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Background: Resting-state functional neuroimaging 
captures large-scale network organization; whether this 
organization is intact or disrupted during adolescent de-
velopment across the psychosis spectrum is unresolved. We 
investigated the integrity of network organization in psy-
chosis spectrum youth and those with first episode psychosis 
(FEP) from late childhood through adulthood. Methods: 
We analyzed data from Philadelphia Neurodevelopmental 
Cohort (PNC; typically developing = 450, psychosis spec-
trum = 273, 8–22 years), a longitudinal cohort of typically 
developing youth (LUNA; N = 208, 1–3 visits, 10–25 years), 
and a sample of FEP (N  =  39) and matched controls 
(N  =  34). We extracted individual time series and calcu-
lated correlations from brain regions and averaged them for 
4 age groups: late childhood, early adolescence, late adoles-
cence, adulthood. Using multiple analytic approaches, we 
assessed network stability across 4 age groups, compared 
stability between controls and psychosis spectrum youth, 
and compared group-level network organization of FEP to 
controls. We explored whether variability in cognition or 
clinical symptomatology was related to network organiza-
tion. Results: Network organization was stable across the 
4 age groups in the PNC and LUNA typically developing 
youth and PNC psychosis spectrum youth. Psychosis spec-
trum and typically developing youth had similar functional 
network organization during all age ranges. Network or-
ganization was intact in PNC youth who met full criteria for 
psychosis and in FEP. Variability in cognitive functioning 
or clinical symptomatology was not related to network or-
ganization in psychosis spectrum youth or FEP. Discussion: 
These findings provide rigorous evidence supporting intact 
functional network organization in psychosis risk and psy-
chosis from late childhood through adulthood.
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Introduction

The first symptoms of psychosis often emerge during 
adolescence, when the incidence of psychotic disorders 
increases.1–3 Many brain systems affected in psychosis 
also show a protracted developmental course norma-
tively, with changes occurring throughout adolescence 
and into adulthood,1,4 suggesting that adolescence is a 
time when neural circuitry relevant to emergence of psy-
chosis is vulnerable. Still, the specific role that adolescent 
neurodevelopment plays in the emergence of psychosis is 
not fully known.

Many hypothesize psychotic symptoms result from 
aberrant integration of information processing between 
networks, resulting in “dysconnectivity” between brain re-
gions.5–7 We define dysconnectivity as disrupted synaptic 
communication that influences intrinsic functional brain 
connectivity.7 However, at  what point in the develop-
mental course of psychosis this dysconnectivity emerges 
is not known. Aberrant, large-scale functional reorgani-
zation of the brain from late adolescence and early adult-
hood could contribute to the development of psychotic 
symptoms8 and reflect the dysconnectivity believed to 
occur in psychosis.

Ideally, brain network organization, as measured 
by resting-state functional connectivity (rsfMRI), 
could detect cumulative effects of neuronal circuit 
“dysconnectivity.” The brain is composed of individual 
regions that cooperate in networks to perform multiple 
cognitive operations. Networks are identified by dense 
connectivity within regions that “work together,” and 
weaker connectivity with other regions.9 Brain network 
organization is defined by how specific regions of the 
brain group together to form clusters (ie, networks or 
communities,10,11). For our purposes, we consider “canon-
ical network organization” to be the labeled networks in a 
widely used, published parcellation.12
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A large body of research has shown that network or-
ganization measurements provide a framework to assess 
large-scale, canonical coordination of the functional 
brain.11,13–19 In healthy adults, approximately 10–20 func-
tional networks have been repeatedly identified and 
linked to sensory and cognitive functions.11,12,20,21 There is 
high correspondence between these networks and task-
based functional magnetic resonance imaging networks22; 
furthermore, rsfMRI connectivity predicts task-based 
MRI connectivity.23–25 It is likely that rsfMRI network or-
ganization provides a framework for the engagement of 
task-based brain activity.

rsfMRI networks are already present in the fetal,26 
preterm,27,28 and infant phases of  development,29–31 pro-
viding evidence that network organization is established 
early in development. Research in typical development 
supports this hypothesis, with stable network organ-
ization from late childhood through adulthood.10,32 
However, there are reports of  considerable func-
tional network reorganization during adolescence.13,33 
Nevertheless, all extant developmental examinations of 
network organization assess the community structure 
as a single snapshot in time, when development is a dy-
namic process.34,35

Organization of these canonical networks, or how re-
gions of the brain affiliate with one another, may develop 
abnormally in psychosis, particularly if  there is reorgan-
ization taking place during adolescence. Using meas-
ures that compare the similarity of network clustering in 
2 groups,36,37 we can determine to what extent and how 
network organization becomes disrupted in psychosis. 
Characterizing age-associated deviations in network or-
ganization in psychosis can tell us when the alteration 
occurs. Understanding how and when age-associated net-
work organization is altered could identify developmen-
tally sensitive periods for intervention in youth at high 
risk for developing psychosis.38

Although many studies of psychosis report that con-
nectivity between and within rsfMRI communities is 
altered in psychosis,39–41 the extent to which canonical 
network organization is disrupted is not fully understood. 
One study found that, at the group level, network organ-
ization in adult schizophrenia patients was visually sim-
ilar to network organization of healthy adults42; however, 
they found subtle changes in network structure when they 
examined individual-level network organization. Another 
study of first episode psychosis (FEP) found that network 
organization was intact at baseline and remained stable 
over 12 months.43 Finally, a recent study found that youth 
at clinical high risk for psychosis who converted to a psy-
chotic disorder exhibited modular network organization 
differences in comparison to typically developing youth 
and high-risk youth who did not develop a psychotic 
disorder.44 We build on these approaches by probing the 
age-associated differences in psychosis spectrum youth 
(8–22  years old) in comparison to typically developing 

youth, to assess if  and when there are distinct alterations 
in rsfMRI network organization.

A limitation in developmental network organiza-
tion studies is age-related differences in sources of arti-
fact, namely head motion artifact, which decreases with 
age. Although initial studies characterizing age-related 
rsfMRI changes found that network organization con-
tinued to change into adulthood,13 research has shown that 
age-related differences in head motion confounded these 
connectivity distance findings.45–47 Variations in magnetic 
resonance imaging (MRI) processing methods also influ-
ence the results of network organization studies,45,48,49 and 
different community detection algorithms or clustering 
metrics likely provide different results. Given the lack of 
consistency across graph theory publications in both psy-
chiatry and developmental neuroscience, it is difficult to 
make comparison across studies.50 To ensure robust and 
replicable results, we used multiple methods, in this study. 
In this regard, a new community detection method, per-
sistent communities by eigenvector smoothing (PisCES), 
was developed to detect time-varying changes in network 
organization.36 By combining information from multiple 
time periods longitudinally, inference is strengthened for 
each individual time period.36 We use PisCES and other 
more established tools to assess network organization.

We leveraged 2 large cohorts with rsfMRI data to (1) 
extend upon work showing that network organization is 
stable across development10 in a longitudinal sample, (2) 
replicate network organization stability in a cross-sec-
tional typically developing independent cohort, and 
(3) examine the extent to which this network organiza-
tion is intact or disrupted across the psychosis spectrum 
from late childhood through adulthood. To ensure our 
results generalized to help-seeking individuals meeting 
full criteria for a psychotic disorder, we compared net-
work organization between FEP and matched controls. 
Finally, we explored whether clinical symptomatology or 
cognitive functioning is related to disruption of network 
organization across the psychosis spectrum.

Participants

Neuroimaging data consisted of participants from 
3 samples: one longitudinal dataset acquired at the 
University of Pittsburgh (LUNA, including a portion 
of previously-published cross-sectional data) and 2 
cross-sectional data sets acquired at the University of 
Pennsylvania (Philadelphia Neurodevelopmental Cohort 
[PNC]51,52) and the University of Pittsburgh (Pitt).

LUNA.  The LUNA cohort was a longitudinal sample 
of typically developing youth (1–3 visits, N  =  208, 
10–25 years old). Participants did not have a psychiatric 
disorder, as determined by phone screen and a clinical 
questionnaire.53 Exclusion criteria for all participants in-
cluded medical illness affecting the central nervous system 
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function, IQ lower than 80,54 a first-degree relative with a 
major psychiatric disorder, or MRI contraindications.

Philadelphia Neurodevelopmental Cohort.  PNC data 
were obtained through the Database of Genotypes and 
Phenotypes platform (B.L., no. 43787). The PNC is a pop-
ulation sample consisting of 9498 youth who participated 
in neurocognitive and genetic assessment. A  subset  of 
this cohort  also underwent neuroimaging.55 The final 
PNC  rsfMRI sample size was 723 (N typical develop-
ment = 450, N psychosis spectrum = 273, 8–22 years old; 
supplementary figure S1 for sample exclusions).

Psychopathology was assessed using a computerized, 
structured interview (GOASSESS51). We created catego-
rical and dimensional measures of psychosis from clin-
ical symptom responses to GOASSESS, the Structured 
Interview for Prodromal Syndromes (SIPS56), and a 
12-item PRIME Screen–Revised questionnaire (PS-R57). 
Categorical psychosis spectrum group was defined as 
(1) a score that is 2 standard deviations (SDs) or greater 
than age-matched peers on the SIPS or PS-R, (2) defi-
nite or possible hallucinations or delusions endorsed in 
responses to GOASSESS psychosis items, or (3) a min-
imum of 1 PS-R item rated 6 (definitely agree) or at least 
3 items rated 5 (somewhat agree). This definition is con-
sistent with previous publications.58–61 We also identified a 
subset of psychosis spectrum youth who met full criteria 
for a psychotic disorder (supplementary materials).

The PNC typically developing group consisted of 
youth who denied clinically significant symptoms of psy-
chopathology, based on GOASSESS responses. An Axis 
I disorder was assigned if  (1) symptoms endorsed were 
consistent with the frequency and duration of symptoms 
expected from a Diagnostic and Statistical Manual of 
Mental Disorders (Fourth Edition) (DSM-IV) psychi-
atric disorder, and (2) accompanied by significant distress 
or impairment (a rating of ≥5 on a scale of 0–1051). Any 
individual from the PNC that met criteria for an Axis I 
disorder (other than a psychotic disorder) was removed 
from all analyses.

PNC Clinical Symptomatology and Cognitive Functioning. 
Positive and negative symptoms were measured dimen-
sionally by summing the relevant SIPS/PS-R responses 
(supplementary table S1). The Wide Range Achievement 
Test–Fourth Edition reading subtest62 was used in the 
PNC to assess basic academic ability.

University of Pittsburgh.  Inclusion criteria for FEP in 
the Pitt sample were experiencing one’s first psychotic ep-
isode and seeking help for psychotic symptoms for the 
first time and antipsychotic naive or prescribed antipsy-
chotic treatment for less than 2 months. Diagnoses were 
determined using information gathered from a Structured 
Clinical Interview for DSM-IV (SCID63). Inclusion 
criteria for controls were no lifetime history of a major 

psychiatric disorder or antipsychotic treatment, and no 
first-degree family member with a psychotic disorder. 
Exclusion criteria for all participants included DSM-IV 
substance abuse disorder currently or within the previous 
6 months, significant neurological disorder or head injury 
or mental retardation as defined by the DSM-IV (IQ < 
75), medical illness affecting the central nervous system 
function, or MRI contraindications.

MR Data Acquisition

Data were acquired using Siemens 3 Tesla Tim Trios. 
rsfMRI data were collected using an echo-planar se-
quence sensitive to blood-oxygen-level-dependent  con-
trast (T2*). A magnetization-prepared rapid gradient-echo 
sequence was acquired to measure brain structure and for 
alignment of the rsfMRI images. Supplementary table 
S2 includes scan instructions and parameters for each 
sample.

rsfMRI Processing

We used resting-state processing methods that are con-
sistent with our previous publications.10,45,61 Briefly, 
these steps included warping to Montreal Neurological 
Instituite standardized space, spatial smoothing, wavelet 
despiking, and simultaneous nuisance regression and 
bandpass filtering. Details are in the supplementary 
materials.

Functional Network Parcellation

We applied a previously defined functional connectome 
parcellation of 333 functional regions of interest 
(ROIs) across cortical structures (ie, the “reference 
parcellation”12) to each participant’s rsfMRI data. We 
chose this parcellation because the identified networks 
were well validated and replicated in healthy adults and it 
is widely used as a standard rsfMRI parcellation in pedi-
atric and adult samples.12,23,64–68 For each participant, we 
computed Pearson correlations of each ROI’s time series 
with every other ROI (producing a 333  × 333 correla-
tion matrix). Pearson correlations were transformed to 
z-values using Fisher z transformation.

Statistical Analysis

Group Network Organization.  Participants were 
grouped into 1 of  4 age groups: late childhood (LUNA: 
10–12 years, PNC: 8–12 years), early adolescence (13–
15  years), late adolescence (16–19  years), and adults 
(20+ years). These groups map onto distinct develop-
mental phases that are demarked by physical, social, 
and psychological changes69,70 and are consistent with 
relevant literature.10 Individual correlation matrices 
were averaged within each age group (figure  1A and 
B). We applied 2 community detection techniques: 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
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Louvain and PisCES. Within each age group, the 
Louvain method divides the nodes (ROIs) into dif-
ferent communities by grouping together nodes that 
are densely connected with each other, and separating 
weakly connected nodes into other communities.37 For 
the Louvain method, network resolution parameter γ 
was set to 1.3; when this parameter was applied to all 
data, the Louvain method identified a similar number 
of  communities14 to the reference parcellation.12 PisCES 
performs dynamic community detection by combining 
all age groups into a series and using an eigenvector 
smoothing algorithm to estimate time-varying com-
munity structure in the data.36

To compare the similarity of the identified network 
organization to the reference parcellation18 (figure  1C), 
we calculated 2 measures used to compare clusters of 
variables, Normalized Mutual Information (NMI) and 
Adjusted Rand Index (ARI). Both have been used to 
compare sets of network assignments in rsfMRI data.10,33 

ARI and NMI values range from 0 to 1, with 0 values 
referring to complete dissimilarity of the 2 networks and 
a value of 1 referring to identical community assignment.

Assessment of Stability Across Development.  Within 
each cohort (LUNA, PNC) and each group (patient, 
typically developing), we used a jackknife procedure to 
create subpopulations for each age group and produce 
NMI and ARI distributions. We chose the jackknife 
procedure because it is an assumption-free analytic ap-
proach that maintains good power.71,72 For each age 
group with n subjects, we applied the jackknife proce-
dure with leave-one-out resampling. Community detec-
tion was performed on the average correlation matrix 
of n − 1 subjects. We calculated NMI and ARI values 
between our community detection results and the refer-
ence labels and estimated distributions by repeating this 
process n times. Jackknife mean, variance, and confidence 
intervals of NMI and ARI values were created for each 

Fig. 1.  (A) After resting-state fMRI data were processed, we extracted out the time series from an established parcellation12 and 
calculated a correlation matrix for each individual. (B) We grouped individuals by developmental stages (late childhood, early 
adolescence late adolescence, adulthood) and calculated an average correlation matrix for each stage. (C) We detected the communities 
(using Louvain and persistent communities by eigenvector smoothing [PisCES]) for each cohort at each developmental stage. We 
compared the community structure to the reference parcellation12 and calculated multiple similarity metrics (Normalized Mutual 
Information, Adjusted Rand Index). (D) We built a jackknife distribution for the mean correlation for each developmental stage by leave-
one-out resampling to obtain a distribution of the mean, compare means for different developmental stages, and produce P values for the 
significance of the differences in mean. (E) To compare network organization of psychosis spectrum youth to typical development, we 
compared the jackknife distributions at each developmental stage.
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age group (figure 1D). To compare each age group to the 
other, we then subtracted the jackknife mean similarity 
metric (NMI, ARI) in age group i vs another group j to 
obtain δij.

The prior calculations treat each age group separately, as-
suming there are age-specific differences in network organ-
ization. What if networks were similar over this range of 
development? Under this scenario, age is not meaningful for 
organization. We generated a null distribution by shuffling 
subjects and randomly assigning them to age group, con-
ditional on achieving an appropriate n. Community de-
tection was performed on each age group. We repeated 
the procedure 10 000 times, computing the distribution of 
mean value for each age group, as well as the distribution 
of NMI and ARI differences between each pair of groups. 
We compared the original difference δij with null distribu-
tion to generate a P value for the significance level of the 
difference.

Comparison of Typical Development to Patient Samples. 
We used jackknifing resampling and permutation 
testing, as described earlier, to compare distributions 
of  PNC typically developing youth to PNC psychosis 
spectrum youth in each age group (figure 1E). We also 
compared the distributions of  PNC typically devel-
oping youth to PNC youth that met criteria for a psy-
chotic disorder (N = 99) in each age group. To ensure 
that the PNC results generalized to a more typically 
diagnosed clinical group, we performed a group-level 
comparison of  the distributions of  FEP to matched 
controls (Pitt sample).

Effects of Possible Confounds.  Global signal regression and 
censoring of high motion subjects significantly affect graph 
theory metrics73–75; thus, we ran all analyses with and without 
applying global signal regression and high-motion censoring 
(framewise displacement [FD] > 0.3 mm). Because the ref-
erence parcellation included only cortical regions, we reran 
all analyses including subcortical regions from the Harvard-
Oxford atlas.76 We reran all analyses using 2 additional 
rsfMRI reference parcellations11,21 because calculating com-
munity structure across a defined set of nodes (ie, 333) could 
limit generalization of findings. We also created a youth-
derived reference parcellation from the LUNA sample (sup-
plementary materials) and repeated PNC-related analyses to 
ensure that our parcellation was suitable for the age ranges 
examined.

Previous studies of network organization in psychosis 
have conducted statistical analyses on similarity metrics 
calculated at the individual level (eg, Lerman-Sinkoff and 
Barch42). To ensure consistency with previous studies, we 
performed comparable analyses (supplementary materials).

Use of Repeated Measures.  We had repeated measures 
in the analyses of network organization stability in the 
LUNA cohort (1 visit = 126, 2 visits = 48, 3 visits = 34; 

supplementary figure S2). If  we explicitly modeled the 
effects of repeated measures, the correlation due to 
observations on the same subject will increase the var-
iance of the mean and is expected to decrease the test 
statistic for mean differences. However, because we did 
not model them and take a less conservative approach, 
we increased the likelihood that we detect a significant 
difference. If  we observed a significant difference, we 
would have reason to assess this dependence. However, 
we did not detect significant differences. In addition, the 
community detection procedures used do not require the 
samples to be independent. As a final robustness eval-
uation, we also reanalyzed the age-associated LUNA 
analyses with cross-sectional data only.

Power Calculations.  We estimated the effect sizes we 
were powered to detect (R package pwr77). Results are re-
ported in supplementary tables S3 and S4.

Influence of Clinical Symptomatology and Cognitive 
Functioning on Network Organization in Psychosis 
Spectrum Youth.  We separated the PNC psychosis spec-
trum sample into 4 quantile groups based on each selected 
measure (ie, positive symptoms, negative symptoms, cog-
nitive functioning). Supplementary figure S3 presents 
distributions of measures and respective quantile groups. 
We used jackknifing resampling and permutation testing 
to assess network organization at the different quantiles. 
We also examined relationships between network organ-
ization and these measures using a continuous approach 
(supplementary materials).

Results

Participant information is presented in table  1. 
Supplementary table S5 breaks down participant samples 
by age group. Correlation matrices for LUNA and PNC 
in each age group are presented in figure  2 and com-
munity structure is shown in supplementary figure S4. 
Notably, the correlation matrices of all 3 cohorts in each 
age group are quite similar, as is the community structure.

Network Organization Is Stable From Late Childhood 
Through Adulthood in Typically Developing Youth and 
Psychosis Spectrum Youth

Typically developing youth exhibited stable network 
organization from 8 to 25  years in LUNA and PNC 
(figure  3A and B, supplementary table S6, P > .28). 
LUNA results remained unchanged when we analyzed 
the only cross-sectional data. PNC psychosis spectrum 
youth also exhibited stable network organization across 
this age range (figure  3C, supplementary table S7A, P 
> .26). Results remained consistent when we analyzed 
a subset of PNC youth who met criteria for a full psy-
chotic disorder (figure  4A, supplementary table S7B,  

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
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P > .6). Supplementary figure S5 shows jackknife means 
and confidence intervals of the similarity metrics.

Network Organization Is Intact in Psychosis in 
Comparison to Typically Developing Youth

In comparison to PNC typically developing youth, psy-
chosis spectrum youth exhibited similar functional net-
work organization in late childhood through adulthood 
(figure 3B, supplementary table S8, P > .5). Results remained 
consistent when we examined a subset of PNC youth who 
met full criteria for a psychotic disorder (figure 4B, supple-
mentary tables S8 and S9, P > .5). In the Pitt sample, in 
comparison to controls, FEP exhibited intact network or-
ganization (supplementary Table S9, P > .16).

Changes to rsfMRI Processing Pipeline, Community 
Detection Parameters, and Parcellation Do Not Alter Results

We assessed whether all developmental/age-associated 
and group comparisons remained consistent with method-
ological changes. Results (supplementary tables S10–S18) 
remained unchanged when we (1) implemented global 
signal regression and (2) excluded high-motion repetition 
times (FD > 0.3 mm) during rsfMRI preprocessing, (3) 
applied different γ parameters to the Louvain method, (4) 
added subcortical regions to the reference parcellation, (5) 
used other reference rsfMRI parcellations,11,21 (6) derived 
a parcellation from the LUNA typically developing youth 
and used it as the reference, and (7) conducted analyses on 
similarity metrics calculated at the individual level.

Clinical Symptom Severity and Cognitive Functioning 
Are Not Related to Network Organization in Psychosis 
Spectrum Youth

In PNC psychosis spectrum youth, network organization 
was not different in quantile levels of cognitive function, 
or positive or negative symptom severity (P > .68, supple-
mentary table S19). Results remained consistent when we 
used individual similarity metrics and dimensional meas-
ures (Padjusted > 0.36, supplementary table S20).

Discussion

Across adolescent development, network organization is 
stable in typically developing youth and strikingly sim-
ilar across independent data sets, as evidenced in other 
studies.10 Psychosis spectrum youth also exhibit stable 
network organization during these age ranges. Compared 
to typically developing youth, psychosis spectrum youth 
and individuals experiencing their FEP exhibit intact 
functional network architecture. Our results are con-
sistent with the existing evidence that adolescence is a 
time of refinement and strengthening of already estab-
lished networks10,32 and suggest that network organiza-
tion does not contribute to the development of psychotic 
symptoms during adolescence. Given that network or-
ganization was not different as a function of symptom 
severity or cognitive function across the psychosis spec-
trum, our results suggest that psychosis symptom devel-
opment and cognitive problems in this group are due to 
other disruptions. Finally, we show that our results re-
main robust across multiple methods.

Table 1.  Participant Information for Each Sample

LUNA Typically  
Developing  
(N = 208)

PNC Typically  
Developing  
(N = 450)

PNC Psychosis  
Spectrum  
(N = 273)

Pitt Controls  
(N = 34)

Pitt First Episode  
Psychosis  
(N = 39)

Mean age [+/− SD] 18.5 [4.3] 16.1 [3.6] 16.1 [2.9] 21.5 [3.3] 22.0 [3.9]
Age range 10.1–25.9 years 8–22 years 8–22 years 14.7–29 years 13.0–30.5 years
F/M 156/168 229/221 151/122 12/22 14/15
Total positive symptom  
scorea [+/− SD]

NA 2.7 [4.6] 21.3 [13.9] NA 12.9 [3.8]

Total negative symptom  
scorea [+/− SD]

NA 1.5 [1.1] 4.1 [4.4] NA 6.8 [2.5]

Mean cognitive functioning  
scoreb [+/− SD]

115.6 [11.3] 104.8 [16.3] 98.1 [16.9] 106.9 [10.2] 107.2 [13.2]

Mean framewise  
displacement [+/− SD]

0.15 [0.05] 0.11 [0.06] 0.12 [0.06] 0.14 [0.06] 0.15 [0.05]

Note: For the Philadelphia Neurodevelopmental Cohort (PNC) youth, positive symptoms (range 0–72) and negative symptoms (range 
0–30) scores were derived from summed relevant responses to the Structured Interview for Prodromal Syndromes (SIPS,56), and a 12-item 
PRIME Screen–Revised questionnaire (PS-R57). Exact items used to calculate these scores can be found in supplementary table S1. Pos-
itive and negative symptoms for the University of Pittsburgh (Pitt) first episode psychosis participants were summed from positive and 
negative symptom responses to the Brief  Psychiatric Rating Scale78 ( negative symptom range: 3–21; positive symptom range: 4–28).
aCognitive functioning for the LUNA typically developing youth was determined through the Reynolds Intellectual Assessment Scale.54 
Cognitive functioning for the PNC youth was determined from the standardized Wide Range Achievement Test–Fourth Edition reading 
subtest.62 Cognitive functioning for the Pitt sample was determined using the Wechsler Abbreviated Scale of Intelligence.79
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To the best of  our knowledge, this is the first assess-
ment of  network stability in adolescent development 
using a longitudinal sample and implementing a com-
munity detection method (PisCES) that takes advan-
tage of  this information.36 PisCES performed similarly 
to the more commonly used Louvain technique. This 
similar level of  performance is likely due to the fact 
that PisCES was developed to detect dynamic change, 
which is not present in our data. Our findings of  stable, 
overall network organization across adolescent devel-
opment are consistent with previous, cross-sectional 
reports.10,32 The foundational structure of  the brain 
is laid out quite early in neurodevelopment80 and this 
“backbone” of  the functional architecture remains 
stable over time. Similarly, resting-state networks are 
already present in the fetal,26 preterm,27,28 and infant 
phases of  development.29–31

Several previous studies have examined group 
differences in rsfMRI network organization in adults 
with psychosis. One study found that, though adults 

with schizophrenia exhibited visually similar network 
organization in comparison to healthy controls, there 
were network organization alterations at the individual 
level.42 When we implemented a comparable analysis, we 
did not identify network organization disruptions across 
the psychosis spectrum (supplementary table S17). These 
differences may be due to the fact that the sample in 
Lerman-Sinkoff and Barch42 was older, the majority of 
the participants had chronic schizophrenia, and all were 
prescribed antipsychotic medications.

Though our findings support intact network organ-
ization in psychosis, they conflict with a recent study 
that identified disrupted network modularity in clinical 
high-risk individuals who converted to a psychotic dis-
order.44 The discrepant results could be due to method-
ological differences, as Collin et al44 used surface-based 
rsMRI processing. This study also derived the reference 
parcellation from controls in their study. Our study tested 
3 standard reference parcellations and parcellation de-
rived from same-aged youth in an independent sample, 

Fig. 2.  Correlation matrices at each developmental stage (late childhood, early adolescence, late adolescence, adulthood) for (A) LUNA 
typically developing, (B) Philadelphia Neurodevelopmental Cohort (PNC) typically developing, and (C) PNC psychosis spectrum. 
The correlation structure for all cohorts at each developmental stage is remarkably similar. The blocked colors around the edges of 
the correlation matrices refer to the resting-state fMRI networks identified from the reference parcellation.12 Networks are defined as 
follows : red (Default), light blue (somatomotor-hand); orange (somatomotor-hand), dark blue (visual); yellow (Frontoparietal); pink 
(Auditory); brown (Cingulo-parietal); peach (retrosplenial temporal); purple (Cingulo-opercular); dark green (Ventral Attention) black 
(Salience); bright green (Dorsal Attention). The color bar reflects the strength of the FIsher-Z transformed correlation.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
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maintaining assumptions of independence. Furthermore, 
this study44 altered parameters that determine the 
number of networks identified in the community detec-
tion method, group differences were no longer present. 
However, when we tested multiple parameters, our results 
remained consistent.

Consistent with our findings, however, a recent re-
port found that resting-state network organization was 
intact in FEP relative to healthy controls and remained 

unchanged after a 12-month follow-up.43 Similarly, in an-
other study, when FEP individuals engaged in a cogni-
tive control task, they exhibited comparable functional 
network architecture to controls.81 We add to this liter-
ature, showing that differences do not occur in different 
phases of adolescent development. We were well powered 
to detect small effect sizes in our analyses (supplementary 
tables S4 and S5), and because we examined individuals 
both at risk for and with a psychotic disorder in separate 

Fig. 3.  Dissimilarity statistics (δij) for the within cohort developmental comparison in (A) LUNA typically developing, (B) Philadelphia 
Neurodevelopmental Cohort (PNC) typically developing, and (C) PNC psychosis spectrum. Cool colors indicate that the cohorts are 
similar to each other, whereas warm colors reflect greater dissimilarity. For these comparisons, the upper right off-diagonals report 
test statistics for Adjusted Rand Index (ARI) and the lower left off-diagonals report test statistics for Normalized Mutual Information 
(NMI). Dissimilarity statistics (δij) for the comparison between PNC typically developing and PNC psychosis spectrum youth. (D) Bars 
reflect the test statistics for NMI. (E) Bars reflect the test statistic for ARI. All test statistics were much smaller than the approximate 
value needed to reach significance (0.075), uncorrected for multiple comparisons.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz053#supplementary-data
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samples, we can be confident that overall network or-
ganization is either wholly intact in psychosis or differs 
only slightly from typical development. Taken together, 
these results suggest that brain-wide functional efficiency, 
as measured by network organization, is not impaired 
across the psychosis spectrum youth in comparison to 
typical controls across adolescent development.

We must present our null findings within the context 
of the existing rsfMRI literature. Many studies report 

alterations in rsfMRI networks in psychosis, finding al-
tered connectivity with and between regions in the frontal 
parietal, cingulo-opercular/salience and default mode 
networks.39–41,82–86 Critically, connectivity between these 
networks increases through adolescence, whereas connec-
tivity within networks decreases through adolescence.10 
We hypothesize that these more subtle between- and 
within-network changes  observed during adolescence, 
not the network organization metrics measured in this 

Fig. 4.  Correlation matrices at the group level for (A) Philadelphia Neurodevelopmental Cohort (PNC) typically developing, (B) 
PNC youth meeting full criteria for a psychotic disorder, (C) University of Pittsburgh (Pitt) healthy controls and (D) Pitt first episode 
psychosis. The correlation structure for all groups and cohorts is remarkably similar. The blocked colors around the edges of the 
correlation matrices refer to the resting-state fMRI networks identified from the reference parcellation.12 Networks are defined as follows: 
red (Default), light blue (somatomotor-hand); orange (somatomotor-hand), dark blue (visual); yellow (Frontoparietal); pink (Auditory); 
brown (Cingulo-parietal); peach (Retrosplenial Temporal); purple (Cingulo-opercular); dark green (Ventral Attention) black (Salience); 
bright green (Dorsal Attention). The color bar reflects the strength of the FIsher-Z transformed correlation.
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study, underlie the developmental disruptions that con-
tribute to psychosis onset.

Network organization similarity metrics could be in-
sensitive to regionally, targeted effects of pathology or 
neurodevelopment. Global metrics used in this study 
were not designed to assess group differences in regional 
connectivity; thus, we cannot refute studies that found 
group differences in small-world topology87–90 or changes 
in seed-based approaches focusing on specific brain re-
gions.91–98 In the future, it is important to incorporate a 
developmental perspective when assessing these measures 
in psychosis spectrum youth. For example, we recently 
found that amygdala connectivity is altered during dis-
tinct phases of adolescent development across the psy-
chosis spectrum.61

Limitations

Clinical samples were assessed at 1 timepoint and these 
cross-sectional data are a limitation. Longitudinal studies 
of psychosis spectrum youths could be of great value for 
our understanding of psychosis.99–102 Nonetheless, based 
on our results, we do not expect such studies to reveal 
markedly different organization of canonical networks. 
Though we failed to detect network organization 
differences, it is possible that the scan length (3–6 min) 
did not allow for meaningful community detection of 
the individual connectome. A recent study reported that 
individual-level network organization could be quantified 
using >1 hour of data.14 In addition, our analyses were 
performed in volume space. Surfaced-based analyses can 
be methodologically superior (eg, improved registration, 
higher signal preservation) in comparison to volume-
based analyses.103–105 Also, the Pitt sample was relatively 
underpowered in comparison to the PNC, and findings 
need to be replicated in another FEP sample. Finally, 
there are alternative community detection techniques 
that do not require the node to be assigned to only 1 net-
work.106 Some brain regions play important roles in mul-
tiple cognitive functions and likely can shift membership 
to different communities. Such information is neglected 
by assigning each node to one specific community. 
Individuals across the psychosis spectrum may lack the 
flexibility for specific nodes to shift communities.

Conclusions & Future Directions

Our results provide compelling evidence that network 
organization is stable and intact from late childhood 
through adulthood in psychosis spectrum youth and FEP. 
We provide additional evidence of widely distributed, 
stable networks in 2 independent cohorts of typically 
developing youth. Future work will examine if  and how 
age-associated integration and segregation of specialized 
networks are disrupted in psychosis spectrum youth.
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Supplementary data are available at Schizophrenia 
Bulletin online.
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