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Abstract

Identification of optimal schedules for combination drug administration relies on accurately 

estimating the correct pharmacokinetics, pharmacodynamics, and drug interaction effects. 

Misspecification of pharmacokinetics can lead to wrongly predicted timing or order of treatments, 

leading to schedules recommended based on incorrect assumptions about absorption and 

elimination of a drug and its effect on tumor growth. Here we developed a computational 

modeling platform and software package for combination treatment strategies with flexible 

pharmacokinetic profiles and multidrug interaction curves that are estimated from data. The 

software can be used to compare pre-specified schedules based on the number of resistant cells 

where drug interactions and pharmacokinetic curves can be estimated from user-provided data or 

models. We applied our approach to publicly available in vitro data of treatment with different 

tyrosine kinase inhibitors of BT-20 triple-negative breast cancer cells and of treatment with 

erlotinib of PC-9 non-small cell lung cancer cells. Our approach is publicly available in the form 

of an R package called ACESO (https://github.com/Michorlab/aceso) and can be used to 

investigate optimum dosing for any combination treatment.
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Introduction

A major obstacle in cancer research is the development of resistance to anticancer drugs 

(1,2). Although this phenomenon has long been studied, it has gained even more attention 

after the introduction of targeted therapies and technological advances such as next 

generation DNA/RNA sequencing (3–5). Targeted therapy differs from traditional cytotoxic 

chemotherapy in that it not only leads to more specific effects with reduced toxicity, but also 

promises a future of personally tailored treatment. Unfortunately, the initial clinical response 

to targeted therapies is almost always temporary, as acquired resistance to these drugs 

frequently develops (2,3).

Clonal evolution represents a key element for understanding and predicting the dynamics of 

resistance (5,6). In this context, cancer cells evolve specific (epi)genetic alterations during 

tumor growth that lead to the outgrowth of different subclones within a tumor cell 

population. This intratumor heterogeneity has important negative implications for targeted 

therapies because somatic mutations continue to occur even in the presence of drugs, leading 

to increased aggressiveness of the cancer as new drug-resistant cells with improved 

malignant potential emerge (1). Moreover, resistance might also be due to therapy-induced 

selection of a small resistant subpopulation of cells that was already present in the original 

tumor (7).

This realization has given rise to many stochastic mathematical models of genetic resistance, 

which consider the emergence of these alterations as random events during cell division (8–

13). Goldie and Coldman presented some of the earliest work in the 1980s (14,15), 

proposing the use of branching process models to study pre-existing or acquired resistance 

to chemotherapy in tumor cell populations. Branching process models are a class of 

stochastic models that describe the growth and composition of populations made up of 

stochastically reproducing individuals (16,17). A subclass of these models is referred to as 

birth-death processes because each cell experiences a random birth or death event. Multi-

type branching processes are convenient for modeling clonal evolution of tumor cells, as 

during the division process the emergence of random (epi)genetic alterations can give rise to 

tumor subclones with different fitness (i.e. proliferative capacity or resistance to apoptosis) 

than their ancestors (18). This approach has inspired other groups to mathematically 

characterize drug resistance dynamics and to investigate potential administration schedules 

that could delay the emergence of resistance (19–21). For instance, Hata et al. (7) used a 

branching process to model gefitinib-tolerant and gefitinib-resistant/persistent clones in 

epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer and showed 

that acquired resistance can occur either by de novo acquisition of the EGFR-T790M 

mutation or by expansion of pre-existing EGFR-T790M-positive subclones under the 

selective pressure of gefitinib therapy. Branching process models have also been used to 

study multi-drug resistance (11,13) and the dynamics of metastasis formation (12,22).

We previously developed a comprehensive computational strategy to explore the 

evolutionary dynamics of heterogeneous tumor cell populations while taking 

pharmacokinetic and drug interaction effects into account (23–25). This approach consists of 

a cell-level description of the changes in sensitive and resistant cells over time and in 
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response to treatment, using a birth-death-mutation process to model population dynamics. 

Our framework represents a departure from previously developed models where the birth 

and death rates of sensitive and resistant cells were not directly influenced by drug 

concentrations and were assumed to be constant over time. Additionally, the 

pharmacokinetic processes included in our previous work (20,24–26) were exponential 

declines of drug concentrations, a modeling choice that might not hold for all treatment and 

cell types. Furthermore, in vitro growth inhibition response of cells to a range of different 

drug concentrations is generally non-linear, which needs to be incorporated in a flexible 

framework (27,28).

In this paper, we developed a generalized modeling methodology that accounts for complex 

pharmacokinetic models and non-linear effects of drugs on the growth and death kinetics of 

tumor cells. We integrated this framework in an R package called ACESO (A Cancer 

Evolution Schedule Optimizer), providing users with an accessible tool to rationally identify 

optimum single-agent and combination treatment administration strategies for oncogene-

driven cancers. We demonstrate the use of ACESO to explore optimum dosing strategies 

using publicly available data from the Harvard Medical School (HMS) Library of Integrated 

Network-based Cellular Signatures (LINCS) database (29). Additionally, we demonstrate 

how the new features and flexibility of ACESO can identify optimum administration 

schedules for erlotinib in non-small cell lung cancer (NSCLC) (20,21) by extending the 

previous model to account for Central Nervous System (CNS) metastases. Within these 

models, calculating the probability of developing resistance is a standard feature in ACESO. 

Our multi-scale framework represents a crucial step towards making clinically relevant 

predictions as it considers the most important aspects governing treatment response and 

cancer evolution.

Material and Methods

Model structure

The underlying model in ACESO is a multi-type branching process with time-dependent 

rates, which consists of multiple different types of cells; see the Quick Guide to Equations 
and Assumptions and Supplementary Information (SI) for a detailed description of the 

model and mathematical equations, respectively. The tumor-initiating cells with oncogene-

activating mutations, denoted type-0 cells, are referred to as sensitive cells, since they 

contain all (epi)genetic alterations necessary for conferring the tumor phenotype, but are 

sensitive to anti-cancer therapies. These alterations can be a point mutation, amplification, 

deletion, inversion, methylation or other epigenetic change, or any other alteration that arises 

at a certain rate per cell division. Type-0 cells proliferate and die with rates b0(t) and d0(t), 
respectively. These rates can be modulated by the cytostatic and/or cytotoxic effect exerted 

by the drug(s) as a function of their concentrations over time.

Type-0 cells accumulate (epi)genetic alterations at probability ui per cell division, hence at 

rate uibi(t), to generate new clones harboring specific resistance mechanisms. This parameter 

can be a constant value or be modified by the effects of drugs. Newly emerging resistant cell 

types (denoted type-i cells, with i = 1,2,...) are again characterized by their birth and death 

rates, bi(t) and di(t), respectively, which may also exhibit a concentration-dependent profile. 

Irurzun-Arana et al. Page 3

Cancer Res. Author manuscript; available in PMC 2021 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each of these resistant cell types can then accumulate further (epi)genetic alterations and 

become resistant to additional drugs. Fig. 1A shows a schematic representation of a four-

type branching process with cross-resistance. The current implementation of ACESO is 

limited to combinations of two drugs due to the difficulty of discerning the effect of each 

drug in combinations of more than two agents as well as interaction kinetics between them.

This quantitative approach considers situations in which there is preexisting resistance at the 

time of tumor diagnosis and treatment initiation as well as de novo resistance emerging 

during treatment. In previous work, we derived analytical solutions to calculate the expected 

number of cells of any type as a function of time and the probability of developing resistance 

after treatment initiation (24,25). These results are summarized in the Supplementary 

Information and allow for faster predictions without the need for stochastic simulations of 

the evolutionary process. This cell-level description of how heterogeneous cell populations 

evolve over time is then coupled to pharmacokinetic (PK) models, which describe how the 

drug concentrations change over time (Fig. 1B), and with information quantifying drug-drug 

interactions (Fig. 1C).

Estimation of birth and death rates

Data from in vitro cell viability and death assays are required to determine the growth and 

death rate parameters for each cell type under varying drug concentrations. Here, for each 

treatment condition (i.e. concentration level of one or more drugs) the corresponding rate 

constants of birth and death are estimated. One example of a viability assay that can be used 

to characterize cell proliferation is the MTS assay (30), where the number of viable cells is 

measured over time. This data is then used to identify a net growth rate constant assuming an 

exponentially growing cell population. The dynamics of tumor cell death can be 

characterized using apoptosis assays such as Annexin V/propidium iodide (PI) fluorescence-

activated cell sorting (FACS) assays (31), where cells with positive Annexin V staining are 

considered dead. Our framework uses the fraction of dead cells resulting from these assays 

to determine the baseline death rate as well as the death rates in the presence of different 

drug concentrations (see SI for a detailed description). Finally, the net birth rate is calculated 

as the sum of the estimated cell growth and death rates for the different drug concentrations. 

Other assays for proliferation (e.g. KI67 protein assays (32)) and death (e.g. Caspase 

activation assays (33)) can also be used for rate estimation. The structure of an ideal 

database for ACESO is described in the SI.

Estimation of drug effect parameters

To estimate drug effects on birth and death rates, we perform the following steps: (i) In case 

of exposure to a single drug, ACESO includes several non-linear models (28) (see SI) that 

are fitted to the concentration-response data, which provides the values of the drug effect 

parameters. The selection of the best model is based on the lowest Akaike Information 

Criterion (AIC) value (34). (ii) The relationship between estimates of b or d and drug 

concentrations obtained from drug combination studies is established using nonparametric 

models (35,36). These methods do not assume any specific model structure a priori to fit the 

data, and thus, the birth/death rate vs. concentration profiles are described without assuming 

any mechanism of interaction, providing a large degree of flexibility.
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Estimation of pharmacokinetic parameters

In order to implement more complex PK models and to simulate different routes of 

administration and dosing schedules, we integrated the mrgsolve R package (37) in ACESO, 

which allows for rapid simulations of ordinary differential equation-based PK models. When 

patient-specific PK data are available, user-defined or compartmental models available in 

ACESO using the mrgsolve model specification can be used to select the best model 

describing the drug concentrations over time. If data from different individuals are available, 

parameter estimates describing the median tendency of the data are reported, as estimation 

of inter-individual variability is not currently supported in ACESO. Selection between 

models is based on the minimum AIC value and inspection of the individual fits.

Assessing drug synergy/antagonism

ACESO helps to identify whether the combined action of two drugs is synergistic or 

antagonistic or whether there is no interaction. In order to quantify the degree of synergy/

antagonism between two compounds, the most common approach is to compare the 

combination effect to a null reference model of no interaction. If the combination response is 

greater than what is expected from the reference model, the combination is classified as 

synergistic, while antagonism is defined as the combination producing less than the expected 

effect. There are several conventional approaches that define different null models to assess 

drug synergy/antagonism. The Loewe additivity model (38) quantifies a zero-interactive 

state for the combination of two drugs and defines synergy/antagonism as a combined 

inhibitory effect that is greater/lower than the sum of the individual effects of the drugs. 

Highest Single Agent (HSA), also known as Gaddum’s non-interaction model (39), is 

another popular model which defines “independent action” of drugs when the predicted 

effect of a combination is that of the most effective drug alone. According to this model, any 

combined effect stronger than the effect of a single drug is called synergism and a weaker 

effect antagonism. Additional information related to these models is provided in the SI. 

These two models are used in ACESO to define the pairwise drug combination effects. The 

Loewe/HSA scores reflect the difference between the measurement and the surface obtained 

under the no-interaction models, such that values less than zero represent antagonism and 

values greater than zero synergism.

Data availability

TNBC—Raw cell viability data used in the present analysis can be retrieved from the HMS 

LINCS Database (http://lincs.hms.harvard.edu/db/datasets/20259), where nine small 

molecule kinase inhibitors given in combination were chosen for analysis of combinatorial 

drug sensitivities in the BT-20 triple-negative breast cancer (TNBC) cell line (obtained from 

ATCC). Briefly, in these experiments cells were exposed during 72 hours to constant 

concentration levels of the drugs either as single agents or in combinations. Due to the lack 

of information regarding drug resistant cell lines in LINCS, we assumed that these cells had 

decreased birth and death rate parameters compared to their sensitive counterparts, and 

hence the proliferation and death rate parameters obtained for the parental BT-20 cell line 

were divided by different values depending on the drugs being analyzed and tested for 

sensitivity.
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NSCLC—We used cell viability (MTS assay) and apoptosis (Annexin V/PI FACS assay) 

data from isogenic erlotinib-sensitive and erlotinib-resistant pairs of PC-9 NSCLC cell lines 

from a previous publication (40). In these experiments, the total numbers of viable and dead 

cells in culture were counted at 48, 60, and 72 hours after treatment initiation for different 

erlotinib concentrations and in the absence of the drug. In contrast to the TNBC data above, 

for the NSCLC data we used response kinetics to a single drug only and also did not have 

information on the growth patterns of resistant cell types.

Results

Using the building blocks outlined above, we created a multi-scale computational modeling 

platform that incorporates tumor evolution, pharmacokinetics and drug interaction dynamics 

(Fig. 1D). This computational platform is publicly available as an R package called A 

Cancer Evolution Schedule Optimizer (ACESO). This method can be applied to investigate 

best dose administration schedules for any combination treatment.

Optimum dosing strategies for TNBC

We analyzed the dynamics of heterogeneous TNBC cell lines during combination treatment. 

We obtained cell viability data resulting from the exposure of the BT-20 TNBC cell line to 

different concentrations of nine small molecule kinase inhibitors used as single-agents or in 

combination (see Data availability above). We focus our results section on the discussion of 

the combination of alpelisib and neratinib; results of analyses using all drug combinations in 

the database are shown in the SI. For the purpose of the model, BT-20 cells sensitive to both 

drugs are referred to as type-0 cells, whereas cells resistant to one of the drugs are defined as 

type-1 or type-2 cells.

Estimation of drug-sensitive cell growth and death rates—We first estimated 

tumor cell proliferation and death rates. To this end, we used an exponential model to 

characterize cell growth and estimated a net growth rate parameter for each treatment 

condition. Fig. 2A shows the relationship between viable cells measured 72h after exposure 

and the different concentration levels of the targeted therapies alpelisib and neratinib as well 

as the net growth rate estimates obtained from these measurements. Since no information 

regarding apoptosis assays was available to estimate the death rate of type-0 cells (d0) and 

assuming that these targeted therapies do not induce cell death per se, a different d0 value 

was defined for each concentration of drugs, which was equal to the minimum value needed 

to ensure that all birth rates of type-0 cells (b0) were positive regardless of the treatment 

condition. The values of b0 for the cells treated with alpelisib and neratinib are shown in Fig. 

2A (right panel). These parameters were fitted using a Generalized Additive Model (GAM) 

to generate the predicted surface required for the simulation of the evolutionary process (Fig. 

2B). GAMs flexibly model the relationship between the b0 values and each drug 

concentration by using a number of basis functions that can have a wide variety of shapes 

(36). The resulting isobolograms highlight points of equal drug contribution to the decrease 

of sensitive cell birth rates; Supplementary Fig. S1 shows the result of fitting GAMs to the 

b0 values obtained under additional drug combinations in our database.
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Estimation of drug-resistant cell growth and death rates—Once drug resistant 

cells have emerged from drug sensitive cells, they follow their own branching process model 

characterized by their corresponding birth and death rates. We considered situations in 

which drug concentrations did not have any influence on drug-resistant cell proliferation and 

therefore, these cells were only affected by the varying concentrations of the other drug in 

the combination. The birth rate-drug concentration profiles were then characterized using the 

non-linear models for single agents included in ACESO. Fig. 2B shows the fitting of 

neratinib-resistant (type-1) and alpelisib-resistant (type-2) cell birth rates, where an 

exponential decay model and a five parameter log-logistic function, respectively, best fit the 

data as indicated by the lowest AIC values (Table 1). The non-linear models used to 

characterize the other cell types in our database are also summarized in Table 1 along with 

the corresponding parameter estimates and standard errors. The best-fitting models based on 

AIC were exponential, log-logistic, and Weibull functions.

In addition, a value for the probability of emergence of (epi)genetic resistance mechanisms 

of 10−7 was defined for cells resistant to one drug, and of 10−8 for cross-resistance. These 

values were chosen because the baseline point mutation rate for genetically stable cells is 

around 10−10–10−11 per base per cell division (41) and we considered 1000 loci in the 

genome giving rise to resistance; similar rates may apply for the emergence of other 

resistance mechanisms such as amplifications, deletions, and methylation changes.

Identification of drug interaction dynamics—We next sought to understand if drug 

interactions played an important role in the combination studies. Specifically, we aimed to 

determine if the interaction of the drugs causes increased inhibition of the proliferation of 

drug-sensitive cells compared to an additive effect of the drugs (Loewe additivity principle) 

or the effect of each drug alone (HSA). The matrices in Fig. 3A–B show the values obtained 

by computing the differences between the measurements from the combination of alpelisib 

and neratinib and the surface obtained with the Loewe or HSA models, respectively, such 

that negative values represent antagonism and positive values synergism. In this case, both 

models revealed synergistic interactions between the drugs. Interaction matrices for the 

remaining drug combinations in this study are shown in Fig. S2–S3. The analysis using the 

Loewe model (Fig. S2) reported that the drugs with the greatest synergistic effect were the 

combination of alpelisib and neratinib, alpelisib with trametinib, and dactolisib with 

trametinib; whereas the highest antagonism values were found for the dactolisib and 

lapatinib combination. The matrices from the HSA model (Fig. S3) on the other hand, 

presented additional synergistic effects that were not found with the Loewe model (e.g. 

alpelisib with saracatinib or selumetinib) and less antagonistic interactions (although the 

highest antagonism was still found for the dactolisib and lapatinib combination). The 

discrepancy between the two figures is not surprising as each model has a different 

definition of synergism/antagonism.

Pharmacokinetic models—We obtained relevant PK models and parameter estimates 

from previous studies (42,43) and used these estimates for the simulations of drug 

concentration profiles (Supplementary Table S1 and Fig. 3C). In the case of neratinib and 

dactolisib, pharmacokinetic parameters were estimated from the median concentration-time 
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data scanned from the original publication using ACESO (Fig. 3D). For the examples 

outlined here, we repeated the PK dynamics for each cycle, but more complex models can 

also be simulated using ACESO.

Simulation of treatment effects—Once we defined the PK models, the birth/death/

mutation rates of the different cell types, and the effect of different drugs concentrations and 

combinations on these rates, we used ACESO to identify optimum treatment combination 

schedules. The quality of a schedule was judged by its impact on the total number of 

different tumor cell types. For these simulations, we considered a population of 1 million 

sensitive cells and 1000 drug-resistant cells prior to treatment initiation. Simulations were 

implemented for each combination of drugs; the findings for alpelisib and neratinib 

combination are outlined below and the results for other drug combinations are summarized 

in the SI and Figures S4–S5.

Alpelisib and neratinib combination treatment—We tested different dosing 

schedules for alpelisib and neratinib combination therapy (Table 2). For these schedules, we 

then determined the dynamics of resistant cell populations over time (Fig. 4A) and compared 

the expected number of tumor cells 30 days after treatment obtained from each regimen 

(Fig. 4B:E). In the case of alpelisib, any modification from the maximally tolerated dose 

(MTD) administration of 300 mg once a day (QD) resulted in an increased number of 

alpelisib-sensitive cells after 30 days. This effect arises due to the large birth rate of 

alpelisib-sensitive cells in the absence of drug and the rapid clearance of alpelisib, both of 

which allow tumor cells to grow quickly during treatment breaks (Fig. 4A; regimen 8). In 

the case of neratinib, administering high dose pulses with low daily maintenance dosing 

gave similar results to the MTD schemas, since low concentrations of the drug had a 

considerable effect on the birth rate of type-2 cells (see Fig. 2) and therefore the schedule 

involving a high-dose pulse of 720 mg/week with an additional daily dose of 160 mg for the 

remainder of the week was comparable to the approved schedule of 240 mg QD (<1% 

difference in Fig. 4E). The synergistic effect between these two drugs, however, led to the 

best schedule of 300 mg QD alpelisib with 240 mg QD neratinib as it is the one that further 

decreases the number of type-0 cells and consequently, the total number of cells (43.1% 

improvement from the worst schedule in Fig. 4B), although the differences with respect to 

other regimens were small.

Optimum dosing strategies for NSCLC

We then sought to investigate optimum erlotinib dosing strategies for the treatment of 

NSCLC using the evolutionary cancer model from (20,40). NSCLCs that harbor mutations 

within EGFR gene are sensitive to the tyrosine kinase inhibitor (TKI) erlotinib (44). 

Unfortunately, all patients treated with this drug acquire resistance, most commonly as a 

result of a secondary mutation within EGFR (T790M mutation). In addition, approximately 

one third of the patients develop CNS metastases after initial response to EGFR TKIs (45).

Here, we extended the original two-type branching process to account for CNS metastases 

and to show the flexibility of ACESO to handle different scenarios of clonal evolution. As it 

has been previously suggested, the metastasized cells retain EGFR TKI sensitivity if 
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sufficient drug concentration can be achieved in brain parenchyma or the cerebrospinal fluid 

(CSF) (45). We thus considered three cell types (Fig. 5A): primary tumor drug-sensitive 

cells, primary tumor drug-resistant cells and drug-sensitive metastasized cells – drug-

sensitive cells that have disseminated to a new site and have the same proliferation and death 

rates as the original cells.

Estimation of drug sensitive and resistant cell growth and death rates

We used publicly available data of erlotinib-sensitive and erlotinib-resistant cell birth and 

death rates (see Data availability section) (40). We then fit the concentration-response curves 

for the birth rates of each cell type using ACESO. The selected model for erlotinib-sensitive 

cells was a five parameter logistic function with a cell intrinsic birth rate of 0.04 h−1, a Emax 

of 0.003 h−1, a EC50 value of 0.76 μM, a Hill coefficient h of 1.5 and an asymmetry factor f 
of 8.26. A model was also fitted for the influence of erlotinib on the inhibition of drug-

resistant cell growth. Although it was not the model with lower AIC, a linear equation with 

an intercept of 0.034 h−1 and a slope parameter of −0.0005 (μM·h)−1 was used to model the 

birth rates of the resistant PC-9 cell line as in the original article. The death rates obtained 

from the apoptosis assay counts for both cell types were almost identical for the different 

drug concentrations used in the experiments, and hence we defined a constant death rate of 

0.12 day−1 and 0.06 day−1 for the drug sensitive and resistant cell populations, respectively.

Pharmacokinetic model

We then generated the erlotinib plasma drug concentration vs time profiles using the model. 

The corresponding parameters were obtained from a pharmacokinetic analysis of data from 

1,047 patients with solid tumors (46) instead of using simpler equations for the PK obtained 

from scarce data points from the literature as in (20). Simulations represented in Fig. 5B 

were performed considering the administration of a 1600 mg dose of erlotinib once a week 

over one month of treatment. The simulations demonstrated differences in drug exposure 

obtained with each model, which had a large impact on the risk of developing resistance 

(Fig. 5C); depending on the drug clearance, drug concentrations drop faster and thereby 

cause cells to resume proliferation more quickly. This fact highlights the importance of 

properly characterizing the PK of drugs as they can have a large influence in selecting 

optimum dosing strategies. On the other hand, previous studies demonstrated that the 

concentration of erlotinib measured in the cerebrospinal fluid (CSF) during standard daily 

dosing of 150 mg is too low (5% of that in plasma according to (47)) to prevent EGFR-

mutant NSCLC cell proliferation. Thus we assumed a linear pharmacokinetic process with a 

partition coefficient of 0.05 to simulate erlotinib concentrations in the metastatic site.

Simulation of treatment effects

The current analysis explores whether a higher dose of erlotinib provides an increased 

concentration in CNS that may prove to be more efficient in metastatic disease while 

preventing the development of resistance at the primary site. Based on the above 

considerations, the standard oral daily dosing schedule of 150 mg was compared to a high-

dose pulse of 1600 mg once a week and four different combinations of low-dose continuous 

and high-dose pulsed strategies (Fig. 5D–F) assuming one month of treatment. Additional 

simulations increasing the daily dosing for erlotinib were not investigated, as daily doses 
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above 200 mg are associated with unacceptable toxicity (48). In contrast, weekly high-dose 

pulses up to 2000 mg have been tolerated by NSCLC patients despite persistent nausea 

reported in patients receiving higher doses than 1200 mg (49).

Simulations were performed for cases of (i) an absence of pre-existing tumor cells at the 

metastatic site at the time of tumor diagnosis, and (ii) established CNS metastases at the 

time of the primary tumor diagnosis, assuming no pre-existing resistance in both cases. We 

used a mutation probability of 10−8 per erlotinib-sensitive cell division and a dissemination 

probability to CSF of 10−9.

The resulting numbers of the different cancer cell populations are shown in Fig. 5D–E. 

Variation in the number of sensitive cells in the primary tumor site from one schedule to the 

next was minimal. However, for erlotinib-resistant cells and especially for metastasized 

erlotinib-sensitive cells, using high-dose pulses considerably improved the results. We 

conclude that a combined low-dose continuous and high-dose pulsed erlotinib schedule was 

the most successful dosing strategy at preventing progression in patients with CNS 

metastases but did not show significantly delayed emergence of resistance due to the T790M 

EGFR mutation; however, once resistant cells arise, these schedules were also demonstrated 

to be more effective at killing the resistant cell population.

Discussion

In this work, we have built a multi-scale computational framework in R, called ACESO, 

which incorporates a continuous time multi-type branching process model to investigate the 

evolution of resistant clones. This model incorporates concentration-dependent birth and 

death rates as well as the probability per cell division that a resistance mechanism arises due 

to an (epi)genetic alteration. The use of mathematical models to search for optimized 

treatment schedules that delay the appearance of resistance in cancer cells is part of a 

growing effort to improve clinical trial design for cancer patients. Here we provide an open-

source tool to contribute to this research by exploring the evolution of heterogeneous tumor 

cell populations while taking pharmacokinetic and drug interaction effects into account.

There are several examples in the literature introducing different models to describe drug 

pharmacokinetics (Supplementary Fig. S6), tumor progression and drug effects 

(38,40,42,46). However, the implementation of our present goal previously required the use 

of different platforms for parameter estimation, model simulation or numerical/graphical 

diagnostics or programming skills, delaying the application of integrative quantitative 

analysis of cancer data. The objective of the current work was to integrate the tools required 

to characterize all necessary processes into a single computational framework. The 

application of our method to individual cancer types requires the availability of data on cell 

growth and death during different clinically tolerated concentrations of the drugs in order to 

parameterize the behavior of sensitive and resistant cancer cell populations. ACESO uses in 
vitro data because of the difficulty of obtaining such concentration-response curves from in 
vivo settings. This fact complicates the predictions of clinically relevant time scales for the 

emergence of resistance because growth kinetics in vitro occur on a time scale orders of 

magnitude faster than in vivo; however, as long as the relative differences in growth rates are 
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constant between in vivo and in vitro situations or an in vitro-in vivo correlation model is 

included in the framework, the ranking of schedules based on in vitro rates is applicable to 

in vivo situations.

In this work we first applied ACESO to data from the HMS LINCS database. Due to the 

lack of data regarding apoptosis assays and drug resistant cell lines, our results serve as an 

example needing validation before clinical implementation. We also applied ACESO to an 

extension of a previously used model of EGFR-mutant cancer cells (20,40). The previous 

effort identified a low-dose/high-dose pulse erlotinib administration schedule as the 

predicted best intervention strategy for stage IV NSCLC, which was then tested in a 

prospective clinical trial (21) at the Memorial Sloan-Kettering Cancer Center (http://

clinicaltrials.gov/show/NCT01967095). This trial established the maximally tolerated dose 

as 1200 mg for two days a week and 50 mg for the remainder of the week. Although the 

study was not powered to demonstrate a significant delay of the emergence of T790M-driven 

resistance due to larger than expected variability in patient PK, a significant reduction in the 

rate of progression due to CNS disease was observed (0% versus up to 33% given historical 

control). Using ACESO, we now expanded the original model (20) to include a population 

of drug-sensitive metastasized cells that are able to migrate to the CNS; we also used a 

population PK model (46). ACESO again predicted pulse dosing to be optimal since this 

strategy allows for increased drug concentrations in the CNS while the continued daily 

dosing controlled the progression of disease. This regimen is now being studied in a cohort 

of EGFR-mutant lung cancer patients with untreated CNS metastases.

The models represented in the current version of ACESO assume exponential cell growth, 

no spatial effects, and no competing interactions between cells. Therefore, 

microenvironmental phenomena such as tumor-immune cell interactions or a changing 

architecture of blood vessels are currently not considered but could, in the future, be 

incorporated by extending the methodology to more complex models. The model is able to 

describe any resistance mechanism that arises at a certain rate per cell division; such changes 

can include (epi)genetic alterations such as point mutations, amplifications, deletions, 

inversions, methylation of histone modification changes, or any other alterations. In order to 

parameterize such models, the kinetics of different cell types and interaction kinetics among 

them need to be measured in appropriate model systems. Apart from describing a growing 

population of tumor cells, our approach can describe any kind of cell population or bacterial 

infection where (epi)genetic changes cause drug resistance. Using ACESO, different 

strategies can also be tested for robustness due to variability in pharmacokinetic parameters 

among patients, variable growth and death rates of sensitive and resistant cells as well as 

different compositions of the tumor at the start of therapy. We propose use of our 

methodology for other cancer types and for therapeutic agents at the forefront of clinical 

development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance: Findings introduce a computational modeling platform and software 

package for combination treatment strategies with flexible pharmacokinetic profiles and 

multidrug interaction curves that are estimated from data.
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Figure 1. 
Schematic representation of: A) a four-type branching process with cross-resistance. The 

type-0 cell (blue), which is sensitive to both drugs A and B, proliferates at rate b0(t), dies at 

rate d0(t) and can accumulate mutations at probability ui per cell division to give two 

different cell types, type-1 (green) and 2 (orange), which are sensitive to either drug A or 

drug B. Type-1 and 2 cells can mutate again and become resistant to both drug A and B 

(type 3 cells, magenta). Each resistant cell type has its own proliferation and death rates, 

bi(t) and di(t), with i = 1,2... B) Drug concentration-time profile governed by the 
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pharmacokinetic parameters of drug A and B after a single-dose administration. C) 
Graphical evaluation of how the net growth rate of type-0 cells changes under the effects of 

different drug concentrations with a contour plot and isoboles (i.e. contour lines of equal 

drug effect). This representative example is based on the additive effect of the drugs in panel 

B with additional synergistic/antagonistic effects. D) Main functionalities of ACESO. PK 

refers to pharmacokinetics, GAM to Generalized Additive Models and loess to locally 

weighted scatterplot smoothing.
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Figure 2. 
A) Estimation of the net growth rate of sensitive cells using drug combination data. 1) 

Viable cell counts under different drug concentrations of alpelisib and neratinib. 2) Net 

growth rate of sensitive cells as a function of the different drug concentrations. 3) Heatmap 

of type-0 birth rate parameters under different drug concentrations. B) Model fitting results 

for neratinib and alpelisib drug combination study, where the surface from type-0 (sensitive 

to both drugs) cell birth rates is characterized with a Generalized Additive Model (GAM) 

and the birth rates from resistant cell types (type-1 is neratinib-resistant and type-2 is 

alpelisib-resistant) are described with different non-linear models included in ACESO 

(exponential, Weibull, log-logistic…). The specific equation and parameter values for each 

curve are summarized in Table 1.
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Figure 3. 
A-B) Concentration combination matrices that represent the difference between the 

measured effect on the birth rates of sensitive cells and the effect obtained under the Loewe 

additivity model (A) or Highest Single Agent model (B) for alpelisib and neratinib 

treatment. Yellow indicates synergy, green indicates antagonism and grey means no 

interaction. C) Pharmacokinetic model for alpelisib obtained from literature (see 

Supplementary Table S1) which consist on a one compartment model with first-order 

absorption and elimination (CL indicates total drug clearance, V is the apparent volume of 

distribution from the central compartment (Ac), Ka is the first-order absorption rate constant 

which drives the amount of drug from the depot compartment (Ad) to Ac and F is the 

bioavailability). D) Pharmacokinetic model for neratinib estimated using data from 

literature. Concentration data was best described with a one compartment model with first-

order absorption and elimination. The solid line represents the prediction of the model and 

the solid points represent the observations. To see the parameter values go to Supplementary 

Table S1.
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Figure 4. 
Effects of the treatment on the total number of the different cancer cell types (type-0: 

sensitive to both drugs, type-1: alpelisib-sensitive cells, type-2: neratinib-sensitive cells, 

total: the sum of type-0, type-1 and type-2 cells). The different dosing schedules explored 

are summarized in Table 2. A) Effect of four simulated dosing schedules on the number of 

resistant cells over time. B-E) Comparison of the different dosing schedules on the 

remaining fraction of cells after the treatment period (i.e. expected number of cancer cells 

after 30-day treatment divided by the initial number of cells before treatment 

administration): total number of cells (B), number of type-0 cells (C), number of type-1 cells 

(D) and number of type-2 cells (E). The bars represent the fraction of remaining cells 

whereas the numbers on top of the bars indicate the percent difference from the worst 

schedule; i.e. the highest bar represents the worst schedule while the shortest bar represents 

the best.
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Figure 5. 
A) Schematic representation of the stochastic model proposed for NSCLC case study, where 

erlotinib-sensitive cell (green), proliferates at rate b0(t), dies at rate d0(t) and can accumulate 

mutations at rate u per cell division to give birth to the erlotinib-resistant cell type (yellow), 

which proliferates at rate b1(t) and dies at rate d1(t). Erlotinib-sensitive cell is also able to 

migrate to other sites (to CNS in this example) and continue growing at the same rates as the 

original cell type. B-C) Effect of two different pharmacokinetic models for erlotinib on the 

probability of developing resistance. The pharmacokinetic models described in 1) Lu et al. 

2006 and 2) Foo et al. 2012 were coded in ACESO and a dosing schedule of 1600 mg once a 

week was simulated to explore the effects of the resulting erlotinib concentrations (B) on the 
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risk of developing resistance for a period of 20 days (C). D-F) Effect of different dosing 

regimens in the number of cancer cells at 30 days. Erlotinib dosing schedules used in the 

simulations: 1) standard daily dosing of 150mg, 2) high-dose pulse of 1600mg once a week, 

3) high-dose pulse of weekly 1600mg plus 50mg/day the rest of the week, 4) high-dose 

pulse of weekly 1800mg plus 50mg/day the rest of the week, 5) high-dose pulse of 1000mg 

day 1 and 2 followed by 100mg/day the rest of the week and 6) high-dose pulse of 1200mg 

day 1 and 2 followed by 50mg/day the rest of the week. Type-0 cells refer to primary tumor 

drug sensitive cells and type-1 cells to primary tumor drug resistant cells. For the case of 

pre-existing resistance, an initial number of 50 cells were assumed. The initial number of 

type-0 cells was set to 106 and we defined an erlotinib penetration to CNS of 5%.
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Table 1.

Different nonlinear model and parameter estimates that best describe the data corresponding to only one drug 

sensitive cell types based on the data obtained from LINCS.

Cells Model Parameters (Std. error*) Death 
rate

Alpelisib-
sensitive cells

Exponential decay model: E(C) = l + (u − l) · e−C/e l=0.0126 h−1 (5 · 10−4)
u=0.023 h−1 (2 · 10−4)
e=3.047 μM (0.414)

0.0146 h−1

Neratinib-
sensitive cells

5-parameter log-logistic function: E C = Emax +
E0 − Emax

1 + C
EC50

ℎ f

Emax = −0.02 h−1 (0.055)
E0 = 0.0148 h−1 (1.3 · 10−4)
h = 0.3 (0.055)
EC50 = 0.63 μM (1.295)
f = 0.086 (0.147)

0.0093 h−1

Trametinib-
sensitive cells

4-parameter log-logistic function: E C = Emax +
E0 − Emax

1 + C
EC50

ℎ

Emax = 0.0098 h−1(0.001)
E0 = 0.0122 h−1 (2.5· 10−4)
h = 0.43 (0.284)
EC50 = 0.7 μM (1.56)

0.0096 h−1

Dactolisib-
sensitive cells

Exponential decay model: E(C) = l + (u − l) · e−C/k l = 0.00531 h−1 (4.8 · 10−4)
u=0.01480 h−1 (4.9 · 10−4)
k=0.03495 μM (0.007)

0.0105 h−1

Lapatinib-
sensitive cells

3-parameter Weibull function: 

E C = E0 · e−eℎ loglog C − loglog b
E0 = 0.0136 h−1 (4.2· 10−4)
h = 2.32 (0.785)
b= 30.38 μM (11.31)

0.008 h−1

Selumetinib-
sensitive cells

4-parameter log-logistic function: E C = Emax +
E0 − Emax

1 + C
EC50

ℎ

Emax = 0.0142 h−1 (4.6· 10−5)
E0 = 0.01432 h−1 (2.6· 10−5)
h = 4.4 (5.6)
EC50 = 2.13 μM (1.45)

0.0089 h−1

Sacaratinib-
sensitive cells

4-parameter Weibull function: 

E C = l + u − l · 1 − e−eℎ loglog C − loglog b
u = 0.0118 h−1 (1.1· 10−4)
l = 0.011 h−1 (1.9· 10−4)
h = −3.37 (2.91)
b= 0.91 μM (0.196)

0.009 h−1

NVP-TAE684-
sensitive cells

3-parameter log-normal model: E(C) = E0 · ϕ(h(log log C − log log b))
ϕ: cumulative distribution function of the standard normal distribution

E0 = 0.0127 h−1 (6.7· 10−4)
h = −2.09 (2.37)
b= 3.94 μM (0.906)

0.0092 h−1

*
Std. Error: Standard error
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Table 2.

Different dosing schedules explored in the combination of alpelisib and neratinib to treat triple-negative breast 

cancer (TNBC) cell lines.

Dosing regimen Alpelisib Neratinib

1 300 mg QD 240 mg QD

2 300 mg QD 120 mg QD

3 300 mg QD 360 mg QOD

4 300 mg QD 1200 mg QW

5 300 mg QD 720 mg QW + 40 mg QD r.m.

6 300 mg QD 720 mg QW + 80 mg QD r.m.

7 300 mg QD 720 mg QW + 160 mg QD r.m.

8 525 mg QOD 240 mg QD

9 900 mg QW + 200 mg QD r.m. 240 mg QD

10 900 mg QW + 200 mg QD r.m. 720 mg QW + 160 mg QD r.m.

*
QD: once a day, QW: once a week, QOD: every other day, r.m.: remaining of the week.
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