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Summary
Objectives: We survey recent developments in medical 
Information Extraction (IE) as reported in the literature from the 
past three years. Our focus is on the fundamental methodological 
paradigm shift from standard Machine Learning (ML) techniques 
to Deep Neural Networks (DNNs). We describe applications of this 
new paradigm concentrating on two basic IE tasks, named entity 
recognition and relation extraction, for two selected semantic 
classes—diseases and drugs (or medications)—and relations 
between them.
Methods: For the time period from 2017 to early 2020, we 
searched for relevant publications from three major scientific 
communities: medicine and medical informatics, natural 
language processing, as well as neural networks and artificial 
intelligence.
Results: In the past decade, the field of Natural Language 
Processing (NLP) has undergone a profound methodological 
shift from symbolic to distributed representations based on 
the paradigm of Deep Learning (DL). Meanwhile, this trend is, 
although with some delay, also reflected in the medical NLP 
community. In the reporting period, overwhelming experimental 
evidence has been gathered, as illustrated in this survey for 
medical IE, that DL-based approaches outperform non-DL ones 
by often large margins. Still, small-sized and access-limited 
corpora create intrinsic problems for data-greedy DL as do special 
linguistic phenomena of medical sublanguages that have to be 
overcome by adaptive learning strategies.
Conclusions: The paradigm shift from (feature-engineered) ML 
to DNNs changes the fundamental methodological rules of the 
game for medical NLP. This change is by no means restricted 
to medical IE but should also deeply influence other areas of 
medical informatics, either NLP- or non-NLP-based.
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1   Introduction
The past decade has seen a truly revolution-
ary paradigm shift for Natural Language 
Processing (NLP) as a result of which Deep 
Learning (DL) (for a technical introduction, 
cf. [1]; for comprehensive surveys, cf. [2] 
and [3]) became the dominating mind-set of 
researchers and developers in this field (for 
surveys, cf. [4, 5]). Yet, DL is by no means 
a new computational paradigm. Rather it 
can be seen as the most recent offspring 
of neural computation in the evolution of 
computer science (cf. the historical back-
ground provided by Schmidhuber [6]). But 
unlike in previous attempts, it now turns 
out to be extremely robust and effective 
for adequately dealing with the contents of 
unstructured visual [7], audio/speech [8], 
and textual data [9].

The success of Deep Neural Networks 
(DNNs) has many roots. Perhaps the most 
important methodological reason is that, 
with DNNs, manual feature selection or 
(semi-)automated feature engineering is 
abandoned. This time-consuming tuning 
step was at the same time mandatory and 
highly influential on the performance of 
earlier generations of ML systems in NLP 
based on Markov Models (MMs), Condi-
tional Random Fields (CRFs), Support Vec-
tor Machines (SVMs), etc. In a DL system, 
however, the relevant features (and their 
relative contribution to a classification deci-
sion) are automatically computed as a result 
of thousands of iterative training cycles.

The ultimate reason for the success 
behind DNNs is a pragmatic criterion 
though: system performance. Compared 
with results in biomedical Information 

Extraction (IE), obtained in previous years 
with standard ML methods, DL approaches 
changed profoundly the rules of the game. 
In a landslide manner, for the same task and 
domain, performance figures jumped up to 
levels unprecedented so far and DL systems 
consistently outperformed by large margins 
non-DL state-of-the-art (SOTA) systems for 
different tasks. Section 3 provides ample 
evidence for this claim and features the new 
SOTA results with a deeper look at IE, a 
major application class of medical NLP (for 
alternative surveys, cf. [10–12]).

Despite specialized hardware at disposal 
now, training DNNs still requires tremendous 
computational resources and processing time. 
Luckily, for general NLP, huge collections 
of language models (so-called embeddings) 
have already been trained on huge corpora 
(comprised of hundreds of millions of Web-
scraped documents, including newspaper and 
Wikipedia articles) so that these pre-compiled 
model resources can be readily reused when 
dealing with general-purpose language. But 
medical (and biological) language mirrors 
special-purpose language characteristics 
and comprises a large variety of sublan-
guages of its own. This becomes obvious 
in Section 3 where we deal with scholarly 
scientific writing (with documents typically 
taken from PubMed). Here, differences to 
general language are mostly due to the use 
of a highly specialized technical vocabulary 
(covered by numerous terminologies, such 
as MeSH, SNOMED-CT, or ICD). Even 
more challenging are clinical notes and 
reports (with documents often taken from 
the MIMIC1 (Medical Information Mart 

1	 https://mimic.physionet.org/
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for Intensive Care) clinical database) which 
typically exhibit syntactically ill-formed, 
telegraphic language with lots of acronyms 
and abbreviations as an additional layer of 
complexity (cf. the seminal descriptive work 
distinguishing both these sublanguage types 
by Friedman et al. [13]). Newman-Griffis 
and Fosler-Lussier [14] investigated different 
sublanguage patterns for the many varieties 
of clinical reports (pathology reports, dis-
charge summaries, nurse and Intensive Care 
Unit notes, etc.), while Nunez and Carenini 
[15] discussed the portability of embeddings 
across various fields of medicine reflecting 
characteristic sublanguage use patterns. 
These constraints have motivated the med-
ical NLP community to adapt embeddings 
originally trained on general language to 
the medical language. Table 1 lists those 
medically informed embeddings, many of 
which are the basis for the IE applications 
discussed in Section 3.

Our survey emphasizes the fundamental 
methodological paradigm shift of current 
NLP research from symbolic to distrib-
uted representations as the basis of DL. 
It thus complements earlier contributions 
to the International Medical Informatics 
Association (IMIA) Yearbook of Medical 
Informatics which focused exclusively on 
the role of social media documents [23], 
had a balanced view on the relevance of 
both Electronic Health Records (EHRs) 
and social media posts [24], or dealt with 
the importance of shared tasks for the 
progress in medical NLP [25]. The last 

two Yearbook surveys of the NLP section 
most closely related to medical IE were 
published in 2015 [26] and 2008 [27]. The 
survey by Velupillai et al. [28] dealt with 
opportunities and challenges of medical 
NLP for health outcomes research, with 
particular emphasis on evaluation criteria 
and protocols.

We also refer readers to alternative 
surveys of DL as applied to medical and 
clinical tasks. Wu et al. [29] reviewed lit-
erature for works using DL for a broader 
view of clinical NLP, whereas Xiao et 
al. [30] and Shickel et al. [31] performed 
systematic reviews on the applications of 
DL to several kinds of EHR data, not only 
text. Miotto et al. [32] and Esteva et al. [33] 
further extended that perspective to include 
clinical imaging and genomic data beyond 
the scope of classical EHRs. From an even 
broader perspective of the huge amounts of 
biomedical data, Ching et al. [34] examined 
various applications of DL to a variety of 
biomedical problems—patient classifica-
tion, fundamental biological processes, 
and treatment of patients—and discussed 
the unique challenges that biomedical 
data pose for DL methods. In the same 
vein, Rajkomar et al. [35] used the entire 
EHR, including clinical free-text notes, for 
clinical predictive modeling based on DL 
(targeted, e.g., at the prediction of in-hos-
pital mortality or patient’s final discharge 
diagnoses). They also demonstrated that DL 
methods outperformed traditional statistical 
prediction models. 

2   Design and Goals of this 
Survey
In this survey, we concentrated on publica-
tions within the time window from 2017 to 
early 2020 and screened the contributions 
from three major scientific communities 
involved in medical IE:
•	 Medicine and medical informatics are 

covered by PubMed;
•	 Natural language processing is covered 

by the ACL Anthology, the digital library 
of the Association for Computational 
Linguistics;

•	 Neural networks are covered by the major 
conference series of the neural network 
community (Neural Information Process-
ing Systems (NIPS/NeurIPS)) whereas 
the artificial intelligence community gets 
in via the Association for the Advance-
ment of Artificial Intelligence (AAAI) 
Digital Library which keeps the records 
from the AAAI and IJCAI conferences.

We also included health-related publica-
tions from the digital libraries of the Associ-
ation for Computing Machinery (ACM) and 
the Institute of Electrical and Electronics 
Engineers (IEEE). When necessary, we 
also refered to e-preprint archives such as 
arXiv.org, since they have become a new, 
increasingly important distribution chan-
nel for the most recent research results in 
computer science (yet, in that state typically 
without peer review) and thus foreshadow 
future directions of research.

We searched these literature reposi-
tories with a free-text query that can be 
approximated as follows:(informa-
tion extraction OR text min-
ing OR named entity recogni-
tion OR relation extraction) 
A N D  ( d e e p  l e a r n -
ing OR neural network) 
AND (medic* OR clinic* OR 
health)

For this setting, we found approximately 
1,000 unique publications, screened them 
for relevance, and, finally, included roughly 
100 into this survey.

Table 1   An Overview of Common Embeddings—Biomedical Language Models

Model

bio.nlplab.org [16]

BioWordVec [17]

BioSentVec [18]

Flair(‘pubmed-X’)

SciBERT [19]

BioBERT [20]

ClinicalBERT [21]

BlueBERT [22]

Base model

Word2vec

fastText + node2vec

fastText

Flair

BERTBASE

BERTBASE

BioBERT

BERTBASE/BERTLARGE

Dimensions

200

200

200

200

768

768

768

768/1024

Source corpus

PubMed + PMC

PubMed + MeSH

PubMed + MIMIC-III

PubMed

Semantic Scholar

PubMed + PMC

MIMIC-III

PubMed + MIMIC-III

Size (in words)

5.5B

3.7B

4.4B + 539M

(5% of PubMed in 2015)

3.1B

4.5B + 13.5B

539M

>4B + >500M
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3   Deep Neural Networks 
for Medical Information 
Extraction
In this section, we introduce applications 
of DNNs to medical NLP for two different 
tasks, Named Entity Recognition (NER) and 
Relation Extraction (REX). The focus of our 
discussion lies on studies dealing with English 
as reference language since the vast majority 
of benchmark and reference data sets are in 
English2. After a brief description of each task, 
we summarize the current SOTA in tables 
which generalize often subtle distinctions 
in experimental design and workflows. Our 
main goal is to show the diversity of major 
benchmark datasets, DL approaches, and 
embeddings being used. For these tables, we 
extracted all symbolic (e.g., corpus or DL 
approach) and numerical information (e.g., 
about annotation metadata, performance 
scores) directly from the cited papers.

The assessment of different systems for the 
same task is centered around their performance 
on gold data in evaluation experiments. We 
refrain from highlighting minor differences 
in the reported scores because of different 
datasets being used for evaluation, changing 
volumes of metadata, and sometimes even 
the genres they contain. Hence, from a strict 
methodological perspective, the reported re-
sults have to be interpreted with utmost caution 
for two main reasons [37]. First, the choice of 
pre-processing steps, such as tokenization, 
inclusion/exclusion of punctuation marks, stop 
word removal, morphological normalization/
lemmatization/stemming, n-gram variability, 
entity blinding strategies, and, second, the cal-
ibration of training methods (split bias, pooling 
techniques, hyperparameter selection (dropout 
rate, window size, etc.)) have a strong impact 
on the way a chosen embedding type and DL 
model finally performs, even within the same 
experimental setting. However, the data we re-
port give valuable comparative information of 
the SOTA, though with fuzzy edges. This situa-

2	 Wu et al. [29, Table 3(b)] found that 71% 
of the corpora they screened were English, 
20% Chinese, 2% Spanish, Japanese or 
Finnish and all other languages ranked 
below 1%. For a survey on medical NLP 
dealing explicitly with languages other than 
English, see [36]. 

tion might be remedied by a recently proposed 
common evaluation framework for biomedical 
NLP, the BLUE (Biomedical Language Under-
standing Evaluation) benchmark3 [22], which 
consists of five different biomedical NLP tasks 
(including NER and REX) with ten corpora 
(including BC5CDR, DDI, and i2b2 that also 
occur in the tables below), or the one proposed 
by Chauhan et al. [37]4 enabling a more lucid 
comparison of various training methodologies, 
pre-processing, modeling techniques, and 
evaluation metrics.

For the tables provided in the next subsec-
tions, we used the F

1
 score as the main order-

ing criterion for the cited studies (from highest 
to lowest)5. We usually had to select among a 
large variety of experimental conditions (with 
different scores). The final choices we made 
were led by the criterion to favor comparabil-
ity among all studies. This means that higher 
(and lower) outcomes may have been reported 
in the cited studies for varying experimental 
conditions. Still, the top-ranked system(s) in 
each of the following tables defines the current 
SOTA for a particular application.

3.1   Named Entity Recognition
The task of Named Entity Recognition 
(NER) is to identify crucial medical named 
entities (i.e., spans of concrete mentions of 
semantic types such as diseases or drugs 
and their attributes) in running text. For a 
recent survey of DL-based approaches and 
architectures underlying NER as a generic 
NLP application, see [38].

3.1.1   Diseases
A primary target of NER in the medical field 
is the automatic identification of diseases 
in scientific articles and clinical reports. 
For instance, textual occurrences of disease 
mentions (e.g., “Diabetes II” or “cerebral 
inflammation”) are mapped to a common 

3	 https://github.com/ncbi-nlp/BLUE_
Benchmark

4	 https://github.com/geetickachauhan/rela-
tion-extraction

5	 We disregard here the common distinction 
between strict and partial matching; num-
bers given in the tables typically reflect the 
strongest condition, i.e., strict (complete) 
match between system prediction and gold 
standard data.

semantic type, Disease6. The crucial role of 
recognizing diseases in medical discourse 
is also emphasized by a number of surveys 
dealing with the recognition of special dis-
eases. For instance, Sheikhalishahi et al. [40] 
discussed NLP methods targeted at chronic 
diseases and found that shallow ML and 
rule-based approaches (as opposed to more 
sophisticated DL-based ones) prevail. Koleck 
et al. [41] summarized the use of NLP to 
analyze symptom information documented 
in EHR free-text narratives as an indication 
of diseases and similar to the previous survey 
found little coverage of DL methods in this 
application area as well. Savova et al. [42] 
reviewed the current state of clinical NLP with 
respect to oncology and cancer phenotyping 
from EHR. Datta et al. [43] focused on an 
even more specialized use case—the lexical 
representation required for the extraction 
of cancer information from EHR notes in a 
frame-semantic format.

The research summarized in Table 2 is 
strictly focused on Disease recognition and, 
for reasons of comparability, based on the 
use of shared data sets and metadata (gold 
annotations). Two benchmarks are prominent-
ly featured, BC5CDR [44] and NCBI [45]7. 
BC5CDR is a corpus made of 1,500 PubMed 
articles, with 4,409 annotated chemicals, 
5,818 diseases, and 3,116 chemical-disease 
interactions, created for the BioCreative V 
Chemical and Disease Mention Recognition 
Task [44]. As an alternative, the NCBI Dis-
ease Dataset [45] consists of a collection of 
793 PubMed abstracts annotated with 6,892 
disease mentions which are mapped to 790 
unique disease concepts (thus, this corpus 
can also be used for grounding experiments).

6	 Even more ambitious is the task of linking 
(or grounding) textual mentions and 
semantic types to unique identifiers of 
a given terminology or ontology (such 
as SNOMED-CT, ICD, or the Human 
Disease Ontology, https://www.ebi.ac.uk/
ols/ontologies/doid), an issue we will not 
elaborate on in this survey, cf. e.g., [39].

7	 Concrete numbers in the column “Number 
of Mentions,” indicating the number of 
named entity mentions (possibly split into 
training, development, and test set, if provid-
ed), may slightly differ for the same corpus 
because of data cleansing (e.g., removal of 
duplicates), different pre-processing (e.g., 
tokenization), and other version issues.

https://github.com/ncbi-nlp/BLUE_Benchmark
https://github.com/geetickachauhan/relation-extraction
https://www.ebi.ac.uk/ols/ontologies/doid
https://www.ebi.ac.uk/ols/ontologies/doid
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The current top performance for Dis-
ease recognition comes close to 90% F

1
8. 

Lee et al. [20] use a Transformer model 
with in-domain training (BioBERT), but 
also (attention-based) BiLSTMs perform 
strongly in the range of 88–89% F

1 
score. 

For the choice of embeddings being used, 
self-trained ones might be a better choice 
than pre-trained ones, e.g., those provided 
by bio.nlplab.org [16]. The incorporation 
of (large) dictionaries does not provide a 

8	 Beltagy et al. [19] report an F1 score of 
90% on the BC5CDR corpus, but it remains 
unclear whether this result refers to the type 
Disease, Drug,  or both of them.

competitive advantage in the experiments 
reported here. Though multi-task learning 
and transfer learning seem reasonable choic-
es ([39, 46] and [47], respectively) to combat 
the sparsity of datasets, they generally do not 
boost systems to the top ranks.

Interesting though are differences for the 
same approach on different evaluation data 
sets. For the second-best system by Sachan 
et al. [47], F

1 
scores differ for BC5CDR and 

NCBI by 2.0 (for the third-best [46] by 2.7) 
percentage points, whereas for the best non-
DL approach by Lou et al. [48], this differ-
ence amounts to remarkable 4.1 percentage 
points. This hints at a strong dependence 
of the results of the same system set-up on 

the specific corpus these results have been 
worked out and, thus, limits generalizability. 
On the other hand, corpora obviously cannot 
be blamed for intrinsic analytical hardness 
since cross-rankings occurs: the system 
by Lee et al. [20] gets the over-all highest 
F

1 
score for NCBI but underperforms for 

BC5CDR, whereas for the tagger used by 
Sachan et al. [47] the ranking is reversed—
their system performs better on BC5CDR 
than on NCBI (differences are in the range of 
2 percentage points). The most stable system 
in this respect is the one by Zhao et al. [39]. 
Finally, the distance between the best- and 
second-best-performing DL systems ([20] 
and [47], respectively) and their best non-DL 

Table 2   Medical Named Entity Recognition: Diseases. Benchmark Datasets from BC5CDR [44] and NCBI [45].

Citations

Lee et al. [20]

Sachan et al. [47]

Wang et al. [46]

Xu et al. [49]

Hong and Lee [51]

Beltagy et al. [19]

Xu et al. [49]

Zhao et al. [39]

Zhao et al. [39]

Sachan et al. [47]

Lee et al. [20]

Hong and Lee [51]

Lou et al. [48]

Wang et al. [46]

Lou et al. [48]

Corpus

NCBI

BC5CDR

BC5CDR

NCBI

NCBI

NCBI

BC5CDR

BC5CDR

NCBI

NCBI

BC5CDR

BC5CDR

BC5CDR

NCBI

NCBI

# of Mentions              
train (+ dev) / test

6,881

5,818 (all diseases only)

12,852 (all mention types)

6,892

6,881

—

12,850 (all mention types)

12,852 (all mention types)

6,881

6,892

12,694 (all mention types)

12,852 (all mention types)

12,864 (all mention types)

6,881

6,892

DL Approach

bidirectional Transformer

(char) CNN
+ (word) BiLSTM-CRF

BiLSTM-CRF

Att-BiLSTM-CRF
+ self-generated disease dictionary

BiLSTM + CRF: Unary                     
& Pairwise Network transition model

bidirectional Transformer

Att-BiLSTM-CRF +
self-generated disease dictionary

CNN + BiLSTM(-CRF)

CNN + BiLSTM(-CRF)

(char) CNN
+ (word) BiLSTM-CRF

bidirectional Transformer

BiLSTM + CRF: Unary                     
& Pairwise Network transition model

non-DL: transition model

BiLSTM-CRF

non-DL: transition model

Embeddings (source)

BioBERT v1.1[20]:
self-trained BERT on PubMed

pre-trained embeddings
+ self-trained on PubMed

pre-trained: [16]

word embeddings [50]
self-trained on PubMed and PMC

pre-trained word embeddings
(PubMed): [16, 52]

SciBERT [19]: self-trained BERT
on biomedical full texts from Semantic Scholar

word embeddings [50]
self-trained on PubMed and PMC

pre-trained: [16, 53–55]

pre-trained: [16, 53–55]

pre-trained embeddings
+ self-trained on PubMed

BioBERT V1.1 [20]:
self-trained BERT on PubMed

pre-trained word embeddings
(PubMed): [16, 52]

n/a

pre-trained: [16]

n/a

F1-score         
%

89.7

89.3

88.8

88.6

88.6

88.6

88.3

87.6

87.4

87.3

87.2

87.2

86.2

86.1

82.1
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counterpart [48] amounts to 7.6 percentage 
points (for NCBI) and 3.1 percentage points 
(for BC5CDR), respectively.

3.1.2   Medication
The second major medical named entity type 
we here discuss is related to medication infor-
mation. NER complexity is increased for this 
task since it is split into several subtasks, in-
cluding the recognition of drug names (Drug), 
frequency (Dr-Freq) and (manner or) route of 
drug administration (Dr-Route), dosage (Dr-
Dose), duration of administration (Dr-Dur), 
and adverse drug events (Dr-ADE). These 
subtypes are highly relevant in the context 
of medication information and are backed 
up by an international standard, the HL7 
Fast Healthcare Interoperability Resources 
(FHIR)9. Tables 3 and 4 provide an overview 
of the SOTA on this topic.

9	 See, e.g., the HL7 FHIR Medication Statement at 
https://www.hl7.org/fhir/medicationstatement.
html#MedicationStatement

Table 3   Medical Named Entity Recognition: Drugs. Benchmark Datasets: n2c2 [56]; i2b2 2009 [57]; MADE 1.0 [59]; DDI [60].

Citations

Wei et al. [62]

Gligic et al. [63]

Zeng et al. [64]

Unanue et al. [65]

Li et al. [66]

Wunnava et al. [67]

Dandala et al. [70]

Tao et al. [71]

Chapman et al. [72]

Unanue et al. [65]

NE type

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Corpus

n2c2

i2b2 2009

DDI

DDI: DrugBank

MADE 1.0

MADE 1.0

MADE 1.0

i2b2 2009

MADE 1.0

DDI: MEDLINE

# of Mentions
train (+dev) / test

16,225 / 10,575

—

11,260 / 3,689

9,715 / 180

—

17,008 /

13,507 / 2,395

7,988 / 8,440

13,508 / 2,395

1,574 / 171

DL Approach

BiLSTM-CRF

RNN

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

SVM

CRF

BiLSTM-CRF

Embeddings (source)

Word2vec embeddings
self-trained on MIMIC-III [58]

Word2vec embeddings
self-trained on i2b2 2009 [57]

word & character embeddings
pre-trained on Wikipedia

 GloVe [53] pre-trained on CommonCrawl
+ GloVe self-trained on MIMIC-III [58]

pre-trained [16]

pre-trained on Wikipedia,
EHR notes, and PubMed [68, 69]

pretrained character
& word embeddings

(as feature for SVM: GloVe [53] embeddings
self-trained on MIMIC-III [58])

n/a

 GloVe [53] pre-trained on Common Crawl
+ GloVe self-trained on MIMIC-III [58]

F1-score
%

95.6

94.6

92.0

91.8

91.3

90.4

90.0

88.9

88.6

75.6

For medication information, four gold 
standards had a great impact on the field in 
the past years. The most recent one came out 
of the 2018 n2c2 Shared Task on Adverse 
Drug Events and Medication Extraction in 
Electronic Health Records [56], a successor of 
the 2009 i2b2 Medication Challenge [57], now 
with a focus on Adverse Drug Events (ADEs). 
It includes 505 discharge summaries (303 in 
the training set and 202 in the test set), which 
originate from the MIMIC-III clinical care 
database [58]. The corpus contains nine types 
of clinical concepts (including drug name), 
eight attributes (reason, ADE, frequency, 
strength, duration, route, form, and dosage 
– from which we chose five for comparison), 
and 83,869 concept annotations. Relations 
between drugs and the eight attributes were 
also annotated and summed up to 59,810 
relation annotations (see Section 3.2.1). The 
third corpus, MADE 1.0 [59], formed the basis 
for the 2018 Challenge for Extracting Medi-
cation, Indication, and Adverse Drug Events 
(ADEs) from Electronic Health Record (EHR) 

Notes and consists of 1,092 de-identified EHR 
notes from 21 cancer patients. Each note was 
annotated with medication information (drug 
name, dosage, route, frequency, duration), 
ADEs, indication (symptom as reason for drug 
administration), other signs and symptoms, 
severity (of disease/symptom), and relations 
among those entities, resulting in 79,000 
mention annotations. Finally, the DDI corpus 
[60], originally developed for the Drug-Drug 
Interaction (DDI) Extraction 2013 Challenge 
[61], is composed of 792 texts selected from 
the (semi-structured) DrugBank database10 
and other 233 (unstructured) MEDLINE 
abstracts, summing up 1,025 documents. This 
fine-grained corpus has been annotated with 
a total of 18,502 pharmacological substances 
and 5,028 drug-drug interactions11. Hence, 

10	 https://www.drugbank.ca/
11	 The DDI corpus is actively maintained 

and enhanced leading to a large number 
of versions. Hence, comparisons based on 
DDI have to be carried out very carefully.

https://www.drugbank.ca/
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Table 4   Medical Named Entity Recognition: Medication Attributes. Benchmark Datasets: n2c2 [56]; i2b2 2009 [57]; MADE 1.0 [59]; DDI [60].

Citations

Wei et al. [62]

Tao et al. [71]

Gligic et al. [63]

Li et al. [66]

Dandala et al. [70]

Chapman et al. [72]

Wunnava et al. [67]

Gligic et al. [63]

Wei et al. [62]

Tao et al. [71]

Wunnava et al. [67]

Chapman et al. [72]

Li et al. [66]

Dandala et al. [70]

Wei et al. [62]

Gligic et al. [63]

Tao et al. [71]

Wunnava et al. [67]

Li et al. [66]

Chapman et al. [72]

Dandala et al. [70]

Wei et al. [62]

Li et al. [66]

Wunnava et al. [67]

Dandala et al. [70]

Chapman et al. [72]

Gligic et al. [63]

Tao et al. [71]

Wunnava et al. [67]

Yang et al. [73]

Dandala et al. [70]

Li et al. [66]

Wei et al. [62]

Chapman et al. [72]

NE type

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Route

Dr-Route

Dr-Route

Dr-Route

Dr-Route

Dr-Route

Dr-Route

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dur

Dr-Dur

Dr-Dur

Dr-Dur

Dr-Dur

Dr-Dur

Dr-Dur

Dr-ADE

Dr-ADE

Dr-ADE

Dr-ADE

Dr-ADE

Dr-ADE

Corpus

n2c2

i2b2

i2b2 2009

MADE 1.0

MADE 1.0

MADE 1.0

MADE 1.0

i2b2 2009

n2c2

i2b2

MADE 1.0

MADE 1.0

MADE 1.0

MADE 1.0

n2c2

i2b2 2009

i2b2 2009

MADE 1.0

MADE 1.0

MADE 1.0

MADE 1.0

n2c2

MADE 1.0

MADE 1.0

MADE 1.0

MADE 1.0

i2b2 2009

i2b2

MADE 1.0

MADE 1.0

MADE 1.0

MADE 1.0

n2c2

MADE 1.0

# of Mentions 
train (+dev) / test

6,281 / 4,012

3,881 / 3,925

—

—

4,147 / 659

4,147 / 659

5,050 /

—

5,476 / 3,513

3,052 / 3,299

2,862 /

2,278 / 389

—

2,278 / 389

4,221 / 2,681

—

4,132 / 4,371

5,978 /

—

4,893 / 801

4.893 / 801

592 / 378

—

926 /

765 / 133

765 / 133

—

508 / 499

1,807 /

1,807 /

1,509 / 431

—

959 / 625

1509 / 431

DL Approach

BiLSTM-CRF

CRF

RNN

BiLSTM-CRF

BiLSTM-CRF

CRF

BiLSTM-CRF

RNN

BiLSTM-CRF

SVM

BiLSTM-CRF

CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

RNN

CRF

BiLSTM-CRF

BiLSTM-CRF

CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

CRF

RNN

CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

BiLSTM-CRF

CRF

Embeddings
(source)

Word2vec embeddings self-trained on MIMIC-III [58]

(as feature for CRF: GloVe [53] embeddings
self-trained on MIMIC-III [58])

Word2vec embeddings self-trained on i2b2 2009 [57]

pre-trained [16]

pretrained character & word embeddings

n/a

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

Word2vec embeddings self-trained on i2b2 2009 [57]

Word2vec embeddings self-trained on MIMIC-III [58]

(as feature for SVM: GloVe [53] embeddings
self-trained on MIMIC-III [58])

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

n/a

pre-trained [16]

pretrained character & word embeddings

Word2vec embeddings self-trained on MIMIC-III [58]

Word2vec embeddings self-trained on i2b2 2009 [57]

(as feature for CRF: GloVe [53] embeddings
self-trained on MIMIC-III [58])

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

pre-trained [16]

n/a

pretrained character & word embeddings

Word2vec embeddings self-trained on MIMIC-III [58]

pre-trained [16]

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

pretrained character & word embeddings

n/a

Word2vec embeddings self-trained on i2b2 2009 [57]

(as feature for CRF: GloVe [53] embeddings
self-trained on MIMIC-III [58])

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

pre-trained on Wikipedia, EHR notes, and PubMed [68, 69]

pretrained character & word embeddings

pre-trained [16]

Word2vec embeddings self-trained on MIMIC-III [58]

n/a

F1-score
%

97.5

92.4

90.9

86.3

86.3

85.8

84.3

96.9

95.6

94.1

92.4

92.1

91.9

91.7

94.8

93.0

91.5

88.0

88.0

87.5

87.1

86.2

77.6

76.7

75.0

72.2

63.0

61.8

63.5

60.5

57.7

55.4

53.0

51.1
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the medication NER task not only comes 
with a higher entity type complexity but 
also with text genres different from the 
disease recognition task—while the former 
puts emphasis on clinical reports, the latter 
focuses on scholarly writing.

Except for route and ADE, all top scores 
for NER were achieved on the n2c2 corpus. 
For drug names, the current SOTA exceeds 
95% F

1 
score established by Wei et al. [62]. 

As to the subtypes, their system also com-
pares favorably to alternative architectures 
by a large F

1 
margin ranging from 8.6 per-

centage points (for duration) down to 1.0 (for 
drug name). For route, the distance to the 
best system is marginal (around 1 percentage 
point)12, whereas for ADE it is huge (more 
than 10 percentage points, a strong outlier). 
Overall, frequency, route, and dosage rec-
ognition reach outstanding F

1 
scores in the 

range of 95 up to 97%, while for duration 
information top F

1 
scores drop remarkably by 

at least 10 to 20 percentage points. Still, the 
recognition of ADEs seems to be the hardest 
task, with the best system by Wunnava et al. 
[67] peaking at around 64% F

1 
on MADE 

1.0 data (here the top performing system 
by Wei et al. [62] plummets down to 53% 
F

1
). Interestingly, ADEs are verbally the 

least constrained type of natural language 
utterance compared with all the other entity 
types considered here.

In terms of DL methodology, BiLSTM-
CRFs are the dominating approach. Yet, the 
type of embeddings used by different DL 
systems varies a lot ranging from pre-trained 
Word2vec embeddings and those self-trained 
on MIMIC-III (for the top performers) to GloVe 
embeddings pre-trained on CommonCrawl, 
Wikipedia, EHR notes, and PubMed. There 
seems to be no generalizable winner for either 
choice of embeddings given the current state 
of evaluations, but self-training on medical 
raw data, such as MIMIC-III, challenge 
data sets, or, more advisable, using the now 
available BioSentVec [18] and BlueBERT [22] 
embeddings pre-trained on MIMIC-III, might 
be advantageous.

12	 Interestingly, the transfer learning approach 
advocated by Gligic et al. [63] performs 
well for some medication NER tasks, but 
fails to deliver competitive results for the 
medication relation task (cf. Table 5).

Studies in which the same system con-
figuration was tested on different corpora 
are still lacking so that corpus effects are 
unknown (unlike for diseases; see Table 
2). Yet, there is one interesting though not 
so surprising observation: Unanue et al. 
[65] explored the two slices of the DDI 
corpus, with a span of F

1 
scores of more 

than 16 percentage points. This obviously 
witnesses the influence of a priori (lack of) 
structure—DrugBank data is considerably 
more structured than MEDLINE free texts 
and, thus, the former gets much higher scores 
than the latter.

Comparing DL approaches vs. non-DL 
ones (a CRF architecture) on the same 
corpus (MADE 1.0), we found that for the 
core entity type (Drug), the recognition 
performance differs by almost 3 percentage 
points, for frequency, route and dose margin-
ally by less than 1, yet for duration and ADE 
it amounts to roughly 5 and 12 percentage 
points, respectively—consistently in favor of 
Deep Neural Networks (DNNs).

3.2   Relation Extraction
Once named entities have been identified, a 
follow-up question emerges: does some sort 
of semantic relation hold among these enti-
ties? We surveyed this Relation Extraction 
(REX) task with reference to results that 
have been achieved for information related 
to medication attributes and drug-drug 
interaction.

3.2.1   Medication-Attribute Relations
In Section 3.1.2, we already dealt with 
single named entity types typically associ-
ated with medication information, namely 
drug names and administration frequency, 
duration, dosage, route, and ADE, yet in 
isolated form only. In this subsection, we are 
concerned with making the close associative 
ties between Drugs and typical conceptual 
attributes, such as Frequency, Duration, 
Dosage, Route, ADE, and Reason (for pre-
scription), explicit. Hence, the recognition 
of the respective named entity types (Drugs, 
Dr-Freq, Dr-Dur, Dr-Dose, Dr-Route, Dr-
ADE, and Dr-Reason) turns out to be a good 
starting point for solving this REX task. Not 

surprisingly, the benchmarks for this task 
are a subset of the ones in Tables 3 and 4 
depicting the results for medication-related 
NER. Table 5 provides an overview of the 
experimental results for finding medica-
tion-attribute relations in medical, in effect, 
clinical, documents.

The overall results from medication-fo-
cused NER are mostly confirmed for the 
REX task. The n2c2 corpus is the reference 
dataset for top performance. The group who 
achieved top F

1
 scores for the medication 

NER problem also performed best for the 
medication-attribute REX task [62], with ex-
traordinary figures for Frequency, Route, and 
Dosage relations (in the upper 98% F

1
 range), 

a superior one for the Duration relation (93% 
F

1
), and good ones on the (hard to deal with) 

Adverse and Reason relations (85% F
1
). Still, 

the distances to the second-best system for the 
same corpus (n2c2) are not so pronounced in 
most cases, ranging by 1 percentage point (for 
Frequency, Route, Dosage, and Duration), 
yet increased up to 3 (for Adverse) and 7 (for 
Reason) percentage points.

For the MADE 1.0 corpus, a similar pic-
ture emerges. From a lower offset (typically 
around 3 F

1 
percentage points compared with 

n2c2), differences between the best and sec-
ond-best systems were on the order of (neg-
ligible) 1 percentage point for Frequency, 
Route, and Dosage, yet increased by roughly 
3, 5, and 7 percentage points for Reason, 
Duration, and Adverse events, respectively. 
Yet, in 4 out of 6 cases (Frequency, Dosage, 
Duration, and Adverse events) non-DL 
systems (CRFs, SVMs) outperformed their 
DL counterparts with small margins (in the 
range of (again, negligible) 1 percentage 
point) for Frequency and Dosage, yet with 
higher ones for Duration and Adverse events 
(5 and 7 percentage points, respectively). In 
cases where the DL approach ranked higher 
than a non-DL one, differences ranged be-
tween 1 and 3 percentage points (for Route 
and Reason, respectively). Thus, the MADE 
1.0 corpus constitutes a benchmark where 
well-engineered standard ML classifiers can 
still play a competitive role. However, we did 
not find this pattern of partial supremacy of 
non-DL approaches for the n2c2 benchmark.

The top performers for the medication 
attribute REX task [62] employed a joint 
learning approach based on CNN-RNN 



IMIA Yearbook of Medical Informatics 2020

215

Medical Information Extraction in the Age of Deep Learning

Table 5   Medical Relation Extraction: Medication-Attribute Relations (including ADEs). Benchmark Datasets: n2c2 [56]; MADE 1.0 [59].

Citations

Wei et al. [62]

Christopoulou et 
al. [74]

Chapman et al. [72]

Dandala et al. [70]

Wei et al. [62]

Christopoulou et 
al. [74]

Dandala et al. [70]

Chapman et al. [72]

Wei et al. [62]

Christopoulou et 
al. [74]

Chapman et al. [72]

Dandala et al. [70]

Wei et al. [62]

Chapman et al. [72]

Christopoulou et 
al. [74]

Dandala et al. [70]

Wei et al. [62]

Christopoulou et 
al. [74]

Chapman et al. [72]

Dandala et al. [70]

Wei  et al. [62]

Christopoulou et 
al. [74]

Dandala et al. [70]

Yang et al. [73]

Relation type

Frequency

Frequency

Frequency

Frequency

Route

Route

Route

Route

Dosage

Dosage

Dosage

Dosage

Duration

Duration

Duration

Duration

Adverse

Adverse

Adverse

Adverse

Reason

Reason

Reason

Reason

NE 
type 1

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

NE 
type 2

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Freq

Dr-Route

Dr-Route

Dr-Route

Dr-Route

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dose

Dr-Dur

Dr-Dur

Dr-Dur

Dr-Dur

Dr-ADE

Dr-ADE

Dr-ADE

Dr-ADE

Dr-Reason

Dr-Reason

Dr-Reason

Dr-Reason

Corpus

n2c2

n2c2

MADE 1.0

MADE 1.0

n2c2

n2c2

MADE 1.0

MADE 1.0

n2c2

n2c2

MADE 1.0

MADE 1.0

n2c2

MADE 1.0

n2c2

MADE 1.0

n2c2

n2c2

MADE 1.0

MADE 1.0

n2c2

n2c2

MADE 1.0

MADE 1.0

# of Mentions
train (+dev) / test

(6,310 / 4,034)

4,986 (+ 1,312) /

4,419 / 730

4,419 / 730

(5,538 / 3,546)

4,327 (+ 1,208) /

2,551 / 455

2,551 / 455

(4,225 / 2,695)

3,299 (+ 921) /

5,177 / 866

5,177 / 866

(643 / 426)

906 / 147

518 (+ 124) /

906 / 147

(1,107 / 733)

891 (+ 216) /

2,082 / 530

2,082 / 530

(5,169 / 3,410)

4,069 (+ 1,090) /

4,554 / 876

4,530 / 871

DL Approach

CNN-RNN

Att-BiLSTM-CRF 
+ Transformer Network

non-DL: CRF

Att-BiLSTM

CNN-RNN

Att-BiLSTM-CRF 
+ Transformer Network

Att-BiLSTM

non-DL: CRF

CNN-RNN

Att-BiLSTM-CRF 
+ Transformer Network

non-DL: CRF

Att-BiLSTM

CNN-RNN

non-DL: CRF

Att-BiLSTM-CRF 
+ Transformer Network

Att-BiLSTM

CNN-RNN

Att-BiLSTM-CRF 
+ Transformer Network

non-DL: CRF

Att-BiLSTM

CNN-RNN

Att-BiLSTM-CRF 
+ Transformer Network

Att-BiLSTM

non-DL: SVM

Embeddings
(source)

Word2vec embeddings
self-trained on MIMIC-III [58]

word and relative position embeddings

n/a

pretrained character & word embeddings

Word2vec embeddings
self-trained on MIMIC-III [58]

word and relative position embeddings

pretrained character & word embeddings

n/a

Word2vec embeddings
self-trained on MIMIC-III [58]

word and relative position embeddings

n/a

pretrained character & word embeddings

Word2vec embeddings
self-trained on MIMIC-III [58]

n/a

word and relative position embeddings

pretrained character & word embeddings

Word2vec embeddings
self-trained on MIMIC-III [58]

word and relative position embeddings

n/a

pretrained character & word embeddings

Word2vec embeddings
self-trained on MIMIC-III [58]

word and relative position embeddings

pretrained character & word embeddings

n/a

F1-score
%

98.7

97.6

94.7

93.7

98.6

97.8

95.3

94.1

98.6

98.0

96.0

95.2

92.9

92.4

91.7

87.8

85.0

78.3

73.1

66.0

84.9

82.2

80.9

77.9
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(thus diverging from the most successful 
architectures for medication NER; see Tables 
3 and 4) and rule-based post-processing that 
outperformed a simple CNN-RNN. Summa-
rizing, the CNN-RNN approach seems more 
favorable than an (attention-based) BiLSTM, 
with preferences for self-trained in-domain 
embeddings. 

3.2.2   Drug-Drug Interaction
The second type of medication-focused 
relation we consider here are drug-drug in-
teractions as featured in the DDI challenge 
(for surveys on the impact of DL on recent 
research on drug-drug interactions, cf. [82, 
83], for a survey on drug-drug interaction 
combining progress in data and text mining 
from EHRs, scientific papers, and clinical 
reports but lacking in-depth coverage of 
DL methods, cf. [84], for the NLP-focused 
recognition of ADEs also lacking awareness 
of DL contributions to this topic, cf. [85]). 
Four main types of relations between drugs 
are considered: pharmacokinetic Mecha-
nism, drug Effect, recommendation or Advice 
regarding a drug interaction, and Interaction 
between drugs without providing any addi-
tional information. Overall, the DDI corpus 
on which these evaluations were run is divid-
ed into 730 documents taken from DrugBank 
and 175 abstracts from MEDLINE and 
contains 4,999 relation annotations (4,020 
train, 979 test).

Recognition rates for these relations (cf. 
Table 6) are considerably lower than for the 
medication-related attributes when linked to 
drugs (cf. Table 5). The best systems peak at 
85% F

1 
score for Advice (a distance of more 

than 13 percentage points to the top recog-
nition results for medication-attributes), they 
slip to 78%13 and 77% for Mechanism and 
Effect, respectively, and plummet to 59% for 
Interaction14. Differences between the first 

13	 Xu et al. [86] even reach slightly more 
than 79% F1 score for Mechanism (using 
UMLS-based concept embeddings with a 
Bi-LSTM approach), but substantially fall 
below the results for the other three relation 
types in comparison with all the systems 
mentioned in Table 6.

14	 Dewi et al. [87] and Sun et al. [88] report on 
86.3% and 84.5% F

1
 scores, respectively, 

for the overall relation classification task 
both using a multi-layered CNN archi-

and second-ranked systems are typically 
small, yet become larger on subsequent 
ranks (roughly between 3 to 4 percentage 
points relative to the top-ranked system). 
As with medication attributes, drug-drug 
interactions can also be recognized in a 
competitive way by CNN-RNN architec-
tures, but attention-based LSTMs perform 
also considerably well. Again, self-trained 
embeddings using in-domain corpora seem 
to be advantageous for this relation class. 
Reflecting the drop in performance, one 
may conclude that drug-drug interactions 
constitute a markedly harder task than the 
conceptually much closer medication-attri-
bute relations.

Finally, Table 6 most drastically supports 
our claim that DL approaches outperform 
non-DL ones. The difference between both 
approaches amounts to 5 percentage points 
for Mechanism, 7 for Effect and Interaction, 
and 8 for Advice. 

4   Conclusions
We have presented various forms of em-
pirical evidence that (with one exception 
only) Deep Learning-based neural networks 
outperform non-DL, feature engineered, ap-
proaches for several information extraction 
tasks. However, despite their success, Deep 
Neural Networks and their embedding mod-
els have their shortcomings as well.

One of the most problematic issues is 
their dependence on huge amounts of 
training data: SOTA embedding models are 
currently trained on hundreds of billions of 
tokens [89]. This magnitude of data volume 
is out of reach for any training effort in the 
medical/clinical domain [90]. Also, em-
beddings are very vulnerable to malicious 
attacks or adversarial examples—small 
changes at the input level may result in 
severe misclassification [5]. Another well-
known problem relates to the instability of 

tecture, yet unfortunately fail to provide 
details on each of the four single relations 
under scrutiny here. Both results exceed 
the overall result of the best-performing 
system depicted in Table 6 [76] (77.3%) 
by a large margin of 9 and 7 percentage 
points, respectively.

word embeddings. Word embeddings de-
pend on their random initialization and the 
processing order of the underlying exam-
ples and therefore they do not necessarily 
converge on exactly the same embeddings 
even after several thousands of training 
iterations [91, 92]. Finally, although DL is 
celebrated for not requiring manual feature 
engineering, the effects of proper hyper-
parameter tuning on DNNs [93] remain an 
issue for DL [94]. Apart from these intrinsic 
problems, Kalyan and Sangeetha [95] and 
Khattak et al. [96] refer to extrinsic draw-
backs of neural networks, such as opaque 
encodings (resulting in lacking interpret-
ability) or limited transferability of large 
models (hindering knowledge distillation 
for smaller models).

Still, the sparsity of corpora and special 
linguistic phenomena of the medical (clini-
cal) sublanguage(s) create intrinsic problems 
for data-greedy DL approaches that have to 
be overcome by special learning strategies 
for neural systems, such as transfer learning 
or domain adaptation. Research on adapting 
general language models to medical lan-
guage constraints is just in its beginning. Yet, 
there is no simple solution to this problem. 
Wang et al. [97] evaluated Word2vec embed-
dings trained on private clinical notes, PMC, 
Wikipedia, and the Google News corpus both 
qualitatively and quantitatively and showed 
that the ones trained on Electronic Health 
Record data performed better on most of the 
tested scenarios. However, they also found 
that word embeddings trained on biomedi-
cal domain corpora do not necessarily have 
better performance than those trained on 
general domain corpora for any downstream 
biomedical NLP task (other experimental 
evidence of the effects of in- and out-of-
domain corpora and further parameters, 
such as corpus size, on word embedding 
performance is reported by Lai et al., [98]).

While this survey focused on the applica-
tion domain of medical IE to demonstrate the 
outstanding role of DL for medical Natural 
Language Processing, one might be tempted 
to generalize this trend to other applications 
as well. There is, indeed, plenty of evidence 
in the literature that other application fields, 
such as question answering (and the closely 
related area of machine reading), summari-
zation, machine translation, and speech pro-
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Table 6   Medical Relation Extraction: Drug-Drug Interaction. Benchmark Dataset: DDI [60].

Citation

Sun et al. [75]

Zheng et al. [76]

Wang et al. [77]

Lim et al. [79]

Zhang et al. [80]

Raihani and 
Laachfoubi [81]

Zheng et al. [76]

Sun et al. [75]

Lim et al. [79]

Zhang et al. [80]

Wang et al. [77]

Raihani and 
Laachfoubi [81]

Zheng et al. [76]

Lim et al. [79]

Wang et al. [77]

Sun et al. [75]

Zhang et al. [80]

Raihani and 
Laachfoubi [81]

Relation type

Mechanism

Mechanism

Mechanism

Mechanism

Mechanism

Mechanism

Effect

Effect

Effect

Effect

Effect

Effect

Advice

Advice

Advice

Advice

Advice

Advice

NE type 1

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

NE type 2

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Drug

Corpus

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

DDI

# of Mentions
train (+dev) / test

1,319 / 299

1,319 / 302

1,319 / 302

1,260 / 301

1,319 / 302

1,319 / 302

1,687 / 360

1,669 / 360

1,592 / 357

1,687 / 360

1,687 / 360

1,687 / 360

826 / 221

814 / 221

826 / 221

822 / 221

826 / 221

826 / 221

DL Approach

Recurrent hybrid CNN 
with focal loss function

Att-BiLSTM

BiLSTM

binary tree-LSTM

hierarchical
Att-BiLSTM

non-DL: SVM

Att-BiLSTM

Recurrent hybrid CNN 
with focal loss function

binary tree-LSTM

hierarchical
Att-BiLSTM

BiLSTM

non-DL: SVM

Att-BiLSTM

binary tree-LSTM

BiLSTM

Recurrent hybrid CNN 
with focal loss function

hierarchical
Att-BiLSTM

non-DL: SVM

Embeddings
(source)

pre-trained on PubMed & Wikipedia: [16] 
+ semantic & position embeddings
self-trained on DDI

word embeddings self-trained on Drug subset of 
PubMed + DDI corpus

word embeddings [78] self-trained on PubMed
+ dependency layers

pre-trained on PubMed & Wikipedia: [16]

word embeddings self-trained on Drug subset 
of PubMed

n/a

word embeddings self-trained on Drug subset of 
PubMed + DDI corpus

pre-trained on PubMed & Wikipedia: [16] 
+ semantic & position embeddings
self-trained on DDI

pre-trained on PubMed & Wikipedia: [16]

word embeddings self-trained on Drug subset 
of PubMed

word embeddings [78] self-trained on PubMed
+ dependency layers

n/a

word embeddings self-trained on Drug subset of 
PubMed + DDI corpus

pre-trained on PubMed & Wikipedia: [16]

word embeddings [78] self-trained on PubMed
+ dependency layers

pre-trained on PubMed & Wikipedia: [16] 
+ semantic & position embeddings
self-trained on DDI

word embeddings self-trained on Drug subset 
of PubMed

n/a

F1-score
%

78.3

77.5

75.4

75.1

74.0

73.5

76.6

73.5

72.9

71.8

69.5

69.5

85.1

82.7

80.9

80.5

80.3

77.4
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Table 6   Medical Relation Extraction: Drug-Drug Interaction. Benchmark Dataset: DDI [60]. (continued)

Citation

Sun et al. [75]

Zheng et al. [76]

Zhang et al. [80]

Raihani and 
Laachfoubi [81]

Wang et al. [77]

Lim et al. [79]

Relation type

Interaction

Interaction

Interaction

Interaction

Interaction

Interaction

NE type 1

Drug

Drug

Drug

Drug

Drug

Drug

NE type 2

Drug

Drug

Drug

Drug

Drug

Drug

Corpus

DDI

DDI

DDI

DDI

DDI

DDI

# of Mentions
train (+dev) / test

188 / 96

188 / 96

188 / 96

188 / 96

188 / 96

188 / 92

DL Approach

Recurrent hybrid CNN 
with focal loss function

Att-BiLSTM

hierarchical
Att-BiLSTM

non-DL: SVM

BiLSTM

binary tree-LSTM

Embeddings
(source)

pre-trained on PubMed & Wikipedia: [16] 
+ semantic & position embeddings
self-trained on DDI

word embeddings self-trained on Drug subset of 
PubMed + DDI corpus

word embeddings self-trained on Drug subset 
of PubMed

n/a

word embeddings [78] self-trained on PubMed
+ dependency layers

pre-trained on PubMed & Wikipedia: [16]

F1-score
%

58.9

57.7

54.3

52.3

51.0

43.9

cessing, reveal the same pattern. However, 
for text categorization (in the sense of map-
ping free text to some pre-defined medical 
category system, such as ICD, SNOMED, or 
MeSH) this preference is less obvious, since 
traditional Machine Learning or rule-based 
models still play an important role here and, 
more often than for the IE application sce-
nario, show competitive performance against 
DL approaches. Whether this exception 
will persist or will be swept away by future 
research remains an open issue. 
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