 
change (Kupfer, 2012). In this study, we investigated the 
spatial configuration of land and water patches in coastal 
wetlands to identify trends in landscape patterns among 
healthy and degrading wetlands. We observed that wetland 
degradation was associated with increasing fragmentation. 
Healthy wetlands were more spatially consolidated or ag-
gregated, and degrading wetlands were more fragmented. 
This trend is supported by Couvillion et  al. (2016), who 
illustrated that fragmented wetlands were more vulnerable 

Land Water

H1. Land 80.3% Water 19.7 % H2. Land 74.3 % Water 25.7 % H3. Land 76.6% Water 23.4%

D1. Land 55.7 % Water 44.3 % D2. Land 73.3 % Water 26.3% D3. Land 76.2% Water 23.8%

Fig. 6. Land–water classification of imagery data using a minimum mapping unit of 69 pixels (0.25 × 0.25 m) for each healthy (H1–H3) and degrading (D1–D3) 
site. Relative cover of land and water classes is noted below each site panel.
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to further wetland loss. Not only does this indicate that ag-
gregated wetlands contribute to landscape stability, but it 
also signifies that the process of fragmentation itself con-
tributes to wetland loss. By further linking these landscape 

configuration patterns with abiotic conditions, such as 
flooding or sediment availability, we can gain an under-
standing of the conditions that promote fragmentation and 
ultimately wetland loss (Turner and Rao, 1990).
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In this study, a key characteristic of fragmentation was the 
formation of hummocks and hollows, which only occurred in 
the degrading wetlands. We hypothesized that fragmentation 
in the degrading wetlands was associated with low elevation 
and high flooding stress. Hummock formation has been iden-
tified in other wetland ecosystems as a mechanism to avoid 
flooding stress. In tidal freshwater forested wetlands, trees 
are found growing more frequently on high-elevation hum-
mocks, compared with low-elevation and frequently flooded 
hollows (Duberstein and Conner, 2009), and the presence of 
this microtopographic variation is an indicator of a healthy eco-
system (Connor et al., 2007). However, hummock and hollow 
formation in S.  patens-dominated coastal marshes has been 
proposed as an indicator of degradation associated with sub-
optimal flooding conditions (Stribling et al., 2006).

Spartina patens forms hummocks by concentrating roots 
under established ramets and effectively raising the rooting 
zone above the soil surface (Windham, 1999). The raised hum-
mocks provide improved growing conditions, with regularly 
drained and aerated soils, that promote high rates of product-
ivity (Stagg et al., 2017). Adjacent to the hummocks, the re-
sultant low-lying hollows are characterized by poorly drained 
and anoxic soils containing little to no vegetation (Windham 
and Lathrop, 1999). This pronounced microtopographic vari-
ation is not observed in regularly flooded S.  patens marshes, 
rather it is more characteristic of marshes that receive either too 
little (Windham, 1999) or too much flooding (Stribling et al., 
2006).

The formation of hummocks and hollows in response to 
excessive flooding may be an initial indicator of marsh col-
lapse, or a regime shift from vegetated marsh to open water, 
which is triggered by a disruption in the hydrologic feed-
backs that maintain wetland elevation (Nyman et al., 1993). 
In poorly drained S. patens marshes, prolonged flooding in 
the hollows is reinforced by unfavourable biogeochemical 

conditions (low oxygen availability or high sulphide produc-
tion) causing plant mortality (Mendelssohn et al., 1981) and 
subsequently wetland elevation loss (Cherry et  al., 2009). 
Continued flooding leads to further peat collapse and pond 
formation until the marsh is completely submerged (DeLaune 
et al., 1994).

Hydrologic feedbacks have been extensively studied in 
coastal wetlands, where wetland stability is mediated through 
flooding controls on vegetation production, decomposition 
and sediment deposition (reviewed in Kirwan and Megonigal, 
2013). These feedback mechanisms often include non-linear 
relationships (Morris et  al., 2002), which have been used to 
identify sea-level rise thresholds of coastal wetland stability 
(Kirwan et al., 2010). However, the relationships between hy-
drology, spatial landscape configuration patterns and wetland 
stability have been understudied. We hypothesized that the re-
lationship between elevation and vegetation cover along the 
transition from healthy marsh to open water was non-linear and 
sigmoidal in nature.

Non-linear responses to changing abiotic conditions are 
common in coastal wetlands (Feher et al., 2017), and can sig-
nify abrupt regime shifts (Andersen et al., 2008), such as the 
conversion of vegetated marsh to open water. In a non-linear 
sigmoidal relationship, the AMRC represents a transition zone 
where small changes in the independent (stress) variable cause 
disproportionately large ecological responses. For example, 
Gabler et al. (2017) observed transformative changes in wetland 
community plant structure associated with small changes in 
precipitation and temperature, representing transitions between 
graminoid-, succulent- and mangrove-dominated ecosystems. 
These transition zones are defined by discrete thresholds (T), 
which can be used to predict ecological responses to stressors 
(Osland et al., 2014). In the current study, vegetation cover de-
clined significantly beyond an elevation threshold of 0.09 m 
NAVD88 (0.27 m MSL) and converted to open water beyond 
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0.03 m NAVD88 (0.21 m MSL). This abrupt decline in vegeta-
tion cover not only was defined by an elevation threshold, but 
was also associated with a distinct change in landscape config-
uration (fragmentation). Thus, the elevation thresholds defined 
here delineate a transition zone where hummock and hollow 
formation will lead to open water, or marsh collapse.

This bimodal behaviour of wetland collapse has been 
modelled extensively in coastal wetland ecosystems, where 
feedbacks between sedimentation, hydrology and vegeta-
tion productivity lead to the abrupt transition from vegetated 
marsh to mudflat or open water (Kirwan and Murray, 2007; 
Marani et al., 2007, 2010; Mariotti and Fagherazzi, 2010). 
However, empirical observations of threshold dynamics are 
less common, and coupling of biogeomorphic thresholds to 
spatial landscape patterns is even rarer (but see Ganju et al., 
2017; Schepper et al., 2017). From the limited sample, it ap-
pears that variation in elevation thresholds for similar plant 
communities is not insignificant (Venice Lagoon –0.05 to 
0.2 m MSL, Fagherazzi et  al., 2006; The Scheldt Estuary 
2.26 m MSL, Wang and Temmerman, 2013; and Texas 
Chenier Plain 0.27 m ASL, current study), indicating that 
characteristics of the local geomorphic setting (tidal range 
and sedimentation) are important predictors of these thresh-
olds (Schoolmaster et al., 2018). These findings support the 
need for future research to identify local thresholds for in-
dividual estuaries.

Similarly, landscape metrics, such as those used in this study, 
are sensitive to scale (Wu, 2004), and analyses conducted at an 
alternative scale may have different outcomes. To identify the 
discrete transition from aggregated to fragmented marsh, high-
resolution imagery (sub-metre) was necessary to capture the 
formation of hummocks and hollows. Relatively minor changes 
in spatial resolution (1–1.5 m) could significantly impact clas-
sifications of small water bodies (e.g. hollows) (Enwright et al., 
2014), which may hinder threshold identification in these eco-
systems. To promote wider implementation of these indicators 
for management and monitoring programmes, future research 
should continue to characterize unique thresholds and land-
scape patterns for individual estuaries, and further relate these 
findings to readily available (lower resolution) imagery.

Conclusions

The aim of this research was to identify characteristic spatial 
patterns and hydrologic thresholds of S. patens marsh degrad-
ation that can be used to identify areas of vulnerability, reduce 
flooding threats and improve habitat quality. This work de-
scribes the process of coastal wetland loss through changes in 
spatial landscape patterns, and clearly illustrates the importance 
of landscape-scale responses as indicators of coastal wetland 
loss. Our research links changes in landscape patterns to hy-
drology, demonstrating that progressive fragmentation is as-
sociated with degradation and flooding stress. As indicators of 
wetland degradation, managers can use changes in landscape 
configuration to identify areas that are vulnerable to flooding 
risk. Further, we identified a clear non-linear relationship be-
tween elevation and vegetation cover along the landscape 
transition and identified an elevation threshold that delineated 

the conversion from healthy marsh to open water. In coastal 
wetlands, coupling local biophysical responses and landscape-
scale spatial patterns can be used to capture non-linear behav-
iour and provide indicators of ecosystem resilience that will 
allow managers to prevent a dramatic change in ecosystem state 
(van Belzen et al., 2017).

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.
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