
IMIA Yearbook of Medical Informatics 2020

235

© 2020                                  IMIA and Georg Thieme Verlag KG

From Patient Engagement to Precision Oncology: 
Leveraging Informatics to Advance Cancer Care 
Ashley C. Griffin1, Umit Topaloglu2, Sean Davis3, Arlene E. Chung1, 4-5

1	 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
2	 Wake Forest University School of Medicine, Winston-Salem, NC, USA
3	 National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
4	 University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
5	 UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA

Summary
Objectives: Conduct a survey of the literature for advancements 
in cancer informatics over the last three years in three specific 
areas where there has been unprecedented growth: 1) digital 
health; 2) machine learning; and 3) precision oncology. We also 
highlight the ethical implications and future opportunities within 
each area.
Methods: A search was conducted over a three-year period in 
two electronic databases (PubMed, Google Scholar) to identify 
peer-reviewed articles and conference proceedings. Search 
terms included variations of the following: neoplasms[MeSH], 
informatics[MeSH], cancer, oncology, clinical cancer informatics, 
medical cancer informatics. The search returned too many articles 
for practical review (23,994 from PubMed and 23,100 from 
Google Scholar). Thus, we conducted searches of key PubMed-in-
dexed informatics journals and proceedings. We further limited 
our search to manuscripts that demonstrated a clear focus on 
clinical or translational cancer informatics. Manuscripts were then 
selected based on their methodological rigor, scientific impact, 
innovation, and contribution towards cancer informatics as a field 
or on their impact on cancer care and research. 
Results: Key developments and opportunities in cancer informat-
ics research in the areas of digital health, machine learning, and 
precision oncology were summarized.
Conclusion: While there are numerous innovations in the field of 
cancer informatics to advance prevention and clinical care, con-
siderable challenges remain related to data sharing and privacy, 
digital accessibility, and algorithm biases and interpretation. The 
implementation and application of these findings in cancer care 
necessitates further consideration and research.
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1   Introduction
Advances in technology, hardware, and 
computing have created new opportunities 
to improve the quality of cancer care and 
research by leveraging informatics inno-
vations. Digital health, machine learning, 
and precision oncology are key areas where 
there are noteworthy advances in the field 
of cancer informatics. As the adoption of 
smartphones and wearable technologies 
increases, patient-generated health data such 
as physical activity and electronic patient-re-
ported outcomes (PROs) are being leveraged 
for prevention and in interventions, for 
remote monitoring during treatment and 
survivorship, and to predict health outcomes. 
Moving beyond cancer clinical trials, health 
systems are increasingly seeking to integrate 
PROs into routine cancer care processes. As 
part of the National Cancer Institute’s (NCI) 
Cancer Moonshot Initiative, six healthcare 
systems will systematically integrate PROs 
into clinical workflows and electronic health 
records (EHRs) [1]. Additionally, much 
attention surrounds the hype and challeng-
es of the application of machine learning 
algorithms in clinical care, including for a 
number of oncology use cases. However, 
there are concerns around biases and homo-
geneous training data sets. Thus, machine 
learning has had limited implementation 
into clinical care. Considerable progress in 
genomics and computational medicine has 
ushered in a new era in precision oncology, 
generating vast amounts of data, much of 
which is publicly accessible. For example, 
the NCI Precision Medicine Initiative-On-

cology has had recent success defining 
genetically targeted therapies, understanding 
tumor treatment resistance, and developing 
a U.S. cancer knowledge system [2]. While 
the opportunities within cancer informatics 
have much potential for positive impact, if 
not applied thoughtfully, these innovations 
risk propagating disparities and inequities. 
Operationalizing these informatics discover-
ies into routine cancer care also continues to 
present a diverse set of challenges. 

2   Objectives
Given the rapid pace of cancer informatics 
research, our objective was to conduct a 
survey of the literature for advancements 
over the past several years in three key ar-
eas of growth: 1) digital health; 2) machine 
learning; and 3) precision oncology. We also 
highlight the ethical implications, challeng-
es, and opportunities for each topic.

3   Methods
A literature search was conducted in two 
electronic databases (PubMed and Google 
Scholar) to identify peer-reviewed articles 
and conference proceedings. Search terms 
included variations of the following: neo-
plasms[MeSH], informatics[MeSH], cancer, 
oncology, clinical cancer informatics, med-
ical cancer informatics. The search covered 
the period from October 15, 2016 to October 
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15, 2019 and returned too many articles for 
practical review (23,994 from PubMed and 
23,100 from Google Scholar). Thus, we 
narrowed the search to key PubMed-indexed 
informatics journals and proceedings such as 
the Journal of the American Medical Infor-
matics Association (JAMIA), JAMIA Open, 
Applied Clinical Informatics, Journal of 
Medical Internet Research, Bioinformatics, 
Journal of Biomedical Informatics, JCO 
Clinical Cancer Informatics, and Nature 
Digital Medicine. We also performed a 
manual review of cancer informatics jour-
nals that were not yet indexed in PubMed. 
Additionally, we searched the proceedings 
of the AMIA Annual Symposia and AMIA 
Informatics Summits. 

Given the sheer number of results, we 
focused on manuscripts that demonstrated a 
clear focus on clinical or translational can-
cer informatics. Manuscripts were selected 
based on methodological rigor, scientific im-
pact, innovation, and contributions towards 
cancer informatics as a field, or on impact on 
cancer care. The reviewed manuscripts were 
grouped into three topics including digital 
health, machine learning, and precision 
oncology. For each topic, we describe the 
current state, implications, challenges, and 
opportunities.

4   Results
4.1   Digital Health
Digital health is the intersection of technol-
ogies with health and wellness to enhance 
communication and delivery of health 
services. It includes mobile health, health 
information technologies, wearable devices, 
telehealth or virtual health, and personalized 
medicine [3]. As health systems transition 
from traditional office-based care to more 
continuous interactions with patients and 
caregivers, emerging technologies are key 
drivers of the capture of patient-generated 
health data [4]. Currently, it is still challeng-
ing to bring together disparate data streams 
generated by patients from technologies such 
as smartphones, social media platforms, 
wearable activity trackers, and Internet of 
Things (IoT) devices such as smart home 

sensors. However, multiple studies have 
begun to demonstrate the value of employing 
digital health technologies to improve cancer 
prevention and care [5-19].

For example, apps and web-based inter-
ventions have been used to support exercise 
[5] and in digital outreach efforts focused on 
cancer screening [6]. In a web-based exercise 
intervention to mitigate the effects of chemo-
therapy, breast cancer patients demonstrated 
improvements on the six-minute walk test, 
and abdominal, back, lower body strength 
compared to the control group over the eight-
week study [5]. One study demonstrated that 
Google search and Facebook advertisements 
could be used to promote cancer screening 
[6]. These advertising campaigns were asso-
ciated with increased visits to institutional 
websites and scheduled screening exams 
compared to the week before and after 
the campaign [6]. These studies reveal the 
potential for digital health apps to engage 
patients, reach broad populations, and im-
prove physical activity outcomes. 

In addition to being a vehicle to deliver 
interventions, social media can be used for 
behavioral surveillance. Several studies 
explored communications within patient 
communities with the most common posts 
or tweets on the topics of clinical trials, 
treatment, and support [7-10]. Taylor et al. 
found evidence of differing levels of emo-
tional, informational, and social support for 
patients with lung cancer across platforms 
(i.e., Facebook, Twitter, Macmillan.org.uk) 
[9], which may be due to differences in user 
characteristics or the nature of self-moderat-
ing communities. In terms of engagement, 
Cho et al., examined the relationship between 
melanoma-related Instagram posts and en-
gagement outcomes (i.e., likes, comments, 
social support). They found that posts about 
physical consequences decreased the num-
ber of “likes” but increased comments and 
perceived emotional support, and that the 
inclusion of images increased the number of 
comments made about the posts [10]. Overall, 
these highlighted studies contribute to an 
understanding of participative engagement 
and experiences on social media platforms for 
written and visual cancer-related content that 
is user-generated, and suggest that patients 
may have varied experiences related to social 
support across platforms and communities.

There is mounting evidence that using 
PROs for cancer care symptom assessments 
can improve survival, quality of life, and 
help patients remain longer on treatment 
when compared to usual care [11]. While 
there is a wide range of PROs that could 
be assessed during cancer treatment and in 
survivorship, several efforts have aimed to 
identify key domains relevant to improving 
outcomes in cancer care. For example, a 
clinical advisory group identified priority 
domains and measures to enhance cancer 
care, which included distress and symptoms 
[12-14] and unmet needs [15]. Girgis et al., 
then developed clinical recommendations 
from these domains, mapped them into 
well-being categories, and demonstrated 
that these recommendations could algorith-
mically provide automated clinical feedback 
[15]. There is also concern that the use of 
structured questionnaires to assess PROs 
may limit the ability to capture the broad 
range of symptoms experienced by patients 
during treatment. Chung et al., examined 
whether patient-entered free-text narra-
tives of symptomatic adverse events could 
be mapped to established terminologies 
from the National Cancer Institute (NCI) 
Patient-Reported Outcomes version of the 
Common Terminology Criteria for Adverse 
Events (PRO-CTCAE) [16]. Among 1,760 
patients enrolled in three multicenter cancer 
trials, over half (58%) provided unstructured 
free-text entries, and most of these entries 
could be mapped post hoc to a PRO-CTCAE 
or Medical Dictionary for Regulatory Ac-
tivities (MedDRA) term. This suggests that 
mapping to existing terminologies is not only 
feasible, but also provides the opportunity 
to supplement trial-specific questionnaires 
to better capture diverse patient experiences 
during cancer treatments.

Use of wearable activity trackers and 
other IoT sensors to capture additional 
patient-generated health data is expanding. 
Several feasibility studies have had favorable 
results, although sample size was generally 
small [17-19]. Studies noted that higher 
daily steps recorded from activity trackers 
were correlated with PROs such as increased 
performance status [17], lower distress [18, 
19], fatigue [18], depressive symptoms [18, 
19], adverse events, hospitalizations, and 
death [17]. Despite high drop-off rates for 
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wear time for activity trackers [18, 19], this 
research highlights that wearable devices 
could provide accurate assessments of 
performance status and physical function to 
inform treatment selection and could serve 
as a viable proxy for PROs.

4.2   Machine Learning
Recent advancements in machine learning 
(ML) reveal opportunities for ML to trans-
form cancer care. The field has seen progress 
in early detection of cancers, and improved 
diagnostic accuracy, personalized therapeu-
tics, and clinical workflows [20-46]. In the 
last two years, the field has also experienced 
substantial growth in FDA approvals for 
algorithms including oncology applications 
for the detection of suspicious lesions and 
clinical decision support (CDS) [47].

Recent reviews have highlighted a num-
ber of promising ML-based knowledge 
extractions from unstructured and semi-struc-
tured oncology data from EHRs, social media 
platforms, and online health communities [20, 
21]. Using EHR clinical documents, Savova 
et al., created a natural language processing 
(NLP) system, DeepPhe, to generate cancer 
phenotypes [22], which could help reduce 
time spent reviewing clinical documents. 
Guan et al., used NLP techniques to extract 
genomic sequencing information from clini-
cal progress notes and then classified the notes 
on whether sequencing led to a treatment 
change [23]. Qiu et al., also leveraged NLP to 
extract the primary site of tumor origin from 
pathology reports [24]. Given that cancer 
stage and origin are rarely captured in struc-
tured format within EHRs, many of the recent 
approaches have focused on NLP to extract 
these data. However, Seneviratne et al., used 
the Observational Medical Outcomes Part-
nership (OMOP) common data model [25] to 
create a feature vector framework to classify 
patients with prostate cancer by stage using 
structured EHR data [26]. This approach may 
be more generalizable than NLP methods 
since clinical notes vary widely in content 
depending on the type and author [26]. 

There have also been a number of studies 
that apply NLP to online health communi-
ty and social media datasets [21, 27, 28]. 
Zhang et al., used a convolutional neural 

network to classify topics within an online 
health community focused on breast cancer 
and found that patients with different cancer 
stages have different topics of conversations 
[27]. Lee et al., assessed conversations 
about living with cancer among sexual mi-
nority women using latent Dirichlet alloca-
tion, which revealed that the most common 
topic was about coping and connecting to 
others with shared gender identities [28]. 
Utilizing NLP techniques to analyze and 
understand topics in online communities 
could help to optimize interventions and 
deliver valuable support.

Recognizing the ongoing challenges 
with concept extraction and the scarcity 
of annotated datasets, researchers have 
employed open science efforts to foster 
interdisciplinary collaborations in several 
areas. For example, Temporal History of 
Your Medical Events (THYME) corpora 
[29, 30], Informatics for Integrating Biology 
& the Bedside (i2b2) challenge sets [31], 
and Medical Information Mart of Intensive 
Care (MIMIC-III) [32] contain collections 
of de-identified clinical text for research. 
DREAM Challenges have also hosted sever-
al cancer-focused competitions that yielded 
a number of R packages and established 
benchmarks for prognostic models [33, 34].

In medical imaging, ML has been 
deployed for early detection, improved 
diagnosis, and better prognostic accuracy. 
Ardila et al., used low-dose chest computed 
tomography images to perform end-to-end 
lung cancer screening with high accuracy 
[35]. Similarly, predictive models to calcu-
late breast cancer risk from mammograms 
demonstrated improved risk discrimination 
over current clinical standards [36]. In der-
matology, several deep learning methods 
were found to be superior to dermatologists 
in diagnosing and detecting skin cancers 
[37, 38]. Wei et al., also found employing 
deep learning approaches to classify lung 
pathology images yielded more accurate 
results when compared to pathologists [39]. 
Additionally, advancements have been made 
in ML-based CDS tools for classification 
of skin lesions, estimates of colon cancer 
outcomes based on various therapies, and 
management of uterine cervical abnormal-
ities [40]. Given the lack of large imaging 
datasets for training models, investigators 

have also focused on producing realistic 
synthetic data [41, 42]. Research by Senaras 
et al., revealed that generative adversarial 
networks are a promising technique to gener-
ate labeled synthetic immunohistochemical 
stained breast tissue [41].

For precision cancer care, genomics 
tools have also demonstrated the potential 
to advance the discovery of novel targeted 
cancer therapies. DeepMind’s AlphaFold 
tool has shown promise in predicting pro-
tein structure from its genetic sequence 
[43]. CRISPR/Cas9 screens have also fa-
cilitated tremendous progress in identifying 
essential genes across cancer cell lines [44]. 
Several studies have used ML to identify 
cancer subtypes using gene expression data 
[45] and pathological images [46]. For ex-
ample, Coudray et al., established that ML 
algorithms could predict six of the most 
commonly mutated genes within adenocar-
cinoma lung cancer [46]. ML could also be 
used to assist pathologists in detecting gene 
mutations or cancer subtypes. Given the 
variety of data sources necessary to com-
pare personalized cancer care pathways, 
incorporating genetic, clinical, imaging, 
cost, and quality of life data into multifac-
eted CDS tools could aid in reducing the 
cognitive load of clinicians [40].

4.3   Precision Oncology
Precision medicine is an evolving set of 
diagnostic and treatment paradigms which 
seeks to optimize and tailor safe and effec-
tive care for patients based on their indi-
vidual characteristics. Precision medicine 
has been advanced considerably by cancer 
genomics. Increasingly, discoveries using 
genomic technologies that have fueled 
translational research are impacting clinical 
settings [48-64]. Single cell level assays 
are proving transformational in the under-
standing of tumor heterogeneity, disease 
biology, and treatment resistance, and will 
likely play an increasingly important role 
in clinical research and precision medicine 
applications [48].

Several studies have demonstrated the 
feasibility of large cohorts prospectively 
assayed using genomic technologies with 
turnaround times short enough to impact 
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clinical decisions [49, 50]. For example, in 
an institutional precision oncology initiative 
at Memorial Sloan Kettering Cancer Center 
(MSKCC-IMPACT), approximately 10,000 
patients, sequenced at a rate of more than 500 
patients per month, underwent paired tumor 
and germline DNA sequencing of a panel of 
approximately 400 known cancer genes [49]. 
Turnaround time to final report was less than 
21 days on average. Most (69%) of the so-
matic variants were not present in the large, 
public database of somatic variants called the 
Catalogue Of Somatic Mutations In Cancer 
(COSMIC) [51] at the time of the study, 
suggesting a gap between finding a variant 
and interpreting its relevance to a patient’s 
clinical context. As with other similar stud-
ies, researchers relied on publicly available 
data resources, such as My Cancer Genome 
[52], OncoKB [53], Clinical Interpretation of 
Variants in Cancer (CIViC) [54], HemOnc.
org [55], and community-based resources 
[56] to facilitate interpretation of results. 
The clinical impact of large-scale precision 
oncology sequencing efforts suggest mixed 
results. An overview suggests that only 
a minority of sequenced patients have at 
least one actionable molecular finding [57]. 
Specifically, only 18% and 11% of patients 
respectively from the NCI-MATCH (approx-
imately 6,000 patients) and the MSKCC-IM-
PACT trials received targeted therapies [49, 
58]. Increasing the number and effectiveness 
of available therapeutics remains a central 
challenge to broadening the impact of ge-
nomic precision medicine [59]. However, it 
will also be critical to identify treatments that 
may yield low therapeutic benefit.

Biomarker definition is another growth 
area in precision oncology. Precision immu-
no-oncologics, a class of relatively new ther-
apeutics, have shown remarkable efficacy for 
some cancers. Several defined prognostic 
and predictive indices suggest which patients 
are most likely to benefit from, for example, 
immune checkpoint inhibitors [60, 61]. For 
Chimeric Antigen Receptor T-cell (CAR-T) 
therapy, there are over 100 trials targeting 
at least 25 different biomarkers in multiple 
cancer types [62]. Public health projects are 
also beginning to adopt strategies to capital-
ize on biomarkers and genomic information 
to enhance precision medicine applications. 
For instance, the U.S. Centers for Disease 

Control and Prevention maintains the 
Public Health Genomics Knowledge Base 
(PHGKB) which includes cancer-specific 
resources to “provide systematically curated 
and updated information that bridges pop-
ulation-based research on genomics with 
clinical and public health applications [63].” 
The NCI has also created an online resource 
that announces and coordinates “precision 
cancer surveillance” efforts including the 
addition of patient-level genomic linkages 
into cancer registries [64].

5   Discussion
Innovations in cancer informatics are abun-
dant in the areas of digital health, machine 
learning, and precision oncology and have 
great potential in improving cancer care. 
While there are considerable challenges, 
there are also many opportunities for future 
research to advance cancer informatics as 
a field.

5.1   Opportunities and Implications 
for Digital Health in Cancer Care
Given the ubiquitous adoption of smart-
phones and growing ownership of wearable 
and IoT devices, digital health technologies 
have the unique capability to gather longi-
tudinal data outside of clinical settings that 
could yield deeper insights into a patient’s 
symptom experience or help identify modi-
fiable risk factors for cancer. Interoperability 
standards and numerous U.S. initiatives, such 
as the 21st Century Cures Act and the Pro-
moting Interoperability Program (formerly 
named the Meaningful Use Program), are 
transforming the way individuals access 
medical services and manage their health, 
thereby accelerating the meaningful appli-
cation of digital health technologies.

The evidence base for digital health in 
cancer care is currently limited by small 
sample size, short study duration, and limited 
focus on digital accessibility, underserved or 
underrepresented populations, or the needs 
and psychosocial outcomes of caregivers of 
patients with cancer. Patients with cognitive 
or physical disabilities may not be able to use 

some technologies, and different modalities 
are needed to reach patients based on their 
abilities, preferences, cultural norms, level 
of training, and lived environment [65]. 
Caregivers may be an important bridge to 
reach patients who have technical, physi-
cal, or cognitive limitations, but this is an 
understudied area. Many studies specifically 
exclude participants based on non-ownership 
of a smartphone, lack of Internet access, 
severity of medical conditions, being on 
chemotherapy treatment, or a recurrence of 
cancer. Yet, these populations may be those 
who could benefit the most from digital 
health technologies and interventions. 

As companies are increasingly engaged in 
acquiring and sharing individuals’ health-re-
lated information, there are noteworthy 
concerns about data privacy, security, and 
the ethical use of digital health data. Given 
the growing number of partnerships between 
health systems, pharmaceutical companies, 
insurers, and technology companies, and the 
increased access by third parties to cloud-
based patient data and associated analytical 
tools, there is growing unease about data 
linkages and the potential for misuse and 
data breaches. For example, Google recently 
sparked a federal investigation following 
their partnership with Ascension [66] due 
to concerns for sharing protected health 
information and a Department of Justice 
inquiry over their acquisition agreement for 
Fitbit [67]. Apple has several partnerships 
with insurers and pharmaceutical companies 
such as Aetna [68] and Eli Lilly [69], and 
Fitbit has partnerships with Bristol-Myers 
Squibb-Pfizer Alliance [70] and Humana 
[71]. Recently, it was revealed that the 
U.K.’s National Health Service has given 
Amazon free use of all health data under an 
Alexa advice deal [72]. Consumers may be 
unaware or inadequately informed about how 
their data are being used and by whom [73], 
suggesting the need for greater transparency 
of privacy and data sharing practices and 
policies to be consumable at the patient level. 
Although the FDA regulates some digital 
health apps or technologies, the majority 
of apps available in the marketplace are not 
validated through rigorous research. Addi-
tionally, it remains challenging for patients 
and caregivers to determine which apps are 
trustworthy, effective, and useful.
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5.2   Opportunities and Implications 
for ML in Cancer Care
Machine learning research has had meaning-
ful advances in cancer prevention, diagnos-
tics, and prediction. This progress has been 
driven by increased availability of data and 
scalable computing infrastructures. Cloud-
based platforms, such as Microsoft Azure 
Databricks [74], Google Cloud AutoML 
[75], and Amazon Web Services SageMaker 
[76] have simplified building, training, and 
deploying models, though developers should 
be cognizant of the computational and envi-
ronmental costs associated with cloud-based 
platforms [77]. Real-time NLP and ML inno-
vations within EHR systems are also being 
explored by companies like Nuance and 
Epic, which could lead to better capture of 
tumor staging information as structured data 
elements through ambient computing [78].

Despite the promise of ML to improve 
cancer care, there are substantial challeng-
es that must be addressed before ML is 
implemented into routine cancer care. For 
instance, 450,000 women missed screening 
mammograms in the U.K. due to algorithm 
failure [79]. The IBM Watson for Oncology 
project highlighted a number of issues in the 
ML and oncology communities related to 
lack of validation and benchmarking, data 
quality, and subjectivity in interpretation 
of results [80]. Data quality and availability 
challenges in healthcare are an acknowledged 
barrier to research, particularly the paucity 
of data for underrepresented populations 
[81]. This may lead to biases since training 
data does not reflect the attributes of these 
populations yet may be applied in clinical 
care. There are also growing concerns about 
the “de-skilling” of physicians that could 
occur when some or all of the tasks become 
automated, such as a drop in a clinician’s 
diagnostic accuracy [82]. This has future 
implications for graduate medical education 
and how curricula may require transformation 
to address these emerging issues.

Given the large volume and diversity 
of training data needed for ML research, 
federated learning approaches, which do 
not require direct data sharing, have strong 
potential but remain difficult to implement 
due to privacy preservation challenges 
[83]. Furthermore, the “black box” nature 

of many algorithms renders interpretation 
and benchmarking performance difficult. To 
improve algorithm transparency, Price et al., 
proposed a three-step framework for validat-
ing “black box” algorithms, which involves: 
1) having high quality training data and de-
velopment procedures, 2) testing algorithm 
performance against independent test data, 
and 3) evaluating performance continuously 
[84]. Even with benchmarking, appropriate 
selection of realistic and bias-controlled test 
cases may still be an issue. The “intrinsic un-
certainty” in medicine introduces variations 
in results interpretation [82], which also 
suggests that model performance criteria 
should be use case specific rather than based 
on standard scoring metrics [85].

In the era of Deepfake, ethical issues are 
inevitable if there are no appropriate reg-
ulatory frameworks for the deployment of 
ML algorithms. Health disparities could be 
widened due to lack of representative train-
ing data and the possible consequences from 
algorithm failures limit the current utility of 
implementing ML algorithms in real-world 
cancer care settings. Governance and poli-
cies for deployment, audits of performance, 
and implementation of best practices will be 
critical for safe implementation, but these are 
not yet widely used within health systems. 
To mitigate some of the challenges facing 
the field of ML, several organizations have 
proposed ethical and regulatory frameworks. 
The FDA has proposed policies for ensuring 
safe and effective use of ML-based software 
for medical purposes, including regulatory 
frameworks for software as a medical device 
[86], for CDS [87] as well as a pre-certifica-
tion program [88]. In real-world deployment 
into clinical care, it is critical to have rigorous 
change protocols for algorithm modifications 
to ensure safety and to provide transparency 
to users during updates of algorithms [86]. 
However, these may not be routinely imple-
mented. While ML-based CDS tools can 
assist in automated detection, classification, 
or reporting, safeguards are essential to pro-
actively mitigate errors that may arise from 
these complex systems. Professional societies 
such as the American College of Radiology, 
along with several other U.S. and international 
radiology organizations, have released an 
exemplar consensus and guidance document 
on the importance of developing ethical 

standards for ML [89]. Toolkits, such as the 
American College of Radiology’s AI-LAB 
framework, that promote a vendor-neutral 
approach to develop algorithms based on 
patient populations [90] may also allow for 
extensibility of algorithms. 

5.3   Opportunities and Implications 
for Precision Oncology 
Precision medicine utilizes characteristics 
of individual patients, but relies on popula-
tions of patients to actually guide treatment 
decisions. Even when high-quality data are 
available, experts may disagree about inter-
pretation and actionability applied within a 
clinical setting [91]. Perhaps more problem-
atic is the bias that can arise when extrapolat-
ing findings to ethnic, racial, or age groups 
not well-represented in research cohorts 
[92, 93]. Despite the growing application 
of genomic testing in research and precision 
oncology, use cases are still limited by lack 
of availability of codified data elements 
from molecular testing on tumor samples, 
germline DNA, and serum biomarkers, even 
for healthcare systems with advanced EHRs 
and cancer research efforts [94].

Currently, there are numerous open-
source cancer genomics tools and ML 
training platforms that have the potential to 
accelerate cancer informatics research, such 
as OncoSim, OncoWiki, and Google Collab-
oratory [95, 96]. The NCI Informatics Tech-
nology for Cancer Research Program has a 
number of open-access tools that support the 
analysis of genomic, imaging, and clinical 
data [97]. Yet, despite the momentum in pre-
cision oncology discoveries and actionability 
of results, their application to the context of 
the treatment selection for individual patients 
remains an open challenge in accelerating 
the implementation of precision oncology. 

6   Conclusions
Bringing informatics innovations within 
digital health, machine learning, and preci-
sion oncology into cancer care will require 
thoughtful approaches to operationalize the 
collection and meaningful summarization 
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of disparate data sources to actualize the 
promise of cancer informatics. Moving from 
patient engagement in collecting and sharing 
health data with care teams and researchers, 
to the delivery of precision cancer care 
necessitates leveraging informatics innova-
tions. The research highlighted in this survey 
paper reflects the fast-paced, ever-evolving 
field, and its challenges as we move discov-
eries into cancer care.
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