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Chemoproteomics is a key technology to characterize the mode of action of drugs, as it
directly identifies the protein targets of bioactive compounds and aids in the development of
optimized small-molecule compounds. Current approaches cannot identify the protein tar-
gets of a compound and also detect the interaction surfaces between ligands and protein
targets without prior labeling or modification. To address this limitation, we here develop LiP-
Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass
spectrometry that works across species, including in human cells. We use machine learning
to discern features indicative of drug binding and integrate them into a single score to identify
protein targets of small molecules and approximate their binding sites. We demonstrate drug
target identification across compound classes, including drugs targeting kinases, phospha-
tases and membrane proteins. LiP-Quant estimates the half maximal effective concentration
of compound binding sites in whole cell lysates, correctly discriminating drug binding to
homologous proteins and identifying the so far unknown targets of a fungicide research
compound.
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nraveling the mechanism of action and molecular target

of small molecules remains a major challenge in drug

development!. Knowledge of the direct target of a drug is
essential for devising strategies to modulate the compound’s
effects. Recently, new proteomics approaches have enabled the
investigation of protein-drug interactions in native environ-
ments>~%. One such strategy relies on the use of chemical probes,
which allow the enrichment and the identification of protein
targets and may include the interaction sites as well>. However,
these target capturing probes may perturb molecular interactions
and biological functions. Complementary strategies such as
thermal proteome profiling (TPP)®-8, stability of proteins from
rates of oxidation (SPROX)? and drug affinity responsive target
stability (DARTS)!9-12 map drug interactions by assessing var-
iations of thermal stability, susceptibility to oxidation or to pro-
teolytic degradation induced by ligand binding. These methods
bypass the need for drug or target modification that may create
artifacts but might not detect the most low-abundant protein
targets, due to the lack of an enrichment step. Thus, drug target
characterization remains a challenge. Especially lacking are
approaches that map interactions on a proteome-wide scale
without requiring drug labeling, and that identify the drug
binding site with peptide level resolution.

We recently used limited proteolysis (LiP) to map metabolite
binding proteins directly in whole cell lysates of microbial
organisms (LiP-SMap). This is achieved through the global
detection with liquid chromatography-coupled tandem mass
spectrometry (LC-MS) of differential proteolytic patterns pro-
duced upon ligand binding!3. However, this approach was only
used and validated for the study of microbial organisms with
proteomes of limited complexity.

Here we adapt this LiP-based approach to enable the sys-
tematic investigation of protein-small-molecule interactions in
complex eukaryotic proteomes (e.g. human). To do so, we employ
a machine learning-based framework (LiP-Quant) that makes use
of drug dose titrations, identifies small-molecule compound tar-
gets and can provide additional information including binding
site prediction and target affinity. To evaluate its performance, we
focus on the identification of drug targets, an application of
particular breadth and interest. We benchmark LiP-Quant by
investigating binding of compounds to known human protein
targets, addressing the possibility of detecting kinase or phos-
phatase inhibitors and membrane protein drugs. We also identify
an unknown target of a research fungicide currently under study.

Results

Identification of human drug targets by limited proteolysis.
First, we tested the applicability of the LiP workflow in native
human cellular environments with the drug rapamycin. Rapa-
mycin is a well-characterized drug known to interact with only
one protein, FKBP1A (FK506-binding protein 1, also known as
FKBP12)!415, Two approaches were taken to test target identi-
fication, treatment of HeLa cell lysates as well as direct treatment
of live HeLa cells prior to lysis, with 2 uM rapamycin or vehicle in
two independent experiments. Proteome extracts were then
subjected to limited proteolysis (LiP) under controlled condi-
tions!3 (Supplementary Fig. 1A). Differentially abundant pro-
teolytic peptide fragments between rapamycin and vehicle-treated
samples were identified on a proteome-wide scale using a label-
free Data Independent Acquisition Mass Spectrometry (DIA-MS)
approach!®. We quantified 5265 protein from HeLa cell lysates
and 6068 from HelLa cells. After applying filtration criteria based
upon relative peptide abundance changes and fixed statistical
significance thresholds, we identified 52 putative drug targets with
at least one differentially abundant peptide in lysates and 37

candidate proteins from the treatment of live cells, including the
known target FKBPIA in both cases (Fig. 1a) (Supplementary
Data 1, 2). Since rapamycin is known to interact with only one
protein, FKBP1A, but we identified targets in addition to
FKBP1A in both experiments, we realized that this workflow with
one drug dose may not discriminate unequivocally true protein
interactors and false positive identifications. This is likely due to
the high complexity of the human proteome and we therefore
sought an expanded approach that emphasizes target prioritiza-
tion amongst potential targets identified.

LiP-Quant identifies drug targets via machine learning. To
address this challenge, we devised the LiP-Quant workflow for the
deconvolution of direct drug targets in the human proteome, a
method that has been optimized to reduce the noise observed in
single drug dose LiP assays. In this pipeline, protein lysates are
exposed to a compound dosage dilution series followed by limited
protease cleavage with proteinase K. Upon compound binding
proteolytic patterns of drug targets should be altered, with true
target peptides showing a change in abundance proportional to
drug concentration (Fig. 1b). In establishing LiP-Quant we
focused on drug-treated HeLa cell lysates, since direct physical
interactions between a target protein and a ligand are more
effectively found in cell extracts rather than living cells®717-19,
We reasoned that the knowledge of primary protein targets might
be more beneficial than elucidating downstream pathways
engaged by the drug (which could be found with assays in vivo) at
an early stage of the drug-discovery pipeline.

We used machine learning to derive peptide attributes that
prioritize true drug target identification and built a composite
score (LiP-Quant score) by which these peptides can be ranked.
Four features were identified that contribute to a target peptide’s
LiP-Quant score with the dominant component being correlation
(R?) to a sigmoidal trend of the drug dose-response profile (69%
of the LiP-Quant score weight, LiP-Quant score component I)
(Supplementary Fig. 1B). The frequency of a protein’s identifica-
tion in experiments where it is not a confirmed target (protein
frequency library, PFL) was also considered. Within the PFL
score, proteins received more weighting the less frequently they
were known to contaminate other experiments (LiP-Quant score
component II). In addition, multiple peptides with high
dose-response correlations from the same protein (LiP-Quant
score component IIT), and calculated significance (g-value) of
differential peptides between the vehicle and three concentrations
above the compound’s known EC50 (LiP-Quant score compo-
nent IV) were found to contribute to target peptide identification
at approximately 10% of the LiP-Quant score each (Supplemen-
tary Fig. 1B).

In total, six ground truth compounds, i.e. the drug target(s) is
known, were used to ascertain the properties of peptides from
true targets, including how much each attribute contributes to
correct target identification (Supplementary Figs. 1B, 2A). Each of
these four LiP-Quant score components contributes to the
predictive power of the approach, outperforming either experi-
ments with only one drug dose (LiP-SMap) or dose-response
correlation alone (LiP-Quant score component I) (Supplementary
Fig. 2B). We observed that LiP-Quant scores show a bimodal
distribution across the positive control datasets with target
protein peptide scores clearly enriched in the high-scoring peak
of the distribution. Therefore, we defined putative target peptides
as those with a LiP-Quant score above 1.5, which is the median
score of non-target peptides plus three standard deviations
(Fig. 1b, Supplementary Fig. 3, Methods section: guidelines for
interpreting LiP-Quant results). This threshold equates to an
average positive predictive value (PPV) of 30% across positive
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Fig. 1 LiP-Quant, a platform for drug target identification. a VVolcano plots of LiP samples from Hela lysates (left panel, n =4 of independent lysate
replicates) and live Hela cells (right panel, n =3 of biologically independent cells) treated with rapamycin. Peptide mixes produced in the presence or
absence of 2 uM rapamycin are compared. Fold changes (FC) in peptide abundance for treated and untreated samples are shown as a function of statistical
significance. Significance cutoffs were g-value = 0.0001 (t-test, one sample, two-tailed) and FC = 1.5. Each protein is represented with a single data point,
corresponding to the peptide with the lowest g-value. The known interactor of rapamycin (FKBP1A) is highlighted in red. Proteins passing both cutoffs are
in blue. b Principle and experimental design of LiP-Quant. Sample preparation for MS analysis follows a multiplexed workflow that is suitable for the
processing of drug libraries. ¢ Compiled LiP-Quant score distributions (Gaussian smoothed kernel density) for known target and non-target proteins from
all Hela experiments with the exception of the promiscuous binder staurosporine. d Dose-response curves showing relative intensities of LiP-Quant
peptides after partial proteolytic digestion of aliquots of Hela lysates over a rapamycin concentration range. Curves of the top 5 LiP-Quant peptides ranked
by LiP-Quant score, all of which are from the expected direct target FKBP1A, are shown. The numbers on top of the graph show the LiP-Quant score
position of the relative peptides. Source data are provided as a Source Data file.
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control experiments, although higher PPVs can be achieved by
applying more stringent thresholds (e.g. the top 10 peptides yields
an average PPV of 70%) (Supplementary Fig. 2C).

After validation, we tested the LiP-Quant pipeline with
rapamycin in Hela lysates using a project specific spectral library
of 8213 proteins. Of the 110,668 peptides mapping to 5295
proteins quantified by DIA-MS, multiple LiP-Quant peptides,
including the 5 top-scoring peptides, mapped to FKBP1A (Fig. 1d)
(Supplementary Data 3). This made FKBP1A the highest-ranking
candidate protein target and showed the ability of LiP-Quant to
identify correct drug targets. To further test the LiP-Quant
pipeline we selected a different compound, FK506, which is also
known to target FKBP1A. Here, we obtained very consistent
results to those of rapamycin as again the top 5 LiP-Quant
peptides mapped to FKBP1A (Supplementary Fig. 4A). Interest-
ingly, target peptide identification across the experiments was
very robust with 7 of the same LiP-Quant peptides identified in
both experiments (Supplementary Data 3). In each case the
peptide showed the same directionality of regulation (i.e. up or
down regulation upon compound binding) and had similar LiP-
Quant scores, demonstrating the consistency of the approach
(Supplementary Data 4).

From this, we concluded that the LiP-Quant approach is
suitable for drug-target deconvolution experiments in complex
human proteomes and that ranking peptides by LiP-Quant score
enables prioritization of genuine targets from random hits and
reduces false positive identifications.

Applicability of LiP-Quant to other eukaryotic species. Since
rapamycin’s target is conserved across species, we exploited this
to test LiP-Quant more generally in species other than H. sapiens.
In a rapamycin LiP-Quant experiment with S.cerevisiae lysates
the 5 top-scoring peptides (of a total of 30,209 peptides and
2553 protein groups identified), mapped to FRPI, the known
target in S.cerevisine (Supplementary Data 5) (Supplementary
Fig. 4B, C), showing the equivalence of the approach in yeast and
humans.

Beyond the known target of rapamycin (FRP1) in yeast, we
identified the previously uncharacterized potential targets, ARI1
and SYEC, with high LiP-Quant scores (>2.5) (Supplementary
Fig. 4D). These proteins could represent alternative binders (oft-
target effects) or undergo secondary structural effects upon TORI
pathway activation in cell lysate. To discriminate between these
two cases, the same LiP-Quant experiment was performed with
lysates where TOR signaling was impaired via a mutation in the
tor] gene and a deletion of the fprI gene (tor1-1 Afpr1)*. Thus, in
this system we should not detect structural changes downstream
of TOR activation. In the torl-1 Afprl proteome, only peptide
GDLVITEESWNK of ARI1 was detected as a hit. From this, we
conclude that ARII is likely a secondary target of rapamycin
(Supplementary Fig. 4E, F) (Supplementary Data 5) and that LiP-
Quant preferentially detects direct drug binding proteins.

Benchmarking LiP-Quant for target identification. To further
validate LiP-Quant we tested the method with staurosporine, a
universal kinase inhibitor (KI)2122, This compound has been
previously assayed with TPP® and bead-immobilized kinase
inhibitor (kinobeads) pulldowns?3, thus it enables comparative
analysis among these three chemoproteomic methods.

We ranked the protein candidate targets using LiP-Quant
scores and the corresponding scoring variables of TPP and
kinobeads (see Methods section) considering the 512 annotated
human protein kinases in KinHub (http://www.kinhub.org) as
true positives (Supplementary Data 6). LiP-Quant discriminates
true positive targets amongst the top-ranking candidate protein

targets of staurosporine (Fig. 2a). Overall, the number of true
positive targets found by the LiP-Quant and TPP methods are
comparable, although TPP is more sensitive than LiP-Quant as it
identifies more kinase targets in total (21 and 49 found kinase
targets respectively, Fig. 2b). Notably, the kinobeads method
captures significantly more kinases than TPP and LiP-Quant (190
kinases), being an enrichment-based method (Fig. 2b, see
Methods section). Only a limited number of kinases (6) were
detected by all three LiP-Quant, TPP and kinobeads approaches
(Fig. 2b) (Supplementary Data 7), showing that the approaches
are complementary. This limited overlap is likely due to probing
of rather distinct sub-populations of the kinome, as the three
methods assess drug binding measuring different protein
properties.

Within the LiP-Quant staurosporine dataset a higher median
protein sequence coverage was observed among successfully
detected kinase targets (Fig. 2c) when compared to the entire
proteome but in particular relative to undetected kinases. This
suggests that high sequence coverage is crucial for the identifica-
tion of drug targets by LiP-Quant. From this we hypothesized
that peptide under sampling (i.e. lower protein coverage) could
lead to reduced kinase target identification, and thus attempted to
increase proteome sequence coverage via longer LC-MS gradients
(Deep LiP-Quant) on the same samples. Here we found that the
performance of LiP-Quant for target identification improved, as
the Area Under the Curve (AUC) of receiver operating
characteristic curves increased from 0.76 to 0.81 (Fig. 2d),
identifying 42% more kinases than standard LiP-Quant with an
increase from 21 to 36 found kinase targets (Supplementary
Data 7 and 8). The sensitivity of TPP could also be improved at
the cost of increased MS instrument time by measuring variations
of thermal stability over a drug dose and temperature gradients?4.
As recently reported??, analyzing TPP data with a non-parametric
approach increases specificity and sensitivity of TPP assays. We
tested TPP in combination with non-parametric statistical
analysis and observed that this has the highest predictive power
for staurosporine targets (Fig. 2d). Overall, these results
demonstrate that LiP-Quant is a comparable and complementary
approach to TPP for the detection of drug binding proteins
without requiring prior modifications of the drug. While LiP-
Quant might be limited by protein sequence coverage, TPP is
instead insensitive to targets that do not change their melting
behavior upon drug binding.

LiP-Quant may be biased against membrane proteins, since
proteomes are extracted and the insoluble proteins removed by
centrifugation prior to LiP (Supplementary Fig. 1A) (see Methods
section). Despite this, approximately 200 of the quantified proteins
(typically 4% of the total) are annotated as cell surface proteins
that reside in the plasma membrane2°. When we applied LiP to
crude lysates without centrifugation, as used for the protocol in
drug-treated live cells (Supplementary Fig. 1A), membrane
associated protein identification increases to more than 300
proteins. Using a plasma membrane enrichment approach, we
were able to identify approximately 400 membrane associated
proteins, a 100% enrichment from standard LiP-Quant (Supple-
mentary Fig. 5A) (see Methods section). Using this plasma
membrane proteome extraction protocol, we successfully identi-
fied the alpha subunit of the sodium/potassium-transporting
plasma membrane pump (ATP1Al) as the known target of the
drug proscillaridin A (Supplementary Fig. 5B, C) (Supplementary
Data 9) by improving the coverage of membrane proteins. A single
concentration rapamycin control experiment confirmed that the
addition of mild detergent during cell lysis does not disturb
compound target binding (Supplementary Data 10).

These results suggest that the sensitivity and coverage of LiP-
Quant will improve by reducing proteome under sampling, which
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Fig. 2 Benchmarking the LiP-Quant approach. a True positive rate evaluation for selected assays (LiP-Quant, thermal proteome profiling (TPP) and

kinobeads) focused on kinase target identification for staurosporine®23, True positive hits in the top 50 candidates (see Methods section) are shown as a
function of the number of true and false positives in the candidate list for the respective assays. Since staurosporine is a promiscuous binder of protein
kinases, we considered the entire protein kinase space as the reference for true positive identifications. The gray line indicates a perfect candidate list

containing only true positives (slope =1). b Total number of kinase targets, as well as common kinase targets of staurosporine found in the LiP-Quant, TPP
and kinobeads experiments. ¢ Distribution of protein sequence coverage for kinases identified by LiP-Quant (pink, n = 21), all quantified protein kinases by
MS in Hela cells (green, n=179) and the entire measured proteome (blue, n =5388). In the box plots the central line defines the median, the bounds of
box the first and third quartile, the whiskers are the minimal and maximum values. d Receiver operating characteristic (ROC) curves of staurosporine

protein interactions measured by three different chemoproteomics methods. The ROC curve of LiP-Quant (red) is compared with that of two replicates of
TPP experiments based on melting point fittings (green and yellow), a non-parametric analysis of whole TPP dose-response curves (cyan) and LiP-Quant
with a LC-MS gradient of 4 h (Deep LiP-Quant). Bracketed numbers represent areas under the curves (AUC). The gray line represents a random classifier.

The ground truth is represented by the 512 protein kinases present in the human genome. Source data are provided as a Source Data file.

is typically achieved by deeper MS analyses or fractionation
techniques.

Quantitative parameters of kinase and phosphatase inhibitors.
Next, we focused on kinases and phosphatases as drug targets of
particular pharmacological interest, given their frequent dysre-
gulation in disease, particularly in cancer. One common issue
with these classes of targets is their variable selectivity, as some of
these drugs have more than one protein target in the cell, and
frequently bind them with different affinities?’, thus it is
important to characterize these subtle differences to determine
the specific modes of actions. We reasoned that in LiP-Quant
experiments we could determine drug binding affinity directly
from cell extracts by utilizing the concentration of drug at which
we observe a variation of 50% of the maximum LiP-Quant signal
(EC50).

First, we studied the kinase inhibitor selumetinib. We identified
6 peptides that map to MAPK2K1 and MAP2K2, the known

targets of the drug. We also identified NQO?2, a confirmed off-
target of other kinase inhibitors?1:?$2° (Supplementary Data 3),
as a potential target of selumetinib. This protein was also
identified as a candidate target protein for staurosporine, further
supporting its off-target binding ability with respect to kinase
inhibitors. Unlike staurosporine (Fig. 2), which LiP-Quant
characterizes as a broad kinase inhibitor, selumetinib was
correctly profiled as a specific MAPK inhibitor, indicating that
LiP-Quant can recapitulate differential selectivity profiles (Sup-
plementary Fig. 6A, B). We further investigated the ability of LiP-
Quant to parse binding events for highly homologous protein
targets by focusing on compounds that inhibit specific members
of the serine/threonine phosphatase (PP) family (Supplementary
Fig. 6C). As expected, LiP-Quant peptides for calyculin A all map
to either PP1 or PP2A/B, while the fostriecin assay only identified
peptides from PP2A/B, PP4 and PP6 as targets (Supplementary
Data 3, 11).

The EC50 values we extracted for selumetinib and MAPK2K1
vary between 48.5 and 101 nM, which are slightly above the EC50
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of 41 nM measured with alternative methods (Supplementary
Fig. 7A)3. Further, we identified 12 LiP-Quant peptides from
PP2A/B and 16 from PPI in the calyculin A experiment. Their
EC50s across peptides for a given target are largely comparable,
with median EC50 of 18 nM and 63 nM, respectively (Supple-
mentary Data 3). These values are approximately 10-fold higher
than those measured in vitro (Supplementary Fig. 7B)3l.
However, the ratio between the calyculin A EC50 inferred by
LiP-Quant for PP2A/B and PP1 closely reflects the previously
reported 3.5-fold EC50 ratio difference between PP2A and
PP130:32.33 This ability of LiP-Quant to approximate absolute
EC50 values and to effectively discriminate relative affinities
between drug targets should help determine preferential target
proteins of compounds (Methods section: Guidelines for inter-
preting LiP-Quant results). These experiments demonstrate that
LiP-Quant can be used to successfully discriminate the binding
promiscuity of compounds that target highly homologous
proteins, even when there are very subtle differences in protein
structure and compound specificity.

LiP-Quant peptides as proxy for drug binding site positions.
LiP-Quant uniquely identifies interactions at peptide level reso-
lution. As previously observed for metabolite binding!?, the
positions of LiP-Quant peptides are typically in very close
proximity to the known drug binding sites (Supplementary
Fig. 8A). For instance, calyculin A LiP-Quant peptides from
PP2A/B overlap with the conserved calyculin A binding cleft
(Supplementary Fig. 8B, C). Based on this observation we used
the peptide level information intrinsic to LiP-Quant to provide a
proxy for the position of drug binding sites. We considered the
three highest-scoring LiP-Quant peptides of known drug targets
measured with rapamycin, FK506, selumetinib, staurosporine,
fostriecin and calyculin A in HeLa proteome extracts (see
Methods section). We then compiled those protein-drug com-
plexes where a protein structure was available, which totaled
seven proteins from all experiments. For each we calculated the
center of mass of the atoms of these three LiP-Quant peptides to
use as a reference for the approximate position of compound
binding sites. The center of mass was represented as a point with
geometric coordinates in the protein structure of these
protein—-drug binary complexes (Fig. 3). Among all known cases
analyzed, with the exception of calyculin A and fostriecin, the
distance between the amino acids surrounding this reference
point and the drug ligand were within the Van der Waals distance
of 4 A (Fig. 3), unlike when three random peptides were sampled
(Supplementary Data 12). Based upon these observations we
concluded that we could use our center of mass triangulation
approach to estimate drug binding sites.

Characterization of a research fungicide using LiP-Quant.
Given its abilities to identify and characterize drug targets and
their binding sites, we applied LiP-Quant to a research fungicide
compound with an unknown target (BAYE-004, Fig. 4a). This
lead compound was previously found to inhibit cell growth of
Botrytis cinerea, a mold crop parasite (Fig. 4b). Using LiP-Quant,
we identified two kinases as potential targets of BAYE-004,
including Bcin06g02870 (Fig. 4c), predicted to be the B. cinerea
homolog of casein kinase I. Two LiP-Quant peptides from
Bcin06g02870 have a low nanomolar EC50 of 6 and 5nM (LiP-
Quant rank #6 and #7), approximately 1000-fold lower than the
EC50 of the rest of the LiP-Quant peptides above the 1.5
threshold (Supplementary Data 13). We therefore tested further
whether Bcin06g02870 was the primary direct target of the
compound, using a B. cinerea cell line expressing a His-tagged
version of Bcin06g02870. Cellular thermal shift assays (CETSA)3#

demonstrated that this protein is thermally stabilized in vivo
upon treatment with BAYE-004, confirming compound binding
to Bcin06g02870 (Fig. 4d).

We calculated the center of mass of the #6 and #7 ranking LiP-
Quant peptides to estimate the position of the BAYE-004 binding
site within Bcin06g02870. Here we considered two LiP-Quant
peptides for the center of mass calculation, as there were only two
high scoring LiP-Quant peptides that could be used. The putative
binding site of the drug maps in the ATP-binding site of
Bcin06g02870, which is also a common binding site for kinase
inhibitors (Fig. 4e, Supplementary Data 3). Finally, we performed
a LANCE Ultra kinase assay (Perkin Elmer) to measure the
phosphorylation activity on a peptide substrate of a purified MBP-
tagged version of Bcin06g02870. BAYE-004 was found to inhibit
Bcin06g02870 activity with a low nanomolar IC50 of 12.5nM,
confirming the relevance of the target identified (Fig. 4f).

The second putative target found, Bcin16g04330 is a predicted
kinase homolog of glycogen synthase kinase-3f (LiP-Quant rank
#1, #3 and #4) (Supplementary Data 13) (Supplementary Fig. 9A).
This kinase is likely not the primary target of BAYE-004 as the
extrapolated EC50 is several orders of magnitude higher than that
of Bcin06g02870 (Fig. 4c, f). Interestingly, the center of mass of
the LiP-Quant peptides ranking #1, #3, and #4 is situated in a
domain containing an allosteric site in homolog kinases of
Bcin16g043303>36, This suggests that the measured structural
effect results from binding to a secondary site or from compound
binding-induced conformational changes of allosteric nature
(Supplementary Fig. 9B, Supplementary Data 13).

Taken together, we have used LiP-Quant to identify direct
binding targets of a previously uncharacterized research fungi-
cide. Our data are consistent with BAYE-004 inhibition of fungal
cell growth (Fig. 4a) via inhibition of the B. cinerea homolog of
casein kinase I, providing a potential explanation for the
previously unknown mode of action of the drug.

Discussion

Devising modification-free chemoproteomic strategies that
simultaneously probe whole-proteomes will increase efficiency in
the drug development pipeline. Here, we presented LiP-Quant, a
machine learning-based method that deconvolutes altered pro-
teolytic patterns upon drug binding in complex proteomes. LiP-
Quant substantially enriches for direct drug targets in both
human cell lines and yeast with similar efficiency as other
proteome-wide-scale techniques®21:37:38 Although overall the
TPP-based approaches examined here are more sensitive, it
should be noted that true positive identification rates for LiP-
Quant and TPP are virtually identical for the first 25 targets
identified. Further, LiP-Quant differs from TPP-based approaches
as it has peptide level resolution without requiring chemical
modifications of drug compounds, which allow the identification
of drug binding sites without a bias towards specific reaction
chemistries or residue conservation.

LiP-Quant identifies peptides that undergo structural changes
upon compound binding, providing a proxy for drug binding
sites and enabling a quantitative assessment of their binding
specificity and selectivity through the estimation of EC50s. This
ability to accurately identify relative binding affinities for pro-
teins, in particular among closely related protein families, is a
highly beneficial feature when characterizing and refining drug
leads. For instance, we used LiP-Quant with additional validation
to discover the potential targets of a research fungicide. Inter-
estingly, LiP-Quant suggested that the compound binds strongly
(in the nM range) at the predicted ATP-binding pocket of a
casein kinase-1 homolog, a mechanism consistent with many well
characterized kinase inhibitors.
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Fig. 3 Approximating drug binding sites positions with LiP-Quant. Structures of protein-drug complexes: (clockwise sorting) Staurosporine—E2AK2
kinase (PDBID: 2a19), Selumetinib— MAPK2K1 (PDBID: 4u7z), Staurosporine—K66A3 kinase (PDBID: 4nus), FK506-FKBP1A (PDBID: 1fkj), Rapamycin—
FKBP1A (PDBID: 2dg3), Fostriecin—PP2A (PDBID: 1it6), Calyculin A—PP2A (PDBID: 1it6). Drug ligands are depicted in blue and LiP-Quant peptides in pink.
The center of mass of the LiP-Quant peptides in each structure is shown with red spheres. Cyan shaded dots show a 4 A radius (equivalent to van der
Waals distance) from the drug ligand atoms and are used as a proxy for the residues of the ligand binding cleft. Magenta shaded dots show a 4 A radius
(equivalent to van der Waals distance) from the residues at the center of mass of the LiP-Quant peptides. Minimal distances between the LiP-Quant
peptide center of mass and the drug binding cleft are reported. The green and yellow wedges indicate the drug protein pairs where the drug binding site
and center of mass overlap, or show intersecting volumes, respectively. Calyculin A and Fostriecin (beige slice) are the only two cases where the ligand
center of mass neighborhood and the drug binding site do not converge, although they are proximal.

We have found that LiP-Quant detects interactions with drugs
over a broad range of affinities from nM to uM. EC50s estimated
from lysate with LiP-Quant are often higher, by approximately an
order of magnitude, than literature-reported values generally
measured with recombinant proteins. The observed differences in
EC50 values could thus simply be due to competition between
different targets that occur in the lysate but not in vitro, or due to
the effects of PTMs, protein—protein interactions, binding of
other small molecules or the presence of membranes. The EC50
estimated with LiP-Quant may in fact be a more physiological
indicator of drug-target binding affinity, since they are measured
directly in complex biological mixtures.

Despite the absence of target enriching chemical probes, with
LiP-Quant we detect approximately 70% of the proteins expressed
in HeLa cells®®. We can further increase proteome coverage with
deeper MS analyses via longer LC-MS gradients and protein
enrichment of whole cell lysates. In both cases an increase in
protein coverage was observed within the compound protein
target space (e.g. surface membrane proteins?® for proscillaridin
A and among kinases for staurosporine) and experimental results
were concurrently improved.

We applied the LiP-Quant pipeline with cell extracts to
prioritize the discovery of direct drug interactions. Further
applying the LiP-Quant pipeline to cells that remain intact during
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Fig. 4 Identification of the kinase target and its binding site of a fungicide. a Chemical structure of the novel compound BAYE-004. b Inhibition of
growth in Botrytis cinerea cells upon treatment with increasing concentrations of BAYE-004. ¢ Dose-response curves showing relative intensities of the top
two LiP-Quant peptides from Bcin06g02870, based on LiP-Quant score in the presence of increasing concentrations of BAYE-004. Bcin06g02870 is a
serine/threonine kinase predicted to be casein kinase |. The extrapolated average EC50 for this protein is 6 nM. d Thermal stability of His-tagged
Bcin06g02870 upon treatment with increasing concentrations of BAYE-0O04. Western blots and the corresponding quantification of the soluble fraction of
Bcin06g02870 at 56 °C (n=2). e Homology model of the structure of Bcin16g04330 kinase (from template PDBID: 3gzd, see Methods section). Red dot
shows the center of mass of the LiP-Quant peptides (pink) for this protein. Magenta dots represent a 4 A radius around the center of mass. It is positioned
within the volume of the catalytic site (cyan), which is a common binding site of other kinase inhibitors. The volume of the catalytic site was calculated
based on a model of a protein bound to a kinase inhibitor (PDBID: 3gzd). f LANCE Ultra kinase assay of CK-1 inhibition upon incubation with increasing
concentrations of BAYE-004. Source data are provided as a Source Data file.
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drug treatment represents a more biologically relevant experi-
ment, while ensuring proteins maintain their native compartment
during compound incubation. However, one must bear in mind
that the ensuing cell lysis required for limited proteolysis could
introduce artifacts, most likely driven by enabling novel protein-
protein interactions or residual compound access to previously
compartmentalized proteins as equilibration is re-established in
the lysate. Despite this, using live-treated cells we robustly iden-
tify the known target of rapamycin, confirming that further steps
towards an “in situ” application of LiP-based technologies are
possible. As such approaches deviate from the standard LiP-
Quant pipeline, they are in their infancy and will require further
development to reduce false positives/negatives but they offer a
glimpse of potential areas for further development.

Collectively, this work demonstrates that LiP-Quant effectively
identifies protein-drug targets, characterizes their binding prop-
erties across species and drug target classes, including kinases,
phosphatases, regulatory proteins and membrane proteins, and
pinpoints drug binding regions of allosteric or catalytic nature.
We have shown that the LiP approach is very robust in human
cell lysates and can also be further developed in live cells, as well
as to target plasma membrane proteins. Other chemoproteomics
approaches such as TPP are routinely applied in vivo and in
tissues® but they have lower structural resolution, as they measure
variations of thermal stability of whole proteins instead of pro-
teolytic susceptibility. We envision that TPP and LiP-Quant will
be used in combination in the future to achieve a more com-
prehensive coverage of the druggable proteome. These capabilities
make LiP-Quant a powerful target deconvolution strategy with
the potential to become an essential part of the chemoproteomics
toolbox and drug-discovery pipeline.

Methods

Experimental model and subject details. Saccharomyces cerevisiae cells (Euro-
scarf, Supplementary Data 16) were grown at 30 °C in YPD media to early log
phase from a single colony picked from a fresh YPD plate. Cells were harvested by
centrifugation and carefully washed three times with ice-cold lysis buffer (100 mM
HEPES pH 7.5, 150 mM KCl, 1 mM MgCl,). Cell pellets were resuspended in lysis
buffer, and cell suspensions were extruded from a gauge needle to produce drops
that were immediately flash frozen in liquid nitrogen.

Botrytis cinerea (clone BO47), both wild-type and CK1 His-tagged, cells
(Bayer Crop Science, Supplementary Data 16) were cultured in potato dextrose
agar (39 g/L, Oxoid #CM0139) at 21 °C for 10 days. After 10 days growth the cells
were suspended in 10 ml of GYPm liquid media (14.6 g/l p(+)-glucose
monohydrate (VWR #24370.320), yeast extract (Merck #1.03753.0500),
mycological peptone (Oxoid #LP0040)) and filtered (100 pm, Corning cell strainer)
to harvest spores (final solution of 5 x 10® spores/ml). This liquid culture was
incubated for 24 h at 110 rpm at 21 °C. Cell mycelium was pelleted by
centrifugation (5 min, 16,000 g, 21 °C), media was removed and the pellet snap
frozen in liquid nitrogen.

Whole-proteome preparation for MS analysis. Saccharomyces cerevisiae: Liquid-
nitrogen frozen beads of S.cerevisiae cell suspensions in lysis buffer (100 mM
HEPES pH 7.5, 150 mM KCl, 1 mM MgCl,) were mechanically ground in cryo-
genic conditions with a Freezer Mill (SPEX SamplePrep 6875). Cell debris was
removed by centrifugation (10 min, 20,000g, 4 °C). The sample preparation pro-
cedure was performed at 4 °C.

HeLa and Botrytis cinerea cells (lysate): All biological samples were kept on ice
through sample preparation. HeLa cell pellets (Ipracell, CC-01-10-10) (5 x 107
cells) and Botrytis cinerea mycelium (3 x 107 cells) were resuspended in 800 ul LiP
buffer (100 mM HEPES pH 7.5, 150 mM KCl, 1 mM MgCl,) and lysed by passing
completely through a BD Precision glide syringe needle (27 G) ten times, followed
by 20 min incubation on ice. Lysate was cleared by centrifugation (16,000¢ at 4 °C)
for 4 min. Supernatant was retained in a new Eppendorf tube and the pellet was
resuspended in 400 pl of LiP buffer for repeated lysis under the aforementioned
conditions, including incubation and centrifugation. After centrifugation,
supernatants were combined and protein amount was determined using a Pierce
BCA Protein Assay Kit (cat #23225) according to manufacturer’s instructions.

HeLa cells (in vivo culture): HeLa cells (Sigma-Aldrich, 93021013-1VL) were
cultured in low-glucose Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-
Aldrich, #D6046) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Cells were passaged prior to confluency by detachment
with 0.25% trypsin and subculture at a ratio of 1:8.

Wheat germ agglutinin beads membrane protein enrichment. HeLa cells were
lysed as above (lysate) however 0.3% n-dodecyl-B-p-maltoside (DDM) was added
prior to lysis. Four mg of lysate was rotated with 320 pl of wheat germ agglutinin
agarose beads (Reactolab SA, AL-1023-2), pre-washed twice with LiP buffer, for 4 h
at 4 °C. Beads were then centrifuged at 300g for 30 s to pellet and the supernatant
was aspirated. Beads were then washed six times (300g, 30 s between washes) and
finally eluted in 400 pl of 0.5 M N-acetyl glucosamine (in LiP buffer without
detergent) at 4 °C for 30 min. Beads were pelleted at 300g for 30 s and eluate was
collected and protein was quantified by BCA test. LiP-Quant assay was performed
with membrane enriched eluate in the same manner as described for standard
Hela lysate.

Lysate and cell treatment for LiP-Quant in native conditions. Saccharomyces
cerevisiae: Cell lysates from at least three independent biological replicates were
aliquoted in equivalent volumes containing 100 pug of proteome sample and
incubated for 10 min at 25 °C with the drug of interest. Proteinase K from Tri-
tirachium album (Sigma Aldrich) was added simultaneously to all the proteome-
metabolite samples with the aid of a multichannel pipette, at a proteinase K:
substrate mass ratio of 1:100, and incubated at 25 °C for 4 min. Digestion reactions
were stopped by heating samples for 5min at 98 °C in a thermocycler followed by
addition of sodium deoxycholate (Sigma Aldrich) to a final concentration of 5%.
Samples were then heated again at 98 °C for 3 min in a thermocycler. These
samples were then subjected to complete digestion in denaturing conditions as
described below.

HeLa and Botrytis cinerea cells: 100 ug of protein lysate was aliquoted from a
lysate pool for each of four independent replicates (n = 4 for all experiments) and
incubated at room temperature (RT) with the compound of interest for 10 min. An
8-concentration dose-response was used for each experiment (seven compound
dilutions plus a vehicle control) plus a single concentration rapamycin treatment as
a positive control. For the rapamycin dose-response an additional concentration
was used in place of the positive control. Proteinase K (1:100 ratio of enzyme to
protein) was added and samples were incubated for a further 4 min. Samples were
transferred to a heat block at 98 °C for 1 min, at which time proteinase K activity
was quenched with an equal volume of 10% deoxycholate (to a final concentration
of 5%) and incubated for a further 15 min at 98 °C.

HeLa cells: Near confluent 6-well plates (9.6 cm? per well) were washed twice
with DMEM minus FBS, followed by incubation with rapamycin (2 uM) or DMSO
(0.2%) (n =3 for each of biologically independent wells of cells) in DMEM minus
FBS at 37 °C for 15 min. At the end of compound incubation cells were washed
twice with ice-cold LiP buffer and then scraped into an Eppendorf tube in 100 pl of
LiP buffer, which was immediately snap frozen. Cells were thawed at 4 °C and snap
frozen again for a total of three freeze-thaw cycles. After the final thaw, proteinase
K (1 pg per well) was added and samples were incubated at room temperature for
4 min. Samples were transferred to a heat block at 98 °C for 1 min, at which time
proteinase K activity was quenched with an equal volume of 10% deoxycholate (to
a final concentration of 5%) and incubated for a further 15 min at 98 °C.

Proteome preparation in denaturing conditions. Samples were removed from
heat and reduced for 1h at 37 °C with 5mM tris(2-carboxyethyl)phosphine
hydrochloride followed by a 30 min incubation at RT in the dark with 20 mM
iodoacetamide. Subsequently, samples were diluted in two volumes of 0.1 M
ammonium bicarbonate (final pH of 8) and digested for 2 h at 37 °C with lysyl
endopeptidase (1:100 enzyme: substrate ratio). Samples were further digested for
16 h at 37 °C with trypsin (1:100 enzyme: substrate ratio). Deoxycholate was pre-
cipitated by addition of formic acid to a final concentration of 1.5% and centrifuged
at 16,000¢ for 10 min. After transferring the supernatant to a new Eppendorf tube
an equal volume of formic acid was added again and the centrifugation repeated.
Digests were desalted using C18 MacroSpin columns (The Nest Group), or Sep-Pak
C18 cartridges or into 96-well elution plates (Waters), following the manufacturer’s
instructions and after drying resuspended in 1% acetonitrile (ACN) and 0.1%
formic acid. The iRT kit (Biognosys AG, Schlieren, Switzerland) was added to all
samples according to the manufacturer’s instructions.

High pH reversed phase fractionation. Equal amounts of peptides were taken
and pooled from the final LiP reaction digests for each treatment (e.g. 7 pg from
each replicate for each condition), resulting in approximately 200 g of total digest.
This digest pool was fractionated into 10-12 fractions using high pH reversed phase
chromatography with a Dionex Ultimate 3000 HPLC (Thermo Fisher, Waltham,
United States) and an ACQUITY UPLC CSH C18 column (1.7 um x 150 mm)
from Waters (Milford, United States). In brief, a 25% ammonium hydroxide
solution was used to adjust the pH of the digest pool to 10. The lysate was run on a
30 min non-linear gradient, increasing from 1 to 40% ACN, at a flow rate of 0.3 ml
per min and a micro-fraction size of 30 s. After drying the individual fractions were
resuspended in 1% ACN and 0.1% formic acid and Biognosys’ iRT kit was added.

Mass spectrometric acquisition. For all samples generated from HeLa or Botrytis
cinerea cells, for DIA (Data Independent Acquisition) runs, 2 pg of LiP reaction
digest from each sample was analyzed using an in-house analytical column

(75 pm x 50 cm). Samples were block randomized before acquisition. PicoFrit
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PicoTip Emitters (SELF/P Tip 10 um) were packed with ReproSil-Pur C18-AQ
1.9 um phase (Dr. Maisch, Ammerbuch-Entringen Germany) and connected to an
Easy-nLC 1200. All experiments were run on a Q-Exactive HF mass spectrometer
(Thermo Scientific) with the exception of the calyculin A dataset, which was
acquired on a Q-Exactive HF-X. Peptides were separated by a 2 h segmented
gradient at a flow rate of 250 nl/min with increasing solvent B (0.1% formic acid,
85% ACN) mixed into solvent A (0.1% formic acid, 1% ACN). Solvent B con-
centration was increased from 1% after 3 min according to the following gradient:
4% over 3 min, 5% for 3 min, 7% for 4 min, 9% for 5 min, 11% for 8 min, 16% for
19 min, 26% for 41 min, 29% for 9 min, 31% for 6 min, 33% for 5 min, 35% for
4 min, 38% for 4 min, 40% for 3 min, 44% for 3 min, 55% for 3 min and 90% in
10's. This final concentration was held for 10 min followed by a rapid decrease to
1% over 10s, which was then held for 5 min to finish the gradient. A full scan was
acquired between 350 and 1650 m/z at a resolution of 120,000 (ACG target of 3e6
or 7 ms maximal injection time). A total of 37 DIA segments on HF were acquired
at a resolution of 30,000 (ACG target of 3e6 or 47 ms maximal injection time) and
42 on the HF-X (ACG target of 3e6 or 55 ms maximal injection time). The nor-
malized collision energy was stepped at 25.5, 27, 30. First mass was fixed at 200 /z.

For DDA (Data Dependent Acquisition) runs from the same samples, peptides
were separated by the same 2 h segmented gradient as utilized above for DIA runs
with the exception that the final 1% solvent B flow was held for 4 min and 40's
(rather than 5 min). All experiments were run on a Q-Exactive HF mass
spectrometer (Thermo Scientific) with the exception of the rapamycin (Q-Exactive
HF-X) and FK506 datasets (Q-Exactive). A top 15 method was used across a scan
range of 350 to 1650 m/z with a full MS resolution of 60,000 (ACG target of 3e6 or
20 ms injection time). Dependent MS2 scans were performed with a resolution of
15,000 (ACG target of 2e6 or 25 ms injection time) with an isolation window of
1.6 m/z and a fixed first mass of 120 m/z.

Peptide samples generated from Saccharomyces cerevisiae were analyzed on an
Orbitrap Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) equipped
with a nano-electrospray ion source and a nano-flow LC system (Easy-nLC 1000,
Thermo Fisher Scientific). MS data acquisition in DDA and DIA modes was
essentially carried out as in Piazza et. al. 2018.

Mass spectrometric data analysis. DIA spectra were analyzed with Spectronaut
X (Biognosys AG)*’ using the default settings. In brief, retention time prediction
type was set to dynamic iRT (adapted variable iRT extraction width for varying iRT
precision during the gradient) and correction factor for window 1. Mass calibration
was set to local mass calibration. The false discovery rate (FDR) was estimated with
the mProphet approach*! and set to 1% at both the peptide precursor and protein
level. Statistical comparisons were performed on the modified peptide level using
fragment ions as quantitative input. The DDA spectra were analyzed with the
SpectroMine (Biognosys AG) software using the default settings with the following
alterations. Digestion enzyme specificity was set to Trypsin/P and semi-specific.
Search criteria included carbamidomethylation of cysteine as a fixed modification,
as well as oxidation of methionine and acetylation (protein N-terminus) as variable
modifications. Up to 2 missed cleavages were allowed. The initial mass tolerance
for the precursor was 4.5 ppm and for the fragment ions was 20 ppm. The DDA
files were searched against the human UniProt fasta database (updated 2018-07-01)
and the Biognosys’ iRT peptides fasta database (uploaded to the public repository).
The libraries were generated using the library generation functionality of Spec-
troMine with default settings.

Machine learning-based training of the LiP-Quant classifier. All HeLa datasets
were first analyzed for differentially regulated peptides between the highest drug
concentration and vehicle using Spectronaut’s statistical testing (one sample two-
sided t-test with Storey method correction) performed on the modified peptide
sequence level using fragment ions as the smallest quantitative units. This candi-
date peptide list was filtered based upon g-value < 0.01 and an absolute log, fold-
change > 0.58. Each peptide in this filtered list was then subjected to dose-response
correlation testing (using the drc package (https://www.r-project.org)) on all
peptides (modified sequence with fragments ions as quantitative units) at every
drug concentration to establish a sigmoidal correlation coefficient.

As the ground truth (target proteins) was known for the drugs tested in HeLa
lysates, each protein identified in each dataset was annotated as either a known
target or non-target and from this a contaminant database, or LiP-protein
frequency library (PFL), was built. To do so, the same statistically filtered list of
differentially regulated peptides as above was used and proteins that were present
but not specific for the drug being tested were quantified and assigned a PFL
(contamination) score. For example, a protein that showed differential regulation
in 9 of 11 ground truth experiments (several experiments were performed more
than once) was assigned a contamination score of 9/11 or 81.8% (Supplementary
Data 14), proteins that never appeared as contaminants in any experiment were not
included in the PFL-library. This library enabled the quantitative down-weighting
of proteins that were frequently present in LiP experiments but not specific for the
drug being tested. We observed high correlation between proteins identified as
likely contaminants in the PFL of our LiP-Quant experiments (Supplementary
Data 14) and those previously identified as common contaminants in affinity
purification mass spectrometry (such as chaperone and structural proteins)42.

To establish the criteria that contribute to the identification of drug targets, we
split our dose-response experimental data (filtered based on q-value and log, fold-
change and PFL annotated as mentioned above) into two independent datasets to
train our classifier; training set A included the drugs calyculin A, rapamycin and
staurosporine and training set B included FK506, selumetinib and fostriecin
(Supplementary Fig. 4A). For each training set the data was combined and we used
linear discriminant analysis (LDA) to build classifiers based upon all potential
unique peptide/protein features (e.g. dose-response correlation, PFL frequency,
protein coverage, etc). For each training set, known drug targets were selected as a
positive training set, resulting in 95 modified sequences for training set A and 33
for training set B. We also randomly sampled 400 background modified sequences
as a negative training set from each training set. The features were calculated and
stabilized to a defined range between 0 and 1. The LDA-based machine learning
was performed five times for each training dataset with resampling of the negative
training set each time. The identified criteria were consistent across all LDA
analyses (Supplementary Fig. 1B) and the contribution weights for each of the
features from the five LDA analyses was averaged. The relative contributions of
each parameter to the LiP-Quant score was very stable across the training sets
(Supplementary Fig. 4B). We termed the linear classifier the LiP-Quant Score in
this study. The weights were adjusted such that the combined linear classifier could
reach a maximum value of 6. These weightings were incorporated into the analysis
pipeline (see below) and verified independently on the other positive control
datasets (i.e. training set A was verified on the datasets comprising training set B
and vice versa) (Supplementary Fig. 4A). LiP rankings using both training set
analysis parameters were similar across all datasets (Supplementary Fig. 4C).

Using this approach, we established four classifiers that contribute to positive
drug target identification (Supplementary Fig. 1B): (I) correlation of fit with a
dose-response binding model, (II) the presence of the identified protein in the LiP-
protein frequency library, (III) the number of peptides from an identified protein
showing regulation that are in the top ten percent of all peptides ranked by g-value
in the Spectronaut filtered statistical test (see above) and (IV) the statistical
significance (g-value) of the relative peptide abundances between drug and vehicle-
treated samples. As training set A contained a larger positive training set (i.e. there
were more known drug target peptides identified) the weightings calculated for this
training set were used for all subsequent analyses.

Automated peptide/protein ranking of LiP-Quant experiments. Using the
criteria and weightings established from our training datasets we wrote in-house
scripts in R to calculate in an unbiased manner the individual peptide sub-scores
for each LiP-Quant experiment. As these experiments contained on average over
100,000 peptides, peptides were first filtered based upon differential abundance
from the Spectronaut statistical testing table (one sample two-sided t-test with
Storey method correction, g-value < 0.01 and an absolute log, fold-change > 0.46)
using statistical comparisons against vehicle control for a range of drug con-
centrations (ICs, through 1000-fold the ICs, or the range closest to this). Each
peptide in this narrowed down putative candidate list was then subjected to full
LiP-Quant analysis using the four weighted criteria (Supplementary Fig. 1B)
described above and a final LiP-Quant score for each peptide was calculated.

This final analysis pipeline enabled the selection and ranking of the most
relevant peptides and proteins per experiment. The combined LiP-Quant score
enables direct comparison of LiP peptides with each other and allows more robust
discrimination of genuine targets from random hits. Ranking on the protein level
was performed using the best LiP-score per protein, only. All half maximal
effective/inhibitory concentrations (ECs0/ICs) were calculated using the drc
package (https://www.r-project.org). The necessary output files from Spectronaut
are outlined in the docstring at the start of the R script.

Criteria used for establishing a LiP threshold score. Aggregating results from
five positive control experiments (rapamycin, calyculin A, selumentinib, FK506 and
fostreicin) conducted in HeLa lysate and analyzed with our LiP-Quant pipeline, we
found that LiP scores show a bimodal distribution. Staurosporine was excluded
from the threshold calculation as it shows a level of promiscuity (binding poten-
tially hundreds of kinases) that is rare among drugs, making it difficult to ascertain
if low scoring peptides are genuine targets that were not detected or kinases that are
not bound by the drug. As this difficulty in interpreting non-target peptides could
bias the threshold calculation the dataset was excluded. Peptides from known target
proteins show a clear enrichment in the high-scoring peak of the distribution (LiP-
Quant score > 1.5), whereas all other peptides are enriched in the low-scoring peak
of the distribution with a median of approximately 0.8 (Fig. 1b). We defined a
threshold score of 1.5 by taking the median LiP-Quant score from the aforemen-
tioned experiments, plus three standard deviations, to ensure minimal (<1%) non-
target peptide presence (Supplementary Data 3). Although the approach ensures a
strong enrichment for genuine targets, it should be noted that some peptides from
these targets are expected below a LiP-Quant score of 1.5 as both LiP-Quant and
non-LiP-Quant peptides can be expected from genuine target proteins.

Guidelines for interpreting LiP-Quant results. The purpose of the LiP-Quant
score is to provide a candidate list of protein (and peptide) targets ranked by their
likelihood of being a genuine drug interactor. The LiP-Quant scoring system covers
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the range of 0 to 6, with a peptide scoring 6 having the maximum probability of
being a true target. In this way, these scores also assign ranks to proteins, by way of
their peptides, enabling an unbiased prioritization of potential targets. This abso-
lute scale is useful to make direct comparisons between experiments. For instance,
the strongest peptide and protein candidate targets in LiP-Quant experiments are
typically those with a score > 2.5 and rank in the top-scoring peptides of the whole
proteome. Every LiP-Quant peptide has an EC50 value assigned, which corre-
sponds to the inferred dose of drug necessary to observe half-maximum of the
relative peptide intensity variation between drug and vehicle. This could also be, in
principle, used as a discriminating factor under the assumption that drug targets
with low EC50 values should be indicative of a strong binding interaction between
protein and compound, and a compound that binds with high affinity (e.g. nM or
lower) is more likely to be an effective drug in vivo. However, we normally do not
exclude candidates with EC50 close to the uM range a priori, as compounds that
weakly bind the target and have a phenotypic effect can be further refined during
pre-clinical drug development.

Structural models. The amino acid conservation in the structural model of
calyculin A bound to the PP1-gamma catalytic subunit has been calculated using
the ConSurf algorithm (Landau 2005). Structures of Botrytis cinerea protein-drug
targets were modeled using homolog kinases with high sequence similarity for
which experimental structural data was available using the Swiss-model. The
Botrytis cinerea kinase models were then structurally aligned: Bc Bcin06g02870
with human kinase CSNK1A1 bound to the kinase inhibitor A86 (PDBID 6gzd)
and Botyrris cinerea Bcin16g04330 with human kinase Abl in complex with ima-
tinib and GNF-2 (PDBID 3k5v). Given the high structural and sequence similarity
between Botrytis and human kinases, we used the experimental data relative to the
holocomplexes between kinase inhibitors and protein kinases to assign the position
of the ATP-binding (catalytic) site and allosteric sites of the Botrytis kinases.

Definition of PPV. We defined the PPV as the ratio between the number of true
positive peptides and the sum of false positives (FP) and true positives (TP)
identified by LiP-Quant (TP/ (TP + FP)). Unless specifically stated, these para-
meters refer to the top 50 LiP-Quant score ranking peptides.

Benchmarking of the LiP-Quant classifier. The LiP-Quant staurosporine
experiment was selected to provide an estimation of the method FDR because of
the known binding promiscuity of the compound. Published datasets of staur-
osporine proteome-wide binding profiles obtained with TPP® and kinobeads??
were used to compare the predictive power of the three chemoproteomic methods.
We used LiP-Quant scores for LiP-Quant, -log,¢(adjusted p-values) of the R?
correlation indices of the melting curves for TPP reporting both replicates analyzed
in the original publication®, and the number of spectral counts (PSM) for kino-
beads as ranking criteria. For the comparison of LiP-Quant, TPP and kinobeads in
the venn diagram of Fig. 2b, we considered as TPP and kinobeads hits, those
proteins defined as hits by the authors in the original publications. For kinobeads,
these were the isolated proteins in the staurosporine-beads pull down. For TPP,
Savitski et al.% defined protein hits as those fulfilling the following criteria: (I) the
minimal slope is below —0.06 in both biological replicates; (II) the minimal dif-
ferential melting temperature in experiment 1 and 2 is higher than the same
difference measured in the corresponding experiments with vehicle; (III) the dif-
ferential melting temperature in experiment 1 and 2 have the same sign; (IV) the
adjusted p-values of the R? correlation indexes are below 0.05 in experiment 1 and
below 0.1 in experiment 2 or the adjusted p-values of the R? correlation indexes are
below 0.1 in experiment 1 and below 0.05 in experiment 2.

Approximating drug binding sites from LiP-Quant data. We validated our
predictive strategy to estimate the position of drug binding sites with the LiP-
Quant experiments for which true targets are known (Fig. 3) and consider only the
protein hits that have multiple high-scoring LiP-Quant peptides. We chose the top
3 LiP-Quant peptides of a protein-drug target candidate among the 15 highest-
ranking peptides by LiP-Quant score of the whole proteome (Supplementary
Data 15). Only one protein target candidate typically fulfilled these criteria in all
analyzed experiments. LiP-Quant peptides measured with rapamycin, FK506,
selumetinib, staurosporine, fostriecin and calyculin A in HeLa proteome extracts
were analyzed. We analyzed the staurosporine dataset assayed using a 4 h long LC
gradient. We calculated the position of drug binding sites using the center of mass
of all atoms assigned to the aforementioned top 3 LiP-Quant peptides of the main
candidate target. Structural models and geometric calculations were performed
using PyMol 2.1.1 (Schrodinger).

Cellular thermal shift assay (CETSA). Botrytis cinerea BO47 (CK1 His-Tagged)
cell suspension was adjusted to 1 x 10° sp/ml GYPm and incubated for 24 h at

21°C (110 rpm). 12.5 x 10° cells were treated with BAYE-004 (at various con-

centrations from 0.0001 to 67.5 uM) or control (1% DMSO) for the final 20 min of
the 24 h growth period. Cells were harvested by filtration (100 pm) and rinsed with
15 ml of ice-cold HEPES buffer (0.1 M HEPES, 50 mM NaCl, pH 7.5). Harvested
mycelium was resuspended in 3.5 ml HEPES buffer and kept on ice. 500 pl of each

concentration was transferred to a 2 ml Eppendorf tube and heated to 56 °C on a
thermoshaker for 3 min, an additional aliquot from each concentration was left
unheated. After heating, cells were kept on ice for 3 min, snap frozen in liquid
nitrogen, lyophilized overnight and then stored at —80 °C until protein extraction.

Lyophilized mycelium was lysed using a Retsch mixer mill (MM 400) with
3 mm tungsten carbide beads (30 Hz for 3 s, two cycles), then 500 pl of cold protein
extraction buffer (50 mM HEPES, 50 mM NaCl, 0.4% NP-40) was added. Lysate
was incubated for 10 min at 25 °C, centrifuged (10 min, 14,000¢) and the
supernatant was retained. The lysate was further centrifuged (20 min, 73,400g) to
eliminate insoluble proteins. The supernatant was collected, and protein
concentration was determined using the Qubit protein assay kit (#Q33211) and
stored at —20 °C.

Target engagement was assessed by western blot. In brief, 17 ug of protein per
treatment was loaded onto a TGX (4-20%) stain free gel (Bio-Rad, #4568094) and
run at 250 V for 25 min. Proteins were transferred to a nitrocellulose membrane
using the Trans-Blot Turbo system according to the manufacturer’s instructions
(Bio-Rad, # 1704271). The membrane was probed using a monoclonal anti-
polyhistidine-peroxidase antibody (1:2000, clone HIS-1, Sigma, A7058). The
membrane (target protein) and gel (loading control) were imaged using a
ChemiDocXRS camera and quantified using ImageJ3. The uncropped blot image
is included in the source data file (see Data Availability).

Cell viability (IC50) assay. Botrytis cinerea BO5.10 (2 x 10 cells/ml) mycelium in
GYPm liquid media (200 ul) was cultured at 21 °C without shaking in a micro-titer
plate. Optical density was measured at 620 nm (Tecan M1000 plate reader) at the
beginning of the culture period (day 0) and immediately inoculated with 2 pl of
BAYE-004 to obtain final concentrations (uM) of 1.2234, 0.40745, 0.13582,
0.04527, 0.01509, 0.00168, 0.00056, 0.00019, and 0, respectively. The culture was
grown for three days at 21 °C after inoculation at which point the optical density
was measured again. Inhibition of cell growth was calculated at each concentration.

CK1 kinase assay. The LANCE Ultra time resolved fluorescence resonance energy
transfer (Tr-FRET) kinase assay (Perkin Elmer, #TRF0300-C) protocol was used
according to manufacturer’s instructions with adaptations made for the following
conditions. Botrytis cinerea MBP-CK1 recombinant enzyme (89.7 kDa) was used at
12.5nM with the following reagents: ULight-DNA topoisomerase 2-a(Thr1342)
peptide (Phosphorylation motif: DEKTDDE, PerkinElmer, #TRF0130-M),
Europium-labeled DNA topoisomerase 2-a(Thr1342) antibody (mouse mono-
clonal, PerkinElmer, #TRF0218-M) in a solution containing DMSO (1%). The
reaction was performed in duplicates in the dark at 30 °C for 90 min. Plates were
read in a Victor2 Perkin plate reader (excitation 340 nm/emission 665 nm).

Materials. Details of all materials used in these studies are provided in Supple-
mentary Data 16. All chemicals, enzymes, peptides and compounds were pur-
chased from Sigma-Aldrich unless specified otherwise. BAYE-004 was produced by
Bayer Crop Science (Supplementary Note 1 and Supplementary Figs. 10, 11). MBP-
CK1 recombinant enzyme was cloned in-house by Bayer Crop Science. Frozen
HelLa cell pellets were purchased from Ipracell (Belgium) and live HeLa cells for
culture were purchased from Sigma-Aldrich. Strains of S.cerevisiae were obtained
from the European Saccharomyces Cerevisiae Archive for Functional Analysis
(Euroscarf) or subcloned from them (Supplementary Data 16). B. Cinerea was
provided by Bayer Crop Science (Supplementary Data 16), over-expression con-
struct for CK1-His was cloned in-house by Bayer Crop Science. All software ver-
sions used and where they were obtained is outlined in Supplementary Data 16.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All mass spectrometry proteomics data have been deposited at ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifiers PXD018204
and PXD015446. The source data underlying Figs. 1a, 2, 4b, d, f, and Supplementary
Figs. 2b, ¢, 3, 4b, e, 6a, b and 8a are provided as a Source Data file. Source data underlying
Figs. 1d, 2¢, d, 4¢, and Supplementary Figs. 4a, b, e, 5¢, 7a, b and 9a are included in the
PRIDE repository with the dataset identifier PXD019902. All other relevant data are
available from the corresponding authors on request.

UniProt fasta databases for organisms were accessed on January 1st, 2018 via the
UniProt databases download page (https://www.uniprot.org/downloads). Protein
structures for E2AK2 kinase (PDBID: 2a192%), MAPK2K1 (PDBID: 4u7z%4), K66A3
kinase (PDBID: 4nus*®), FKBP1A (FK506) (PDBID: 1fkj*¢), FKBP1A (rapamycin)
(PDBID: 2dg3%7) and PP2A (PDBID: 1it63) were downloaded in 2019 from the Protein
Data Bank website (https://www.rcsb.org/pdb).

Code availability
The custom R script used to compute LiP scores and ranks is available via GitHub at
https://github.com/RolandBruderer/LiP-Quant.
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