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Abstract

Neurons are often considered as specialized functional units that encode a single variable. 

However, many neurons are observed to respond to a mix of disparate sensory, cognitive and 

behavioral variables. For such representations information is distributed across multiple neurons. 

Here we find this distributed code in the dentate gyrus and CA1 subregions of the hippocampus. 

Using calcium imaging in freely moving mice, we decoded the animal’s position, direction of 

motion and speed from the activity of hundreds of cells. The response properties of individual 

neurons were only partially predictive of their importance for encoding position. Non-place cells 

encoded position and contributed to position encoding when combined together with other cells. 

Indeed, disrupting the correlations between neural activities decreased decoding performance, 

mostly in CA1. Our analysis indicates that population methods, rather than classical analyses 

based on single cell response properties, may more accurately characterize the neural code in the 

hippocampus.

eToc:

Using high-resolution calcium imaging and machine learning techniques, Stefanini et al. studied 

how information about position, direction of motion and speed is represented in the hippocampus. 

They show that neurons cooperate to encode this information and cells with easily interpretable 

responses are not necessarily the most important ones.
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INTRODUCTION

The hippocampus has been extensively studied in experiments on navigation and spatial 

memory. The responses of some of its cells are easily interpretable as these tend to fire only 

when the animal is at one location in an environment (place cells). However, it is becoming 

clear that in many brain areas, which include the hippocampus and entorhinal cortex, the 

neural responses are very diverse (Rigotti et al., 2013; Eichenbaum, 2018; Fusi et al., 2016; 

Hardcastle et al., 2017) and highly variable in time (Fenton and Muller, 1998; Ziv et al., 

2013; van Dijk and Fenton, 2018). Place cells might respond at single or multiple locations, 

in an orderly (grid cells) or disorderly way and multiple passes through the same location 

typically elicit different responses. Part of the diversity can be explained by assuming that 

each neuron responds non-linearly to multiple variables (mixed selectivity) (Rigotti et al., 

2013; Kriegeskorte and Douglas, 2019; Saxena and Cunningham, 2019). Some of these 

variables may not be monitored in the experiment and hence contribute to what might 

appear as noise. A neural code based on mixed selectivity is highly distributed because some 

variables can be reliably decoded only by reading out the activity of a population of neurons. 

It was recently shown that the mixed selectivity component of the neuronal responses is 

important in complex cognitive tasks (Rigotti et al., 2013; Fusi et al., 2016) because it is 

a signature of the high dimensionality of the neural representations. Place cell discharges 
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are also highly variable (Fenton and Muller, 1998) to the extent that the variability, not the 

spatial tuning alone, can capture changes due to learning in a spatial memory task (Olypher 

et al., 2003; Kelemen and Fenton, 2010; van Dijk and Fenton, 2018). These recent studies 

naturally pose the question of how position is encoded within the population activity in the 

hippocampus. To answer this question, we used calcium imaging to record the activity of 

large populations of neurons in the dentate gyrus (DG), a region of the hippocampus in 

which the neural responses are highly sparse and diverse (Leutgeb et al., 2007; Danielson 

et al., 2016; van Dijk and Fenton, 2018), and in CA1, a region that has been extensively 

studied in relation to spatial navigation using both electrophysiology (Moser et al., 2008; 

Harvey et al., 2009; Keinath et al., 2014; Agarwal et al., 2014) and imaging (Dombeck et al., 

2010; Ziv et al., 2013).

We show that the position of a mouse freely exploring an environment can be decoded from 

the activity of a few tens of granule cells (GCs) of DG with an accuracy comparable to 

that of CA1. Using machine learning techniques, we ranked neurons by their contribution 

to position encoding. We found that trial averaged, single neuron tuning properties are 

insufficient to predict a neuron’s contribution to position encoding at the population level. 

Cells that were not spatially tuned according to a statistical test based on spatial information 

(non-place cells) also contributed to the population code, to the extent that position could 

be decoded from the ensemble of these untuned cells alone in both areas. We further found 

that neurons in both DG and CA1 reliably encoded other variables such as the direction 

and speed of movement. These neurons were not distinct from the neurons that encoded 

position, i.e., the majority of neurons encoded multiple variables and contributed to all of 

them. We then found that destroying correlated activities among neurons while maintaining 

their spatial tuning had an impact on decoding performance in CA1 but not in DG. Taken 

together, these results show that the information encoded at the population level is far richer 

than at the single cell level and allowed us to uncover the strong robustness of DG and CA1 

spatial coding through the distributed nature of their neural representation.

RESULTS

We studied the neural code in the DG and in the CA1 area of the hippocampus of freely 

moving mice. We used miniaturized head-mounted microscopes to perform calcium imaging 

of granule cells (GCs) in the DG and of pyramidal cells in CA1. To image cell activity 

patterns we injected a virus encoding the calcium indicator GCaMP6 and implanted a 

gradient index (GRIN) lens for chronic imaging (Fig. 1). Four weeks after surgery, we 

imaged cellular activity while mice foraged for sucrose pellets in an open field arena. 

We then used a recently developed algorithm for reliably extracting the GCaMP signals 

from the raw videos, CNMF-e (Zhou et al., 2018) (Fig. 1d, e). This algorithm separates 

local background signals due to changes in fluorescence in the neuropil from the signals 

due to calcium concentration changes in individual cells. This was necessary to identify 

signal sources in our granule cells imaging data without introducing spurious distortions or 

correlations among cells due to artifacts. We identified a total of 1109 DG cells across 3 

animals, among which 352 (32%) were significantly tuned to position and a total of 863 

CA1 cells across 3 animals, among which 38 (4%) were significantly tuned to position (see 

Methods and Fig. S2).
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The low fraction of place cells in CA1 seems to be in contrast with reports from previous 

studies in CA1 (Ziv et al., 2013; Pfeiffer and Foster, 2013; Meshulam et al., 2017; Talbot 

et al., 2018). However modern tools for source extraction from calcium imaging can 

detect cells with very low activity, which are largely underestimated in electrophysiological 

recordings as other recent studies have also suggested (Dipoppa et al., 2018; Tang et al., 

2018). If one excludes from the analysis these low firing rate cells, the fraction of place cells 

becomes significantly higher (see Fig. S3 and Table S1). Moreover, while calcium signal 

extraction may miss isolated spikes, this is likely less of an issue for dentate gyrus granule 

cells than pyramidal cells since the former are often active in burst, as electrophysiology 

studies have shown (Pernía-Andrade and Jonas, 2014) and as our data also shows (Fig. 1e). 

See Fig. S3 and Table S1 for a brief review of the literature comparing firing rates in DG and 

CA1 across studies.

The first step of our analysis was to assess whether the position of the animal is encoded 

in the recorded neural activity during mobility. We therefore removed all the time bins in 

which the animal was slower than 2 cm/s for a period longer than 1 s, after confirming 

by visual inspection that this procedure would exclude moments of immobility. To decode 

position, we discretized the x and y coordinates of the animal by dividing the arena into 64 

regions (8 by 8 grid) (50 cm square arena for DG mice, 50 × 28 cm for CA1 mice). We then 

trained a battery of linear classifiers for each pair of discrete locations. Each session was 

divided into 10 one-minute long intervals, 9 of which were used to train the classifiers and 

the remaining ones to test them (10-fold cross validation). We used a majority rule (Bishop, 

2006) to combine the outputs of the linear classifiers as an instantaneous estimate of the 

animal’s location, using the center of the selected location as the decoded position.

In both areas, the median decoding error was comparable to the animal size, revealing 

for the first time that instantaneous position can be decoded from DG GCs population 

activity (Fig. 2). Our analysis of the CA1 data shows a comparable decoding accuracy in 

DG and CA1 after correcting for number of cells (Fig. 2c and Fig. S4). The accuracy was 

slightly higher than the one observed in previous studies in CA1 (Ziv et al., 2013). Different 

decoding strategies, such as decoding from raw Calcium traces or events, produced similar 

results (see Fig. S6). The decoding error was found to weakly correlate to the speed of 

movement (see Fig. S7). To our knowledge, this is the first time that decoding of position 

from populations of DG cells has been reported.

We could also decode the direction of motion of the animal in both regions and its speed 

only in DG. Speed was weakly correlated with the overall level of activity in DG and we 

could decode it in two animals out of three using linear regression (Fig. 2b, c). To decode the 

direction of motion we divided the full range of possible directions into 8 angular bins and 

labeled time bins according to the instantaneous discrete direction of motion of the mouse 

(see Methods). To our knowledge, this is also the first time that decoding of direction and 

speed of motion from populations of DG and CA1 cells has been reported although direction 

tuning has been previously observed in CA1 pyramidal cells in rats (Acharya et al., 2016). 

We did not find differences in decoding performance for direction of motion between the 

DG and CA1 areas (Fig. 2c).
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To better characterize the neural code, we tried to determine what features of the response 

properties of individual neurons are important for encoding the variables we could decode. 

It is important to realize that these response properties could be dissociated from the 

contribution of a cell to the accuracy of a decoder that reads out a population of neurons. 

For example, there could be neurons that are only weakly selective to position and so 

individually would not pass a statistical test for spatial tuning. However, when combined 

with other neurons, they can still contribute to position encoding. Alternatively, there are 

situations in which the decoder might assign a large weight to neurons that are weakly 

selective or even not selective at all but they are correlated to selective neurons. This 

situation can be illustrated with the intentionally extreme case of Fig. 3, in which we 

show how the responses of individual neurons can be dissociated from their importance 

for the decoder. A simulated animal visits two locations of the arena multiple times. The 

activity of two hypothetical neurons is represented in the activity space (Fig. 3b), with the 

horizontal and vertical axes representing the activity of the first and the second neuron 

respectively. At each pass through each location the two neurons have different activity due 

to other variables that might also be encoded, e.g., the direction of movement, the speed 

of the animal, or other variables that are not under control in the experiment. Each point 

in the activity plot represents the activity of the neurons in a single pass. The responses of 

neuron 2 to the two different locations have the same distribution (Fig. 3b,c). A cell with 

such response properties is untuned to space (a non-place cell) and therefore it is typically 

considered unimportant for encoding position. However, a linear decoder trained to decode 

the position of the animal can make use of the untuned neuron because of the correlations 

between the activities of the two neurons. While the activity of neuron 1 is only partially 

predictive of the animal’s location (the distributions partially overlap), by reading out neuron 

2 together with neuron 1 it is possible to decode position with no errors using a linear 

decoder. In such situation, the linear decoder would assign equal weights to the two neurons, 

as shown in Fig. 3c.

In the real data, there might be a spectrum of different situations that are less extreme than 

the one illustrated in Fig. 3 in which a decoder can take advantage of weakly tuned cells. 

Cells like the untuned one in Fig. 3 or weakly tuned cells can “cooperate” with more tuned 

cells to encode more precisely a variable like position. This is a situation similar to the 

one of Fig. 3, in which the correlations between the activities of different neurons would 

be important. However, there might also be weakly tuned cells that are uncorrelated, but 

when combined together would contribute to the accuracy of a decoder. In both cases, the 

decoder can use the weakly tuned cells to improve its accuracy. Analogously a downstream 

neuron can in principle harness the activity of weakly tuned neurons to readout the animal’s 

position.

In our analysis we took the perspective of such a readout neuron and analyzed the weights 

assigned to cells by our decoder to determine the importance of input neurons in a 

population for encoding position. The procedure we adopted was to first train the position 

decoder on each pair of locations and then to combine the resulting weights to obtain a 

single importance index (ω) for each cell (see Methods). Similar methods are used to assess 

the importance of individual features in a feature space (Haufe et al., 2014; Mladenić et al., 

2004) and have been recently used to identify important synapses in learning models (Zenke 
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et al., 2017). We then ranked the neurons according to this importance index and estimated 

the decoding accuracy for populations of 50 neurons (Fig. 4a) to assess the validity of our 

approach. The 50 neurons with the largest importance index indeed performed significantly 

better than the worst 50 neurons, though position could be decoded above chance level even 

from the worst neurons. The accuracy decreases progressively between the performance for 

the best and for the worst neurons, validating the method for ranking the neurons on the 

basis of the importance index. We also controlled that the ranking was stable within the 

session (see Fig. S8) and that it was not due to poor cell segmentation (Fig. S24).

The observation that most neurons could contribute to the decoding of position indicates 

that the neural code is highly distributed. Indeed, the importance index is rather similar 

for most of the cells. To quantify the distribution of importance across cells, we used the 

Gini coefficient, a quantity that is often used to represent wealth inequality in a country. A 

high Gini coefficient indicates high inequality, as in a dedicated code whereby few neurons 

strongly encode a given variable, whereas low values correspond to an equal distribution of 

resources as in a distributed code. We observed low values both in DG and CA1, indicating 

that different neurons tend to contribute equally to the encoding of position, a signature of 

a distributed code rather than a situation in which only a few cells are important (see Fig. 

S13).

Not too surprisingly, one important feature of an individual neuron is its average activity, 

which is strongly correlated with the importance index and hence to the overall ability 

to encode position (see also Fig. 5a, b and Fig. S19). However, inspection of the firing 

fields of Fig. 4b indicated that there were no other obvious properties that predicted 

whether a neuron is important or not in both DG and CA1 neuron populations. We 

then identified which neurons were spatially tuned and called them place cells if the 

spatial information contained in their activity was statistically significant (see Methods for 

details). The difference between the spatial information for the recorded activity and the 

spatial information obtained for shuffled data, properly normalized, is what we defined as 

significance of spatial information (SSI). It is indeed a measure used to assess whether a cell 

is a place cell or not relative to a null distribution (Skaggs et al., 1993; Panzeri et al., 2007; 

Meshulam et al., 2017; Danielson et al., 2017; Allegra et al., 2019).

From Fig. 4b it is clear that in our data there are non-place cells that have a large importance 

index (see also Fig. S17). The animal position could be decoded from these cells alone in 

both DG and CA1 (Fig. 4c and Fig. S17). This indicates that the activity of the non-place 

cells contains some spatial information. However, because of noise and limited data, the 

activity of these cells did not pass the statistical test that we adopted to characterize place 

cells.

While the SSI is a property of the single cell, the importance index depends on the 

contribution of a cell to the population code. We thus analyzed the relation between each 

cell’s SSI and its importance index. Although we did not find a one to one correspondence 

between SSI and importance index, the two quantities were correlated (Fig. 5a, b, c and Fig. 

S19) indicating that some individual response properties are at least partially informative 

about the importance of a cell in encoding position. To compute the SSI one has to compute 
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the spatial information and subtract a baseline obtained by shuffling the activity. The spatial 

information without the baseline subtraction, which is sometimes used as a measure of the 

tuning of the cells, was actually negatively correlated with the importance index (see Fig. 

S9a and (Kelemen and Fenton, 2010)). However, the baseline was also negatively correlated 

with the importance index (Fig. S9b). The net effect is that the correlations between SSI and 

importance index were positive. The negative correlations are a reflection of the sampling 

bias problem that affects cells with low activity (Panzeri et al., 2007). Low activity cells tend 

to be more selective because the fluctuations of the activity are relatively large. However, 

these cells are typically unrealiable (e.g., they fire at a particular location only for one 

passage) and hence their importance index is low.

We performed a similar analysis of importance for the direction of movement. In Fig. 6 

(see also Fig. S18) we show that we could rank the cells according to their contribution 

to decoding (Fig. 6a and Fig. S18) and that the important cells were highly heterogeneous 

in their direction tuning (Fig. 6b). Considering all recorded cells, we also found that a 

cell’s activity correlated with the importance index for direction of movement in DG and 

in CA1 (Fig. 6b). We defined the significance of directional information (SDI) in a similar 

way to the SSI by comparing the mutual information between direction of motion and a 

cell’s activity to a distribution obtained by shuffling the cell’s calcium events in time. The 

importance index and this directional information were correlated both in DG and in CA1 

(Fig. 6d and Fig. S20).

All these analyses indicate that single neuron properties are only partially predictive of the 

importance of a cell for decoding. Moreover, the importance is not an intrinsic property of 

an individual cell because it clearly changes depending on which other cells are part of the 

population of neurons that are used by the decoder. This is illustrated in Fig. 3, in which the 

untuned cell is important when combined together with the cell represented on the horizontal 

axis, but it would be useless if combined together with another untuned cell, or with an 

uncorrelated tuned cell.

Since we could decode at least two variables from the neural activities, we were wondering 

whether we could identify some form of specialization in which segregated groups of 

neurons encoded different variables. In Fig. 7 we report the importance index for the 

direction of movement versus the importance index for position (Fig. 7a and Fig. S21). 

The situation in which different variables would be encoded by segregated populations of 

neurons would predict a negative correlation between these two importance indices: cells 

with large importance index for position should have a small importance for the direction of 

movement, and vice versa. Instead, for both the regions we analyzed, we found a positive 

correlation between the two quantities, with a higher correlation in CA1, suggesting that 

neurons that are important for encoding one variable are also important for encoding the 

other. This is partially explained by the fact that for both position and direction of movement 

the most active cells tend to be the most important ones. However, when we regressed out 

the components explained by the activity, we still found a positive correlation between the 

importance indices of the two variables (Fig. 7a). In addition, this could not be explained by 

a correlation between direction of movement and position (Fig. S11).
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We then focused on those cells that had a high importance for one variable and not for 

the other as candidate specialized cells. However, we could decode position from the most 

important cells for encoding direction of motion and vice versa, showing that even the most 

important cells for one variable carry information about the other variable in both regions 

(Fig. 7). We conclude that in both CA1 and DG, neurons have mixed selectivity to the 

variables we decoded, in line with recent studies both in CA1 (Meshulam et al., 2017) and 

in the cortex (Rigotti et al., 2013; Fusi et al., 2016; Hardcastle et al., 2017; Lindsay et al., 

2017). See also the Discussion.

So far, we have shown that the code that is used to represent position is distributed, 

i.e., all active cells contribute to some extent to the population code. We therefore 

sought to see if correlations between the activities of different neurons contribute to the 

decoding performance, in a way similar to what we described in Fig. 3. To understand the 

contribution of correlations to the encoding of position it is important to distinguish different 

components, and in particular the correlations generated by the signal (i.e., the position of 

the animal) and those that can be considered as noise (i.e., not related to the encoding of 

position). The signal component is induced by the tuning properties of individual neurons. 

For example, two place cells that have highly overlapping fields are going to be correlated 

since they tend to be co-active when the animal is at a particular location. Noise correlations 

represent the component that cannot be explained by the signal and they are essentially 

due to the fact that every time the animal is at particular location the neural response can 

be different. Noise correlations can be beneficial, detrimental or irrelevant for the neural 

code (Abbott and Dayan, 1999; Schneidman et al., 2003; Brody, 1999). However, our initial 

hypothesis was that a large portion of the noise variance can be explained by the fact 

that neurons encode multiple variables besides position (see Discussion). For example, the 

different points that encode the same position in Fig. 3 might correspond to visitations 

in which the head direction and/or the speed were different. In this case, destroying the 

correlations would result in a decrease or no change in decoding performance (Fig. 8a).

We devised a procedure to shuffle the data in a way that destroys the noise correlations 

across neurons maintaining the spatial tuning of each cell (see Methods and Fig. S14). 

We then studied the effect of this procedure on the decoding accuracy for position. At 

each pass through a location, we randomly picked the activity of a cell from the pool of 

recordings corresponding to that location and that cell (Fig. 8b). We then corrected for the 

different time spent in each pass at the same location and repeated the procedure for all 

cells independently. By using this procedure we effectively destroyed the noise correlations 

between neurons because, after this manipulation, each cellâ s activity was independent 

from the others. However, by restricting the manipulation to each discrete location, we did 

not alter the spatial tuning of the cells (Fig. 8c) nor the signal correlations among neurons 

induced by their tuning profiles. By comparing the performance of the decoder on the 

modified data to the one on the original data, we could then assess the contribution of the 

noise correlations to decoding. This is a direct test of the presence of a structure in the 

neural representations that is beneficial for representing information (Abbott and Dayan, 

1999; Averbeck and Lee, 2006; Pillow et al., 2008; Eyherabide and Samengo, 2013). In 

4 of the 6 analyzed animals we found that the decoding error increased when correlations 

were destroyed through the shuffling procedure, revealing the importance of correlations 
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(Fig. 8d). The effect was very consistent in CA1 neurons where performance was reduced 

by about 20%, whereas almost no effect was observed in DG (see Fig. S14). Pairwise 

correlations were found to be lower in DG than in CA1 (Fig. S16) and this may partially 

explain the main effect that disrupting correlations can lead to different changes in decoding 

accuracy in the two areas. However, it might only partially explain the effect because 

the correlations are not completely absent in DG and those that we observed certainly 

change after disrupting the noise correlations (for an analysis on how destroying correlations 

impacts pairwise correlations and importance index see Fig. S16 and Fig. S23).

DISCUSSION

Neurons in the DG and in CA1 have rather diverse response properties and often the 

responses are not easily interpretable (Danielson et al., 2016; Leutgeb et al., 2007). Despite 

this seemingly disorganized neural code, it is possible to decode from the activity of a 

population of neurons the position, the speed and the direction of motion of the animal. 

Neurons respond to mixtures of the decoded variables as observed in other high cognitive 

brain areas (Rigotti et al., 2013; Fusi et al., 2016). The information about these variables 

is highly distributed across neurons to the point that the responses of individual neurons 

are only weakly predictive of their contribution to the neural code. It is therefore crucial to 

consider neurons in one region of the brain as part of an ensemble to assess their importance 

for processing and transferring information about a particular variable.

One implication of such distributed neural code is that it can be misleading to characterize 

the function of a brain region based only on the statistics of individual neuron properties. 

In the specific case of position encoding, for instance, it is not possible to conclude to what 

extent the position of the animal is encoded only by analyzing the tuning of individual cells 

to space. Indeed, populations of cells whose activities do not pass a selectivity criterion for 

space encoding, for example through an information theoretical approach, may still encode 

position via the ensemble activity patterns, as we showed by decoding position and direction 

of motion from untuned cells in both DG and CA1 regions of the hippocampus.

The population coding rescues the ability of these areas to encode position despite the 

sparsity of its activity and the variability of its representations. Here we show that 

indeed even few tens of cells encode position with high precision in both analyzed 

areas. Furthermore, the decoding was accurate even when model training and model test 

periods were separated by up to 18 minutes, indicating that at the population level the 

representations were stable, despite the elevated variability of individual cells (see Fig. S12).

Our findings are in line with studies suggesting that session averaged, single cells statistics 

fall short in describing the activities of hippocampal cells. For example, while place fields 

are widely used to analyze DG activities in remapping studies (Leutgeb et al., 2007), it is 

only when sub-second network discharge correlations are taken into account in the analysis 

that memory discrimination signals can be revealed (van Dijk and Fenton, 2018). More 

importantly, we address one important question about the role of non-place cells in CA1 

and DG areas of the hippocampus. A recent work by Meshulam and colleagues (Meshulam 

et al., 2017) used a maximum entropy model to describe the neural activity recorded in 
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CA1. The model is constructed from the second order statistics (the correlations between 

neurons) and it accurately predicts the activity of each neuron from the state of all the 

other neurons in the network, regardless of how well that neuron codes for position. They 

conclude that correlation patterns in CA1 hippocampus only partially arise from place 

encoding. Moreover, their results suggest that understanding the neural activity may require 

not only knowledge of the external variables modulating it (i.e., the position of the animal) 

but also of the internal network state. Our results indicate that the correlation patterns 

not due to position encoding can be partially explained by the encoding of other external 

variables (e.g., the direction of movement). However, it is likely that some components of 

the correlation patterns encode the internal state of the animal, as suggested by Meshulam 

and colleagues (Meshulam et al., 2017). Our analysis also shows directly that the non-place 

cells contribute to the encoding of the position of the animal. This is partially due to the fact 

that some of the cells, if taken individually, encode position only weakly and hence do not 

pass the statistical test for being categorized as place cells (the criterion used by Meshulam 

and colleagues to select place cells is similar to ours (Meshulam et al., 2017)). However, 

non-place cells contribute to position encoding also thanks to their correlations with place 

cells. Indeed, when the noise correlations are destroyed, the decoding accuracy decreases in 

CA1. This is compatible with their observation that place and non-place cells belong to the 

same network when the patterns of correlations are considered, but it also goes beyond their 

analysis because it shows directly that correlations are important for encoding position. In 

conclusion, to study the neural code in one particular region of the brain one has to consider 

all cells in a population as the tuning properties which are based on single cell statistics 

might not be sufficient to understand how task relevant variables are encoded (see also (Fusi 

et al., 2016; Kriegeskorte and Douglas, 2019; Saxena and Cunningham, 2019)).

Poor spatial tuning and the advantages of mixed selectivity

One of the important observations that we discussed in the article is that there is a large 

proportion of cells that exhibit poor spatial tuning. The computational advantage of poor 

spatial tuning can be understood only when one considers a situation in which the neurons 

in a population encode not only the position of the animal, but also several other variables 

(e.g., head direction, the velocity of the animal and other unknown variables that are not 

under control in our experiment). This can be implemented in different ways. For instance, 

each variable could be encoded by a different group of highly specialized neurons. However, 

these representations are low dimensional and hence they greatly limit the number of 

combinations of input variables that a linear readout, or a downstream neuron can respond 

to (see for instance (Fusi et al., 2016)). One simple example is a downstream neuron that 

must respond when the animal is looking at the center of the arena from two opposite 

corners. Such a simple situation is equivalent to the exclusive-or (XOR) problem in which 

the combinations of variables (position and head direction) that should activate the neuron 

(animal looking at the center of the arena) and those that should not (same positions, animal 

looking in the opposite directions) are not linearly separable. Instead, when head direction 

and position are mixed non-linearly the neural representations can be high dimensional and 

a linear readout can separate any set of combinations of inputs from the others. This is why 

in most problems that involve at least two variables, mixing non-linearly all the relevant 

variables is beneficial. Mixing position with other variables, like head direction, leads to 
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relatively poor spatial tuning but it also confers more flexibility to linear readouts, greatly 

increasing the computational ability of the network.

In our paper we showed that also our data supports the hypothesis for mixed selectivity, 

already entertained by previous research, in the specific case of spatial representations in the 

hippocampus. We verified this hypothesis by showing that neurons in DG and CA1 encode 

multiple spatial variables, not only position, through decoding. In such a situation it is 

possible, and very likely, to find that neurons that do not explicitly encode position, i.e., they 

do not have a significant spatial tuning, but are still important to discriminate between pairs 

of locations through correlations imposed by the geometry of the neural representations. 

In the cartoon of Fig. 3, for instance, we show how the modulation of activity imposed 

by correlations can be used by a decoder to perfectly discriminate two locations (see 

also recent reviews in (Kriegeskorte and Douglas, 2019; Saxena and Cunningham, 2019)). 

That modulation must therefore be intended as the result of the population response to 

combinations of variables which include position, speed, movement direction, and possibly 

other variables that were not under our control (Allegra et al., 2019). We modeled such 

situation in Fig. S15 and found regimes in which correlations imposed by other variables 

help and situations where they do not have a significant effect on decoding performance 

depending on the geometry of the neural representations. Taken together, our results show 

the advantages of a distributed code in that it can reliably represent multiple combinations of 

variables.

The encoding role of correlations

Destroying correlations among neurons did not have a strong impact in decoding 

performance in DG neurons but it consistently reduced decoding performance in CA1 data. 

Whether neural correlations are used in the population code is a long-standing question. 

In the data, it has been shown in the past that the pair-wise correlations accounted only 

for about 10% of the information contained in neural activities (Averbeck and Lee, 2006; 

Latham and Nirenberg, 2005; Schneidman et al., 2006) while using models that exploit 

higher-order correlations can recover about 20% of information related to the stimulus in a 

population of retinal ganglion cells (Pillow et al., 2008). Here we showed that the disruption 

of correlations leads to relatively modest but statistically significant decrease in decoding 

accuracy in CA1 but not in DG.

These observations indicate that the correlations that we are destroying should be considered 

as signal correlations rather than noise correlations, at least in CA1. The variability across 

visitations can probably be explained by the fact that neurons encode multiple variables 

in a consistent way and may induce the observed neural correlations (Wood et al., 1999; 

Allegra et al., 2019). This situation would be similar to the one discussed in Fig. 3 (e.g., 

pass 1 and 2 would correspond to two visitations of location A with a different direction 

of motion), i.e., the disruption of the correlations decreases the performance of the decoder. 

In Fig. S15 we show in simulations that this is indeed the case. We considered a model 

in which the neural activity depends on multiple variables, for instance the position of the 

animal, the direction of motion, etc. Each variable can assume a discrete set of different 

values and every set of values of the encoded variables defines one specific condition. We 
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then constructed different neural representations by arranging the different conditions in the 

space of neural activities. In particular, we considered two scenarios, one with unstructured 

representations, whereby different conditions are represented by different random vectors 

in the activity space, and one with a kind of structured geometry which is beneficial for 

generalization across conditions (Bernardi et al., 2018). In both cases the encoded variables 

are linearly separable, i.e., they can be decoded with a linear classifier. We then compared 

the linear decoder’s performance before and after destroying the correlations, as we did in 

the real data, for different numbers of conditions in each scenario.

In most of the scenarios that we simulated, the decoder performance is either disrupted 

or it remains the same when the correlations are destroyed. The beneficial effect of the 

correlations is maximal when the representations are fairly unstructured. In the case of 

random representations, the effect is maximal for a certain number of conditions. This 

number depends on the number of encoded variables and on the number of values that each 

variable can hold (i.e., the total number of conditions). Our experimental observations that 

show that the decoder’s performance is disrupted more in CA1 than in DG are compatible 

with a scenario in which the representations in CA1 are unstructured, similarly to the 

simulated representations obtained with the random model. Our results also show that 

the representations in DG are compatible with at least two scenarios: 1) they could be 

structured, as we described them in Fig. S15d–f, or 2) they could also be unstructured as 

in CA1 but with a different number of encoded variables, either very small or very large. 

It is important to stress that the scenarios studied in Fig. S15 are all plausible in the sense 

that they are based on representations that have already been observed in other studies 

(Rigotti et al., 2013; Bernardi et al., 2018). However, the examples we report are certainly 

not exhaustive and so we cannot exclude that other codes that we did not consider may be 

more appropriate to describe DG and CA1 representions.

One alternative explanation for the difference between CA1 and DG comes from the fact 

that the performance reduction that follows the disruption of correlations depends on the 

level of activity of the cells, and that CA1 and DG exhibit different levels of activity. 

However, in our data this difference in activity levels could not fully account for the 

difference between CA1 and DG in the effect of destroying correlations as we did not 

observe any performance reduction in DG when the level of activity was matched to the one 

observed in CA1 (Fig. S14).

Our simulations in which multiple variables are encoded are compatible with recent models 

of the hippocampus that emphasize its role in memory compression (Gluck and Myers, 

1993; Benna and Fusi, 2019), and memory prediction (Dayan, 1993; Stachenfeld et al., 

2014, 2017; Gershman et al., 2012; Recanatesi et al., 2018; Whittington et al., 2019): for 

all these models the neural representations in the hippocampus are constructed by learning 

the statistics of the sensory experiences in order to generate a compressed representations of 

the memories to be stored, or, when focused on temporal sequences, to generate a prediction 

of the next memory (successor representation). Future theoretical work will establish more 

quantitatively whether this scenario is fully compatible with our observations and what the 

different roles of CA1 and DG could be in this compression process.
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Average activity in DG is larger than in CA1

One of the observations that require some discussion is that the average activity in DG 

is larger than in CA1 in our data. This might sound surprising, but a careful review of 

the literature shows that our observations are compatible with other studies (see Fig. S3 

and Table S1). Indeed, the average firing rate that is reported varies from study to study 

depending on the recording technique, the type of experiment and whether rats or mice have 

been employed. Our conclusion is that our results fall within the range of values reported in 

the existing literature. The review reported in the Supplementary Material is not exhaustive 

by any means, but we believe it is highly representative of the existing literature.

Conclusion

Our results strengthen the hypothesis that the neural code in the DG and in the CA1 area 

of the hippocampus is highly distributed and that it is important to analyse it using a 

population approach (Fenton et al., 2008; Meshulam et al., 2017; van Dijk and Fenton, 

2018). The analysis of the averaged response properties of individual neurons is certainly 

informative but it is not sufficient to characterize the neural code of a brain area. Critically, 

the role of the DG and the CA1 area of the hippocampus should be revisited in light of our 

observations. The methods that we propose will shed new light on the general role of other 

brain areas implicated in high level cognitive functions such as spatial navigation and in 

which place cells are not observed.

STAR ★ METHODS

Resource Availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Stefano Fusi (sf2237@columbia.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The datasets and analysis code supporting the current 

study are available from the lead contact on request.

Experimental Model and Subject Details

Mice—All procedures were conducted in accordance with the U.S. NIH Guide for the Care 

and Use of Laboratory Animals and the institutional Animal Care and Use Committees at 

New York State Psychiatric Institute and UCSF. Adult male C57BL/6J mice were supplied 

by Jackson Laboratory and were used beginning at 8–12 weeks of age. Mice were co-housed 

with litter mates (2–5 per cage). Mice were maintained with unrestricted access to food and 

water on a 12-hour light/dark cycle.

Viral Constructs—For calcium imaging, AAVdj-CaMKII-GCaMP6m was packaged 

and supplied by Stanford Vector Core at titers of ~ 4X1012 vg/ml, and AAV1-Syn-

GCaMP6f.WPRE.SV40 was packaged and supplied by U Penn Vector Core at titers of ~ 

2X1012 vg/ml.
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Method Details

Calcium imaging.—Mice were prepared for in vivo calcium imaging as previously 

described (Resendez et al., 2016). For dorsal DG imaging, mice were injected with a virus 

encoding GCaMP6m (AAVdj-CaMKII-GCaMP6m) at the following coordinates: −1.95AP, 

1.4ML, 2.2, 2.1, 2.0, 1.9 DV, ~ 90 nl per site) and a ~ 1.0 mm diameter, ~ 4 mm long 

GRIN lens (Inscopix, Palo Alto, CA) was implanted at (−2.0AP, −1.4ML, −1.95 DV). 

For dorsal CA1 imaging, mice were injected with a virus encoding GCaMP6f (AAV1-Syn-

GCaMP6f.WPRE.SV40) at the following coordinates: (-2.15AP, 1.85ML, −1.55, −1.65DV, 

256nl per site) and a GRIN lens was implanted at (-2.15AP, 1.30ML, −1.30DV). Three 

weeks after surgery, mice were checked for GCaMP expression with a miniaturized 

microscope (Inscopix, Palo Alto, CA) with procedures previously described (Resendez et al., 

2016). Anesthetized mice were checked for GCaMP+ neurons and a baseplate was attached 

to the skull at the optimal imaging plane. For all the mice presented in this report the 

histology confirmed the adequate placement of the lens (Fig. S22). For dorsal DG imaging, 

one week later, mice were imaged during foraging in an open field task and were habituated 

to the room and enclosure (30min), then 24 hours later they were imaged as they foraged 

for sucrose pellets in an open field enclosure (50cm 2). For dorsal CA1 imaging, mice were 

imaged during exploration of an open field enclosure. Mice were habituated to the room and 

enclosure (10 minutes) and then imaged 30 minutes later. Imaging frames were recorded 

with nVista acquisition software (Inscopix, Palo Alto, CA), and time-synced behaviour was 

acquired using EthoVision XT 10. Calcium imaging videos were acquired at 15 frames per 

second with 66.56 ms exposure.

Quantification and Statistical Analysis

Behaviour data pre-processing.—The behaviour was recorded using a webcam 

(Logitech) mounted on the ceiling about 3 feet above the arena. The instantaneous position 

of the animal was then extrapolated from the video using custom code written in Python 

using the Scikit-image library (version 0.13.0). We first applied a 9 points piecewise affine 

transformation to correct for barrel camera distortions. We then applied a smoothing filter 

with a Gaussian profile to reduce the effect of pixel intensity noise due to low lighting and 

low image resolution and applied a threshold to the gray-scale converted image to get a few 

contiguous regions of pixels as candidate animal tracking. We then used a method based on 

the determinant of the Hessian to identify blobs in the pre-processed images and verified 

that the largest blob was consistently found to be corresponding to the animal silhouette. 

Hence, we used the centre of the largest blob as the tracked position of the mouse. We 

further temporally aligned the position data to the imaging data using linear interpolation 

and smoothed them with a 7 frames time window. Lastly, we identified the time bins in 

which the speed of the animal was lower than 2 cm/s for more than 1 s and discarded them 

from the analysis, unless specified.

Signal extraction and spike deconvolution.—All calcium movies were initially 

processed in Mosaic (Inscopix, Palo Alto, CA) for spatial binning and motion correction 

and subsequently analysed using a recently developed software algorithm written in Matlab 

(Mathworks) called CNMF-e (Zhou et al., 2018). Briefly, the algorithm separates the 

large, low-frequency fluctuating background components from the signal produced by of 
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multiple sources in the data, allowing the accurate source extraction of cellular signals. It 

involves a constrained non-negative matrix factorization problem optimized for endoscopic 

data whereby calcium temporal dynamics and the shape of spatial footprints are used as 

constraints. It includes 3 main steps which are iterated: obtain a first estimate of spatial 

and temporal components of single neurons without direct estimation of the background; 

estimate the background given the estimated neurons’ spatio-temporal activity; update the 

spatial and temporal components of all neurons while fixing the estimated background 

fluctuations. In each of these steps, manual intervention guided by visual inspection based 

on temporal profile and spatial footprint shape allowed to further improve the quality of 

the signal extraction. The result of this process consists of a list of deconvolved calcium 

events for each cell with associated time-stamp and magnitude and the convolved trace with 

a calcium decay profile estimated for each cell independently on the basis of the raw trace.

For our decoding analysis, we did not use the original traces, rather we used the events 

extracted with CNMF-e convolved with an exponential kernel. The time constant of the 

kernel was optimized to maximize the cross-validated position decoding performance and 

was equal for all neurons. The results depend only weakly on the kernel time constant, and 

qualitatively are the same (see Fig. S1). All other quantities derived from the calcium traces 

were computed using the calcium events, unless specified otherwise, and therefore their 

values do not depend on the shape of the kernel.

Place fields and heading direction tuning.—Place fields for each extracted source 

were constructed in a manner similar to established method applied to electrophysiology 

data (Leutgeb et al., 2007). We used the calcium events of each cell as its putative spiking 

activity. We then summed the total number of events that occurred in a given location, 

divided by the amount of time the animal spent in the location and smoothed using a 

Gaussian kernel centered on each bin. The rate in each location × was estimated as

r x =
∑i = 1

n g si − x
ℎ

∫0
T g y t − x

ℎ dt

where g is a Gaussian smoothing kernel, h = 5 sets the spatial scale for smoothing, n is 

the number of events, si is the location of the i-th event, y (t) the location of the animal at 

time t and [0,T) the period of the recording. In this and all subsequent analysis we removed 

the time bins in which the animal had a speed of less than 2 cm/s for more than 1 s, 

unless specified otherwise. Similarly, for heading direction tuning, we first discretized the 

directions of motion into 8 angular bins of 45 degrees each and then computed the mean 

event rate for each cell in each of the 8 bins.

Spatial information statistics.—To quantify the statistical significance of the rate maps 

we measured their specificity in terms of the information content of cell activity (Skaggs et 

al., 1993; Danielson et al., 2017; Allegra et al., 2019). We used a 16×16 square grid and 

computed the amount of Shannon information that a single event conveys about the animal’s 

location. The spatial information content of cell discharge was calculated as a mutual 
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information score between event occurrence per cell and animal position or equivalently 

using the formula:

SI = ∑
i = 1

N
pi

ri
r log2

ri
r

where i is the spatial bin number, p is the probability for occupancy of bin i, ri is the mean 

event rate at bin i and r is the overall mean event rate. We applied the same formula to 

the direction of motion after discretizing the full angle to 8 bins of 45 degrees. For both 

measures, we corrected for the sampling bias problem in information measures (Panzeri 

et al., 2007) using shuffled distributions of event occurrences as follows. For each cell 

independently, we discretized time, generating a long vector of 0’s (no event) and 1’s 

(event). We then randomly permuted the elements of this vector and for each permutation we 

computed the resulting spatial information. We repeated this procedure 1000 times, therefore 

obtaining 1000 values of spatial information to which we compared the original information 

content (Ziv et al., 2013; Danielson et al., 2017; Meshulam et al., 2017; Allegra et al., 2019). 

We labeled a cell as place cells or a heading direction cell if the original value of spatial 

information exceeded 3 sigmas from the shuffled distribution (see also S2 and S3 and Table 

S1).

Decoding position.—For all the datasets, unless otherwise specified, we used 10-fold 

cross validation to validate the performance of the decoders. We divided the trial in 10 

temporally contiguous periods of equal size in terms of number of datapoints after excluding 

datapoints corresponding to immobility. We then trained the decoders using the data from 

9 of them and tested on the remaining data. To decode the position of the animal, we 

first divided the arena into 8×8 equally sized, squared locations. We then assigned at each 

time bin the label of the discrete location in which the animal was found. For each pair 

of locations, we trained a Support Vector Machine (SVM) classifier (Cortes and Vapnik, 

1995) with a linear kernel to classify the cell activities into either one of the two assigned 

locations using all the identified cells, unless specified otherwise. We used only the data 

corresponding to the two assigned locations and to correct for unbalanced data due to 

inhomogeneous exploration of the arena we balanced the classes with weights inversely 

proportional to the class frequencies (Pedregosa et al., 2012). The output of the classifiers 

was then combined to identify the location with the largest number of votes as the most 

likely location (Bishop, 2006). For each choice of train and test set, we computed the median 

decoding error as the median of the physical distance between the centre of the decoded 

discrete location and the actual position of the mouse in each time bin of the test set, unless 

otherwise specified. The final decoding performance was then computed as the mean of all 

the median errors across the different choices of train and test sets.

Chance level decoding performance—To assess the statistical significance of our 

decoders, we computed chance distributions of decoding errors from shuffled data. This 

can be done in different ways and we chose a conservative procedure that maintained some 

structure of the data while destroying the relation between the behavior, e.g., the animal’s 

position, and the calcium event time series. Briefly, we discretized time obtaining a vector 
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of positions (or other behavioral variables). We then flipped this vector in time (e.g., the 

last data point of position became the first datapoint and vice versa) an then shifted the 

whole vector in time by a random amount in a torus, i.e., points that went beyond the time 

limits of the data were reinserted from the other side. This procedure destroys the relation 

between behavior and neural activity, but preserves the time correlations of both the time 

series representing behavior and, of course, the time series of the neural activity (which 

remains untouched). For each random shift, we trained a new decoder on the data and pooled 

all the errors obtained. We finally assessed the statistical significance of the decoding error 

for the 10-fold cross-validation of the original data by comparing it to the distribution of 

errors obtained from the manipulated data using the non-parametric Mann-Whitney U test, 

from which we obtained a p-value of significance. We implicitly assumed that the 10 folds 

are statistically independent (the 10 testing time intervals considered for the 10 folds did 

not have any overlap). This is the procedure we used in all our figures unless specified 

otherwise.

Another less conservative shuffling strategy is to manipulate the calcium events. We 

assigned a random time bin to each calcium event for each cell independently while 

maintaining the overall density of calcium events across all cells, i.e., by choosing only time 

bins in which there were calcium events in the original data and keeping the same number 

and magnitude of the events in each time bin. This method destroys spatial information as 

well as temporal correlations but keeps the overall activity across cells. We verified that our 

results did not depend on the particular strategy adopted (see Fig. S3 and Table S1).

Decoding the direction of motion.—One behaviourally relevant quantity that was 

available to us was the direction of motion of the animal. Unfortunately, the visual tracking 

didn’t allow for a direct estimate of the direction of motion. The head direction was also not 

easily measurable so we resorted to using the positional information to extract the direction 

of motion. We computed it by using two subsequent datapoints in the animal x-y trajectory. 

We discretized the values into 8 angles and then applied similar decoding strategies as for 

position decoding, i.e., we used a battery of linear-kernel SVM decoders to distinguish 

between pairs of angles after balancing the dataset through class weighting. We report the 

median error in radiant on the left-out data of the 10-fold cross validation. We applied the 

methods described above for position decoding for assessing the statistical significance of 

the results.

Decoding speed.—To decode the speed of movement of the animal we first computed 

the speed of motion using two consecutive positions and assigned the computed speed to 

the later time bin among the two. To decode the instantaneous speed of motion we used 

Lasso (Tibshirani, 1996), a linear regression analysis method that minimizes the sum of 

squared errors while selecting a subset of the input cells to improve decoding accuracy and 

interpretability of the results. We applied the methods described above for position decoding 

for assessing the statistical significance of the results.
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0.0.0.15. Bayesian decoder.

The Bayesian decoder is a theoretical optimal probabilistic method to decode information 

for the activity of the neural population. It is based on the Bayes rule and has been 

extensively used to decode position from electrophysiological data from the hippocampus 

(Zhang et al., 1998; Wilson and McNaughton, 1993). Briefly, if x is a discrete position in the 

arena, we estimate the position using:

P x ri = P rt x P x /P rt

where rt is the activity of the population at time t and assuming independent activity of 

different neurons. The algorithm computes P ( x | rt) for all discrete positions and assigns the 

predicted position to the one that maximises it:

xt = argmax
x

P x rt .

Importance index.—The importance index was introduced to quantify the contribution of 

each cell in a population to the decoding of a given quantity. We applied a modified version 

of a traditional method for feature selection in machine learning. In our analysis, a feature 

of the input space consists of one DG cell. Feature selection is performed using the weights 

of the decoder after fitting model to the data. In our case, since we employed multiple 

decoders, one for each pair of physical location in the arena, we introduced a method to 

combine the weights assigned to the cells by each decoder. We defined the importance index 

of cell i as:

ωi = ∑
k

wik

∑j wjk

where wik is the weight of the k-th decoder assigned to the i-th cell (and equivalently wjk is 

the weight of the k-th decoder assigned to the j-th cell). The indices i, j run through all cells 

in the population and k runs through all the binary decoders.

Procedure to destroy correlations.—To destroy correlations without impacting the 

spatial information of single neurons, we considered multiple passes through single discrete 

locations in the arena. We then shuffled the calcium event occurrences between different 

passes in the same location. Importantly, we corrected the activity of each pass for the 

different amount of time spent in each pass by radomly sampling events instead of replacing 

them in order to reduce artifacts. We verified that the correction does not impact decoding 

when sampling from the same pass (see Fig. S14).

Software—The data analysis has been performed using custom code written in Python 

(version 2.7.12) and routines from the Scipy (ver. 0.19.0), Numpy (ver. 1.11.3) and the 

Scikit-learn (0.19.1) (Pedregosa et al., 2012) packages. The source extraction has been 

performed using Matlab (Mathworks, R2016a) and CNMF-e (Zhou et al., 2018) using the 
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same parameters across animals and minimal manual intervention only for obvious non-cell 

like sources based on spatial profile shape and temporal profile dynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Position, direction of motion and speed are encoded in CA1 and DG neurons

• Single-cell tuning only weakly predicts a cell’s importance for position 

encoding

• Non-place cells contribute to position encoding

• Disrupting correlations between neurons leads to decreased decoding 

accuracy in CA1
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Figure 1. 
a) Experiment protocol. Mice were anesthetized with isoflurane and placed in a stereotactic 

apparatus. DG mice were then injected in the dorsal DG with a virus encoding GCaMP6m. 

Ca1 mice were injected with GCaMP6f. Mice were then implanted with a GRIN lens and a 

baseplate was attached to the skull at the optimal imaging places. Three weeks after surgery 

they were checked for GCaMP expression with a miniaturized microscope (Inscopix, Palo 

Alto, CA) and procedures previously described (Resendez et al., 2016). Recording site. The 

imaging plane was later assessed through histology. b) DG recording site. GCL, granule 

cell layer; SGZ, subgranular zone. c) CA1 recording site. d–g) Automated signal extraction 

using CNMF-e (Zhou et al., 2018). The algorithm identifies the spatial (left) and temporal 

(right) components of the signal sources, i.e., putative cells. It uses a generative model of 

Calcium traces and non-negative matrix factorization to separate actual signal sources from 

the background due to diffused neuropil fluorescence. The extracted spatial components are 

displayed in d (DG) and f (CA1), where a few representative ones are highlighted. The 

corresponding signals are shown in panels e (DG) and g (CA1) in which vertical ticks 

correspond to the times of the inferred Calcium events and gray lines to the temporal profiles 

(see Fig. S1). In line with electrophysiology studies, dentate gyrus granule cells are sparsely 

active but often in bursts (Pernía-Andrade and Jonas, 2014). Scale bars are 1 min and 1 sd.
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Figure 2. 
Decoding position, speed and direction of motion. a, b) Decoding results for a representative 

DG mouse. See Supplemental Material online for a decoding video. a) Selected frames of 

a video showing the arena and a DG animal from above. The black circle represents the 

mouse’s actual position and red circle is the decoded position, obtained with a probabilistic 

decoder that reads the activity of 317 DG cells (see Methods). Neural activity has been 

pre-processed to identify putative calcium events as explained in the Methods. b) Examples 

of decoding position, speed and direction of motion (DG representative mouse). Grey lines 

correspond to the real values of position and speed variables in the top left and lower left 

panels respectively while the red dots correspond to their decoded values. The time bins 

marked in light red in for position and direction of movement correspond to moments of 

immobility that have been excluded from the training data. The grey line in the right panel 

corresponds to the position of the mouse and the red arrows correspond to the decoded 

direction of motion in a 30 s time window. c) Decoding accuracy (top: DG; bottom: CA1). 

The decoding error for position and head direction is computed as the median distance 

between the decoded value in each time bin and the actual value of the decoded variable in 

the test data. For the direction of motion, the smallest angle between the decoded and the 

actual value is considered. The red vertical bars corresponding to the mean over the 10-fold 

cross-validation (error bars correspond to st. dev.). Grey: chance error obtained by decoding 

from shuffled data in a way that preserves the autocorrelations in the data (see Methods and 

Fig. S5). Number of cells: 483, 309, 317 in DG mice; 371, 286, 206 in CA1 mice. See also 

Fig. S4–S7, S12.
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Figure 3. 
The contribution of untuned cells for encoding position. We show an extreme situation 

in which one simulated neuron has the same activity distribution when the animal is 

in two different locations of the arena. Hence the neuron is not selective to position. 

Nevertheless, for a decoder this neuron can be as important as other selective neurons due to 

its contribution to the population coding. a) Activity of two simulated neurons as a function 

of time. Top: The simulated animal visits the same discrete location twice (location A in 

green, location B in red). Bottom: Simulated traces around the time of passage through 

each location. Different responses for the two neurons are elicited by different experiences, 

for example due to the different direction of motion. b) Example of how place cells and 

non place-cells can be equally important for encoding the position of the animal. In the 

scatter plot, the x-axis represents the average activity of the first neuron during one pass 

and the y-axis is the activity of the second neuron. Each point in the space represents an 

average population response in a single pass. Their responses are typically highly variable 

and are scattered around their mean values. The two neurons in the example have very 

different activity profiles: the first has a strong spatial tuning (place cell) while the second 

has only a weak tuning. The distributions of their activities in each location, reported along 

the axis, only partially (neuron 1, place cells) or almost completely overlap (neuron 2). 

Despite this variability in the single neuron responses, the neural representations at the 

population level are well separated, making it possible for a linear decoder (blue dashed 

line) to discriminate them with high accuracy. The resulting decoder’s weight vector has two 

equal components corresponding to the importance of the two neurons in encoding position. 

In this example both neurons are important for encoding position despite their very different 

tuning properties.
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Figure 4. 
Ranking neurons according to their contribution to the decoding accuracy for position. a) 

Validation of the importance index. In this figure we show the median error for various 

selections of 50 DG cells from a representative animal ranked by their importance index 

as obtained using the decoder’s weight. Each point in the plot is aligned to the rank of the 

first cell in the selection (for example, the first dot corresponds to the selection of the first 

50 cells from index 1 to index 50; the shaded region represents the standard error for the 

10-fold cross-validation). Grey: chance level and standard error. As expected, the median 

error for the population of the 50 top ranked (best) cells is much smaller than the median 

error for the worst last (worst) 50 ones. b) Spatial tuning maps for groups of 18 cells ordered 

by importance index. Same cells as in a. We ranked the cells using the importance index 

for position (see Methods). The three groups of best, mid and worst cells are highlighted 

with the color bands in a for reference. The maps are normalized to the peak rate in each 

map. Dashed red borders indicate cells that don’t pass the criteria for place-cells using a 

commonly used statistical test for tuning (see Methods). Even among the most important 

cells there appear some non place-cells (and vice versa). Similarly, some place cells appear 

in the group of cells with medium and low importance. The small fields in the group of low 

importance cells are due to significantly lower activities (see also Fig. 5). c) The position 

of both DG and CA1 animals can be decoded from the activity of the non-place cells 

with a performance significantly higher than chance (Mann-Whitney U test, ***p < 0.001). 

Number of cells: 451, 208, 98 in DG mice; 350, 277, 198 in CA1 mice. See also Fig. S2, S3, 

S8, S10, S24 and Table S1.
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Figure 5. 
Correlation between importance index and spatial information. a-b) Left: Scatter plot of 

importance index and overall cell activity for each cell in one representative animal. As 

expected, we found a strong correlation between these quantities because it is unlikely 

that a weakly active cell can contribute to decoding. Right: Scatter plot of importance 

index and statistical significance of spatial information with respect to independent random 

temporal shuffling of each cell’s identified calcium events. DG cells in a, CA1 cells in 

b. Each dot corresponds to one cell in one representative animal. Pearson’s correlation 

factor ρ between the plotted quantities are reported (***p < 0.001). Significant correlations 

are found between the analysed quantities but single cell statistics only partially capture 

the information available at the population level. For each quantity, overall histograms are 

reported on the side of the plot. The dashed red line corresponds to a value of a threshold 

of 3 used to define place cells (see Methods). c) Same plots as in a and b but for all cells 

identified in all FOVs in DG (left) and CA1 (right). See also Fig. S9, S13.
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Figure 6. 
Ranking neurons according to their contribution to the decoding accuracy for head direction. 

a) Validation of the importance index as in Fig. 4a but we ranked the cells according to 

the importance index for decoding direction of motion (see Methods). b) Tuning maps as 

in Fig. 4b. Here we show the tuning for direction of motion of single cells as polar tuning 

maps for groups of 18 cells ordered by importance index. The area colour represents the 

overall activity of the cell throughout the trial. Dashed red borders indicate cells that don’t 

pass the criteria for significant direction tuning using a commonly used statistical test (see 

Methods). As in the case of position tuning, some untuned cells appear among the most 

important cells and highly tuned cells appear among the least important. c) Scatter plots 

of cell activity and importance for position decoding for all identified cells combined from 

all FOVs in DG (left) and CA1 (right). Pearson correlation factor ρ between the plotted 

quantities are reported (***p < 0.001). d) Same as in c but for importance index for direction 

and significance of direction information.
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Figure 7. 
The representations for space and direction of motion are distributed in DG cells and CA1 

cells. a) Left: Scatter plots of importance index for position and direction of motion (top: 

DG cells in one representative mouse; bottom: CA1 cells). Each dot corresponds to one 

cell for which we computed the importance index for the variables we decoded. Pearson’s 

correlation values ρ are reported (***p < 0.001). Right: same as in left but the component 

of the correlation due to the correlation between importance index and cell activity has been 

removed from the data. Residuals from linear regression are considered for both quantities. 

Also the residuals show a positive correlation. c, f) Even the most important cells for 

encoding one variable carry information about the other variable. We show the decoding 

performance of position (left) and direction of motion (right) using the most important cells 

for direction and position (left and right plots respectively). See also Fig. S7.
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Figure 8. 
Destroying correlations impacts decoding performance in CA1 but not in DG. a) Procedure 

to test the presence of correlations between cells. We record neural activity during multiple 

passes through location A (green). Then for we generate a new recording by randomly 

choosing one of the activities recorded in that location for each cell independently. The 

green dot below the decoder’s discrimination line in the activity plot corresponds to the 

newly generated activity. We repeat this for all the passes through each location and for each 

cell independently, therefore destroying the correlations between cells, if any. In the extreme 

case depicted in the cartoon, this procedure will introduce errors in decoding position since 

the generated activity will be classified as the wrong location. b Cartoon activity traces for 

the two correlated neurons during the two passes through the same location. As described 

in a, we destroyed correlations by choosing for each neuron the activity during one of 

the passes through that location and combined them to generate a new activity pattern 

corresponding to that location. In this example, we chose pass 2 for neuron 1 and pass 1 for 

neuron 2. c Spatial tuning maps of four representative cells before and after the shuffling 

procedure to destroy correlations. The spatial tuning of the cells remain unaltered after the 

procedure (mean ± st. dev.; Mann-Withney U test, ***p < 0.001, **p < 0.01). d Decoding 

performance before (light colors) and after destroying correlations through shuffling (full 

colors). Top: DG animals. Bottom: CA1 animals. See also Fig. S14–S15, S24.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAVdj-CaMKII-GCaMP6m Stanford Vector Core Cat#GVVC-AAV-89

AAV-DJ-CaMKIIa-GCaMP 6 Stanford Vector Core Cat#GVVC-AAV-90

AAV1-Syn-GCaMP6f.WPRE.SV40 U Penn Vector Core Cat#AV-1-PV2822

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratory CAT#000664; RRID:SCR_004633; https://www.jax.org/index.html

Software and Algorithms

Ethovision XT 10 Noldus https://www.noldus.com; RRID:SCR_000441

Mosaic Inscopix https://www.inscopix.com

MATLAB Mathworks https://www.mathworks.com/products/matlab; RRID:SCR_001622

CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

Scikit-learn Pedregosa et al., 2012 https://scikit-learn.org

Decoding Algorithm This paper N/A

Spatial information Skaggs et al., 1993 N/A
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