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Abstract

There has been widespread adoption of genome wide summary scores (polygenic scores) as tools 

for studying the importance of genetics and associated lifecourse mechanisms across a range of 

demographic and socioeconomic outcomes. However, an often unacknowledged issue with these 

studies is that parental genetics impact both child environments and child genetics, leaving the 

effects of polygenic scores difficult to interpret. This paper uses multi-generational data containing 

polygenic scores for parents (n=7,193) and educational outcomes for adopted (n=855) and 

biological (n=20,939) children, many raised in the same families, which allows us to separate the 

influence of parental polygenic scores on children outcomes between environmental (adopted 

children) and environmental and genetic (biological children) effects. Our results complement 

recent work on “genetic nurture” by showing associations of parental polygenic scores with 

adopted children’s schooling, providing additional evidence that polygenic scores combine genetic 

and environmental influences and that research designs are needed to separate these estimated 

impacts.
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1. Introduction

This paper focuses on the issue of separating genetic and environmental influences in 

important adult socioeconomic outcomes. The rapid advancement in the collection, 

measurement, and understanding of genetic data has led to new genetic discoveries linking 

specific genetic variants with health outcomes as well as schooling outcomes (1–3). While, 

individually, these variants do not have large effects (4), the development of genome wide 

summary scores (polygenic scores, PGS) offers the possibility of a genetically-based 

analytic tool that is predictive (5) of important adult outcomes, including health (6) and 

disease outcomes (7) but also behavioral outcomes such as schooling (8).

Many studies have begun to examine the characteristics of a PGS constructed to predict 

years of schooling (i.e., educational attainment). Studies have examined associations 

between the educational attainment PGS and outcomes of interest at different stages of the 

lifecourse including childhood and adolescence (9–11), middle age (9,12,13), and later-life 

(14,15). Other studies have examined the impact of the educational attainment PGS on 

economic attainments such as earnings and wealth (16–18). Still others have used this PGS 

to examine geneenvironment interactions (19–22). While these studies have begun to offer 

novel insights into human behavior, they also raise questions about how to interpret 

associations between this polygenic score and the various outcomes in question.

The question of how to interpret polygenic score associations with phenotypes has been 

repeatedly raised, especially when it comes to educational attainment (23). PGS are created 

by summing up results of GWAS effect estimates across the genome. However, the 

acknowledgement that GWAS, as a research design, is not adequate to separate causal and 

non-causal genetic variants when estimating effects leads to the implication that PGS 

measures capture both causal and non-causal genetic effects on the phenotype.

As a first exploration of this issue, researchers have examined the associations between PGS 

and phenotype with a sibling design—leveraging differences in PGS between biological 

siblings as a means of separating causal and non-causal components of the PGS. 

Specifically, analysis of siblings is powerful as it minimizes the possibility for confounding 

due to factors that do not vary within-family. Early evidence (19,23,24) suggested that the 

PGS for educational attainment is indeed capturing a crucial signal of individual difference 

in the sense that the sibling with the higher PGS tended to also have more schooling. 

However, more recent work based on siblings suggests that associations between PGS and 

educational attainment are substantially smaller when drawn from family-based samples as 

compared to association estimates drawn from unrelated individuals (25). This suggests the 

possibility of bias—in particular, upwards bias in PGS association estimates—when non-

family samples are analyzed (26).

Relatedly, newer work has begun to produce evidence of “social genetic effects”, where the 

genetics of a focal individual’s social connections could play a role in the focal individual’s 

outcomes (27–29). Social genetic effects may, in many cases, be phenotypic effects in action

—they may be mediated by observable phenotypes of an individual’s social peers—but, to 

the extent that they exist, they may lead to conceptual and methodological difficulties by 
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adding a new layer of confounding to the interpretation of PGS associations. The effects of 

polygenic scores would then need to be interpreted accordingly (e.g., they capture processes 

that are not within-person) and even sibling difference models may suffer from stable unit 

treatment value assumption (SUTVA) violations that can produce results that are biased in 

either direction (30).

A particularly important potential source of confounding with respect to the educational 

attainment polygenic score is that variation in the parental genotype associated with 

educational attainment may also be associated with differences in the environments that 

parents create for their children. Were this hypothesis true, parental genetics would have 

implications for both child environments and child genetics, offering an additional reason 

that the estimated effects of polygenic scores would be difficult to interpret as purely within-

person genetic effects. Indeed, emerging work is beginning to examine the impacts of 

parental genotype (either net of child genotype or focusing on the non-transmitted portion) 

on children’s outcomes, termed “genetic nurture” (31–35). Note that while our focus on 

educational attainment is motivated primarily by its centrality to many social science 

questions, the findings of Kong et al. (31) suggest that educational attainment may be a 

phenotype that is especially impacted by genetic nurture.

Existing estimates of genetic nurture may understate the total contribution of family 

background to a child’s phenotype. Kong et al. (31) utilized a design that allowed for 

partitioning a parental PGS into two components: a PGS based on transmitted alleles and a 

PGS based on non-transmitted alleles. Associations between the PGS for the non-

transmitted alleles and offspring were interpreted as genetic nurture. These associations 

cannot be due to a chain starting with parent genotype, running through child genotype, and 

finally manifesting as child outcome given that the genetic material in question was not 

inherited by the child. Rather, they were interpreted as being potentially mediated by rearing 

environments that were associated with parental genotype, hence the term genetic nurture. 

However, it is also possible that the transmitted allele PGS captures a mixture of genetic 

nurture effects and direct effects on children’s outcomes because these are the shared alleles 

between parents and child. Thus, the Kong et al. estimate, that the genetic nurture effect is 

roughly 30% of the direct effect, is a lower bound. In this paper, we introduce an alternative 

assessment that does not partition between transmitted and non-transmitted allele and 

instead estimates the genetic nurture effect via a different design.

This paper offers novel evidence on the magnitude of genetic nurture effects by using multi-

generational data that collected polygenic scores from 7,200 parents and outcomes for 

22,000 of their adopted and biological children, which allows us to separate the influence of 

parental polygenic scores on children outcomes between environmental (i.e. genetic nurture) 

(adopted children) and environmental and genetic (biological children) effects. We do this 

by focusing on a test of whether the polygenic score of a parent predicts the educational 

attainment of adopted offspring (to whom they have not transmitted their genes). Our 

estimates suggest a lower bound of ~50% for the genetic nurture effect.
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2. Methods

2A. Data

The Wisconsin Longitudinal Study (WLS) is a long-term study of over 10,000 men and 

women based on a random 1/3 sample of the graduating high school class of 1957 in 

Wisconsin (36). These individuals continue to be followed through the present. Alongside 

the respondent who graduated in 1957, siblings were also impaneled (we refer to “graduate” 

and “sibling” respondents throughout to distinguish between the two types). The WLS 

provides an opportunity to study the life course, relationships, family functioning, physical 

and mental health and wellbeing, and morbidity and mortality from late adolescence through 

2008. WLS data also cover social background, youthful aspirations, schooling, military 

service, labor market experiences, family characteristics and events, social participation, 

psychological characteristics, and retirement. Further, in the latest complete round of survey 

collection, the respondents have provided biological specimens for DNA analysis. The WLS 

now contains genome-wide DNA information for many of their respondents.

The WLS also asks respondents about their offspring. In addition to the graduate and sibling 

respondents reporting information on their own lives, they also report information on all 

their surviving children, including both the relationships with each child and information 

about that child’s education. For each child, the respondent was asked their relationship with 

that child (possible choices: biological, adopted, step, foster, legal ward, niece/nephew, other 

non-relative, child of lover/partner). Given complexities associated with these different 

relationships (e.g., assortative mating may induce correlations between polygenic scores of 

parents and children of their partners, environments may vary across these different familial 

relationships), we focus on adopted (n=855) and biological children (n=20,939) in 

remaining analyses.

In total, we observe 21,794 parent/child pairs for 7,193 WLS parents who have been 

genotyped. We note two salient facts about this sample. First, the WLS parents are clustered 

into 5,695 families (1493 families have two WLS parents and two families contain three and 

four WLS parents respectively). This clustering has implications for statistical inference as 

parents within the same family are not independent (e.g., they grew up in a similar 

environment); we cluster standard errors accordingly as discussed below. Second, our 

analytic sample (N=7,193 WLS parents) shows small differences on key demographics from 

the full WLS sample (N=19,046). Focusing on the graduate respondents in each sample, 

graduates in the analytic sample were slightly younger (they were born about a week later; 

the difference was significant, p=0.009) and slightly less likely to be male (47% of our 

graduates were male as compared to 48% in the full sample; the difference was not 

significant). However, our analytic sample had a higher concentration of graduates; in the 

full WLS sample, 54% of the respondents are graduates while in our analytic sample 65% of 

the respondents are graduates.

2B. Measures

Parent Polygenic Score—We use the educational attainment polygenic score 

constructed by WLS and the SSGAC following the completion of the third generation 
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educational attainment GWAS (8). Complete details regarding score construction are 

available elsewhere (37); we offer a summary of key points here. As WLS respondents were 

used in the main educational attainment GWAS, GWAS estimates were re-computed without 

the WLS respondents. These estimates were then used in combination with LDpred (38) to 

create a polygenic score. Given issues associated with polygenic prediction in diverse 

samples (39,40), scores were constructed only for respondents of European ancestry. We 

residualize the score based on the first ten principal components and then standardized to 

have mean=0 and SD=1 in this ancestrally homogeneous subsample (N=8,509).

Parent Education—Parental education is compiled via the collection of responses given 

by WLS respondents to education-related questions in the various waves of WLS. In 

particular, as in both the original GWAS (8) and in other work with this data (18,20), we use 

the maximum number of years of education reported by a WLS respondent over the different 

waves of data collection.

Child education—Offspring educational attainment was collected in 2004 when WLS 

respondents were asked versions of the question “What is the highest grade of regular school 

your child ever attended?” for all of their children. We used the coding of the WLS variable 

(e.g., https://www.ssc.wisc.edu/wlsresearch/documentation/waves/?

wave=grad2k&module=gkid) which was meant to capture the years of schooling (e.g., a 

high school graduate is coded as having 12 years of education; note that we coded those with 

GEDs as having 11 years of education).

Table 1 presents descriptive statistics for the analytic sample and stratifies these descriptive 

statistics by child status (biological or adopted). Nearly two thirds of the children have 

parents who are graduate respondents (as opposed to siblings of WLS graduates). The 

graduate respondents were born in a narrow window around 1939 (recall that they are the 

graduating class of 1957); there is substantially more variation in the birthyears of the 

sibling respondents (SD for graduates=0.52, SD for siblings=6.8). By construction, the 

education polygenic score of parents is centered at 0; however, note that the polygenic scores 

of parents who have adopted children are higher than those who have biological children. 

Parents of adopted children also have higher educational attainments. The birth years of the 

children are centered in the mid-1960s although, as expected, the birth years of adopted 

children are later. Children’s educational attainment is over 14 years on average, although 

this figure is lower for adopted children.

2C. Analysis

So as to evaluate differential prediction of the PGS between biological and adopted children, 

we focus on linear models that contain interactions between the parental PGS and the child 

status (biological or adopted). For child j of parent i, we focus on linear models of the form

Child Educationij=b0 + b1PGSi + b2Biologicalij + b3BiologicalijPGSi + BXij + eij .

Our focal coefficient is b1 which captures the association of parent PGS with adopted 

offspring educational attainment. Our key hypothesis is that b1>0, indicating that the 
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parental PGS predicts the educational attainment of their adopted children. Coefficients b2 

and b3 describe differences between biological and adopted children. The b2 coefficient 

describes differences in schooling between biological and adopted children that may occur if 

there are systematic differences in environments associated with adoption status (e.g., 

parents construct different rearing environments for biological versus adopted children, the 

challenges faced by adoptees predating placement for adoption may have effects on their 

later attainments, etc.). Given the fact that biological children tend to have more years of 

education than adopted children, we anticipate b2>0. The b3 coefficient, which we expect to 

be positive given that it will also capture part of the effect of the genetics of biological 

children directly on their phenotype, will inform us about differences in the association 

between parental PGS and offspring educational attainment for biological versus adopted 

siblings. X is a matrix of controls including child sex and age (birth year); previous work 

(41) has shown the need for interactions in such models and we include those terms as 

needed. Standard errors are clustered—in particular, we use sandwich techniques (42) to 

obtain cluster-robust standard errors (43)—based on the family structuring of WLS 

participants (graduates plus siblings). In such scenarios with nested clusters, clustering at the 

highest level of aggregation is sufficient (44).

3. Results

Amongst biological children, the parental PGS is a robust predictor of child attainment. A 

one SD increase in the parental PGS predicts nearly an extra half year of schooling for a 

biological child (Table 2; M3). We next considered a test of the basic question: does the 

parental PGS predict educational attainment for non-biological offspring in the form of 

adopted children? In a baseline analysis, we considered a model (M0) containing main 

effects and interactions between parent PGS and child status. While the parental PGS is 

more predictive of the educational attainment of biological offspring, it also predicts 

variation in the variation of educational attainment in adopted children. A one standard 

deviation increase in PGS is associated with roughly an extra quarter year of schooling in 

adopted children (b=0.253, p=0.025). Results are summarized in Figure 1; the fact that the 

parent PGS is more predictive of educational attainments for biological children (i.e., b3>0) 

but that it also predicts variation in outcomes for adopted children (i.e., b1>0) is apparent. 

Results were similar when we added controls for birthyear. We obtained a slightly attenuated 

result when we consider a model saturated with main effects and interactions of child gender 

(M2). We also obtained comparable results when we focus on models stratified by child 

status (M3 & M4).

One issue with these comparisons between families who adopt and those who do not is our 

finding that parental PGS is higher among adoptive parents (Table 1), which suggests the 

possibility of other family-level differences between families with adopted versus biological 

children. As a sensitivity test, we also conducted analysis using only those families who 

have both adopted and biological children (45). Table 3 reports results for families with both 

adoptive and biological children. Our baseline results continue to support the idea that 

parental PGS predicts adoptee educational attainment (although, we note the result becomes 

insignificant in the saturated model). Note that even in these families with both biological 
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and adopted children, we also find that biological children complete nearly three quarters of 

a year of schooling more on average compared with adopted children.

4. Discussion

A large and growing literature leverages the rapid and important advances in genotyping and 

prediction using genetics and the associated creation of polygenic scores to test novel 

hypotheses about the links between genetics and phenotypes of interest. A key component of 

this literature focuses on estimating statistical associations between individual genotype and 

phenotype with a parsimonious set of controls based on the reasoning that genetic variation 

precedes all developmental processes and is thus independent of environmental feedback.

A limitation of this approach is that, due to the nature of meiosis, a child’s genotype is 

highly correlated with the genotype of their biological parent. By extension, the child’s 

genotype may also be correlated with environmental inputs during childhood (to the extent 

that the parental genotype is correlated with such inputs). Children with a high PGS for 

education are likely to have grown up in households with highly educated parents and both 

influences—that of the child’s genetics and that of their environments—likely contribute to 

the children’s educational attainments. On average, a child with a high PGS for education 

will experience differences in their surrounding environments—neighborhoods (23,46), for 

example—compared to children with a lower PGS.

In an attempt to separate children’s genetic effects from parental effects, earlier studies 

(31,32) used the fact that half of each parent’s alleles are not transmitted to children. If 

GWAS findings related to educational attainment were due to entirely direct (i.e., within-

person) genetic effects, then the non-transmitted alleles should contain no predictive 

information about the biological offspring’s educational attainment, net of the directly 

transmitted alleles. Yet this was not the case; a sizeable portion of the “genetic effect” on 

children’s schooling was estimated to be due to indirect genetic effects. In contrast, parallel 

findings for other phenotypes suggested a much smaller role for indirect genetic effects (31).

Our work is motivated by a different study design meant to capture a different measure of 

parental effects. Building on a tradition of earlier work in both behavior genetics (47) and 

economics (48–50) that used adopted children to separate child genotype and parental 

genotype/environment, we test whether the polygenic score of parents predicts the 

educational attainment of their adopted offspring. We utilize the fact that, given the absence 

of direct genetic inheritance, there is no mechanical (i.e. transmitted) correlation between the 

polygenic score of a parent and adopted child. We find that a one-SD increase in the PGS of 

a parent predicts roughly 0.25 years of schooling for an adopted offspring as compared to 

roughly 0.5 years of schooling for a biological offspring. This ratio—50% of the association 

between parental PGS and offspring attainment may be due to genetic nurture—can be 

compared to findings from studies that utilized the design based on non-transmitted alleles 

(31) which suggested that the association between PGS based on non-transmitted alleles and 

offspring attainment was 30% of the association based on a PGS using transmitted alleles. 

Cumulatively, these results provide further evidence that the educational attainment 

polygenic score is capturing both direct and indirect genetic (i.e. parental) effects. We 
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interpret our results as suggesting the proportion of genetic nurture effect is potentially 

higher than suggested by Kong et al.; however, it is possible that this difference is due to 

other differences (in sample, study design, or context).

While our results are the first to use our proposed research design, we acknowledge several 

limitations. The WLS is representative of the high school graduating class of 1957 in 

Wisconsin and a selected sibling. While Wisconsin was broadly representative of the US 

during this period (36), we acknowledge that our results may not be generalizable to other 

populations or cohorts. This limitation would be larger to the extent that individuals in 

Wisconsin during this period had different adoption patterns than individuals not represented 

in this sample. This limitation is countered by the recognition that very few datasets contain 

the information we require for our analysis, including two generations of family members, 

information on adoptive status and completed schooling in the children’s generation, and 

genetic information. A second limitation is that we have incomplete information about the 

adoption process for the families in our data, including a lack of information about 

selectivity in the adoption process and at what age the adoptee joined the adoptive family. 

Results from Table 3, wherein we focus only on families that choose to adopt, are meant to 

ensure that our results are not explained by selection along these lines. To the extent that 

adopted children begin living with their adoptive parents at later ages in our sample 

(compared with at birth), this would likely lead our estimates to be relatively conservative 

estimates of the association between parental PGS on the adopted children’s outcomes. 

Further, to the extent that adoption is within-family (i.e., adoption of first cousins), this 

would lead to correlations between adoptee and parent PGS and thus introduce a new source 

of bias. We rely on parental reports that the children we label as adopted are not biologically 

related to the parent but we are unable to verify this label directly with genetic data.

Our findings suggest the standard approach to linking genotype-phenotype using polygenic 

scores may inadvertently include the influence of both indirect and direct genetic effects. An 

implication of our results, that parental genotype is associated with adopted children’s 

phenotypes, is that estimates of the associations between own-genotype on own-phenotypes 

are not strictly capturing direct genetic effects but instead are confounded by family 

background. The magnitude of this confounding may well vary by phenotype. Educational 

attainment is a phenotype with a relatively large amount of confounding by genetic nurture 

(31).

While other studies have produced evidence of the existence of confounding of polygenic 

scores, the data requirements are restrictive. For example, Kong et al. (31) required trio data 

from families in the Icelandic population to generate evidence of genetic nurture. Our results 

add a new test of this confounding by making use of adoptive children and parental PGS 

data. While each approach has limitations, we think that the consistent findings from both 

approaches are instructive. Our results thus add to the accumulating evidence that PGS 

effects should be interpreted with caution and are not pure “genetic” effects for educational 

attainment and likely other phenotypes. This suggests that since polygenic scores, as 

currently constructed, combine genetic and environmental influences, new research designs

—perhaps including the use of within family studies at the GWAS stage (51) or attempts to 
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estimate structural parameters associated with genetic nurture (26)—will need to be used to 

separate these estimated impacts.
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Figure 1. 
A comparison of predicted educational attainment as a function of parental PGS and child 

status (biological or adopted).
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Table 1.

Summary Statistics: Wisconsin Longitudinal Study; Comparing Biological and Adopted Children

A. Child-Level Descnptives (Means and Standard Deviations, SD)

All Biological Adopted

% Graduates 0.66 0.66 0.67

SD 0.47 0.47 0.47

Parent Birthyear 1939.03 1939.01 1939.55

SD 3.94 3.95 3.59

Parent PGS −0.01 −0.01 0.13

SD 0.99 0.99 0.95

Parent Edu 13.61 13.57 14.39

SD 2.31 2.29 2.58

Child Birthyear 66.86 66.71 70.62

SD 6.46 6.40 6.87

Child Edu 14.40 14.43 13.74

SD 2.42 2.41 2.65

N 21794 20939 855

B. Parent-level Descriptives (Means and Standard Deviations, SD)

All No Adopted Adopted

% Graduates 0.65 0.65 0.67

SD 0.48 0.48 0.47

Parent Birthyear 1939.41 1939.4 1939.6

SD 4.11 4.14 3.71

Parent PGS 0 −0.01 0.11

SD 1 1 0.96

Parent Education 13.75 13.7 14.35

SD 2.36 2.33 2.59

N 7193 6648 545
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Table 2.

Associations between child educational attainment and parental polygenic score (PGS) for educational 

attainment.

M0 M1 M2 M3-bio only M4-adopted only

Intercept 13.708 14.097 14.147 14.407 14.140

 SE 0.105 0.110 0.154 0.032 0.154

 p-value <1E-5 <1E-5 <1E-5 <1E-5 <1E-5

PGS 0.253 0.263 0.227 0.479 0.273

 SE 0.113 0.106 0.109 0.022 0.108

 p-value 2.53E-02 1.36E-02 3.73E-02 <1E-5 1.16E-02

Bio Child 0.728 0.341 0.258

 SE 0.107 0.112 0.157

 p-value <1E-5 2.37E-03 9.94E-02

PGS:Bio Child 0.227 0.216 0.224

 SE 0.115 0.109 0.109

 p-value 4.72E-02 4.73E-02 4.00E-02

Child birthyear −0.098 −0.098 0.006 −0.097

 SE 0.023 0.023 0.005 0.023

 p-value 1.99E-05 2.64E-05 2.23E-01 3.35E-05

Bio Child:Child birthyear 0.105 0.104

 SE 0.023 0.024

 p-value <1E-5 1.23E-05

PGS:Child birthyear 0.003 0.002

 SE 0.004 0.004

 p-value 4.90E-01 6.18E-01

Male Child −0.086 0.070 −0.075

 SE 0.207 0.047 0.207

 p-value 6.76E-01 1.32E-01 7.15E-01

Bio Child:Male Child 0.157

 SE 0.210

 p-value 4.55E-01

PGS:Male Child 0.064

 SE 0.044

 p-value 1.45E-01

N 21021 21010 21010 20189 821
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Table 3.

Associations between child education and parental polygenic score in families with both adoptive and 

biological children.

Baseline Saturated

Intercept 13.708 14.140

 SE 0.105 0.156

 p-value <1E-5 <1E-5

PGS 0.253 0.229

 SE 0.113 0.134

 p-value 2.57E-02 8.90E-02

Bio Child 0.733 0.700

 SE 0.140 0.207

 p-value <1E-5 7.49E-04

PGS:Bio Child 0.296 0.292

 SE 0.154 0.151

 p-value 5.41E-02 5.39E-02

Male Child −0.085

 SE 0.209

 p-value 6.84E-01

Child Birthyear −0.097

 SE 0.023

 p-value 2.34E-05

Bio ChildMale Child −0.541

 SE 0.270

 p-value 4.50E-02

PGS Male Child −0.013

 SE 0.173

 p-value 9.42E-01

Bio Child:Child Birthyear 0.087

 SE 0.035

 p-value 1.36E-02

PGS:Child Birthyear 0.014

 SE 0.018

 p-value 4.27E-01

N 1491 1486
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