Skip to main content
. Author manuscript; available in PMC: 2021 Feb 15.
Published in final edited form as: Cancer Res. 2020 Jun 19;80(16):3372–3382. doi: 10.1158/0008-5472.CAN-20-0056

Table 1.

Different nonlinear model and parameter estimates that best describe the data corresponding to only one drug sensitive cell types based on the data obtained from LINCS.

Cells Model Parameters (Std. error*) Death rate
Alpelisib-sensitive cells Exponential decay model: E(C) = l + (ul) · e−C/e l=0.0126 h−1 (5 · 10−4)
u=0.023 h−1 (2 · 10−4)
e=3.047 μM (0.414)
0.0146 h−1
Neratinib-sensitive cells 5-parameter log-logistic function: E(C)=Emax+E0Emax[1+CEC50hf Emax = −0.02 h−1 (0.055)
E0 = 0.0148 h−1 (1.3 · 10−4)
h = 0.3 (0.055)
EC50 = 0.63 μM (1.295)
f = 0.086 (0.147)
0.0093 h−1
Trametinib-sensitive cells 4-parameter log-logistic function: E(C)=Emax+E0Emax1+CEC50h Emax = 0.0098 h−1(0.001)
E0 = 0.0122 h−1 (2.5· 10−4)
h = 0.43 (0.284)
EC50 = 0.7 μM (1.56)
0.0096 h−1
Dactolisib-sensitive cells Exponential decay model: E(C) = l + (ul) · e−C/k l = 0.00531 h−1 (4.8 · 10−4)
u=0.01480 h−1 (4.9 · 10−4)
k=0.03495 μM (0.007)
0.0105 h−1
Lapatinib-sensitive cells 3-parameter Weibull function: E(C)=E0·eeh(loglogCloglogb) E0 = 0.0136 h−1 (4.2· 10−4)
h = 2.32 (0.785)
b= 30.38 μM (11.31)
0.008 h−1
Selumetinib-sensitive cells 4-parameter log-logistic function: E(C)=Emax+E0Emax1+CEC50h Emax = 0.0142 h−1 (4.6· 10−5)
E0 = 0.01432 h−1 (2.6· 10−5)
h = 4.4 (5.6)
EC50 = 2.13 μM (1.45)
0.0089 h−1
Sacaratinib-sensitive cells 4-parameter Weibull function: E(C)=l+ul·(1eeh(loglogCloglogb) u = 0.0118 h−1 (1.1· 10−4)
l = 0.011 h−1 (1.9· 10−4)
h = −3.37 (2.91)
b= 0.91 μM (0.196)
0.009 h−1
NVP-TAE684-sensitive cells 3-parameter log-normal model: E(C) = E0 · ϕ(h(log log Clog log b))
ϕ: cumulative distribution function of the standard normal distribution
E0 = 0.0127 h−1 (6.7· 10−4)
h = −2.09 (2.37)
b= 3.94 μM (0.906)
0.0092 h−1
*

Std. Error: Standard error