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Abstract

Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours 

despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have 

fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies 

aimed at deconstructing the surrounding desmoplastic stroma and targeting the 

immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma 

is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated 

targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted 

and note the current understanding of the clinical outcomes that have unexpectedly contradicted 

preclinical observations. We also consider the more sophisticated therapeutic strategies under 

active investigation — multi-modal treatment approaches and exploitation of biologically 

integrated targets — which aim to remodel the TME against PDAC.

Pancreatic cancer, comprising mostly pancreatic ductal adenocarcinoma (PDAC), is an 

extremely lethal disease1, with 45,750 estimated deaths in the USA in 2019 (REF.2). 

Symptoms are often non-specific, which means that patients often present at advanced 

stages. Conventional cytotoxic chemotherapy constitutes the current standard of care for 

advanced or metastatic PDAC, providing only months of overall survival benefit3,4.

Carcinogenesis of PDAC involves progressive accumulation of driver mutations, including 

the oncogene KRAS5 and tumour suppressor gene TP53 (REF.6). These molecular 

perturbations are accompanied by histological changes that represent the different stages of 

PDAC development. Morphological evolution begins with the formation of precursor 

lesions, termed pancreatic intraepithelial neoplasia (PanIN)7, with increasing histological 

grades followed by progression to invasive adenocarcinoma. As the cancer develops, it leads 

to changes in the surrounding tissue stroma. A key function of any non-transformed tissue 
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stroma is to provide homeostatic response to injury with its immune, vascular and 

connective tissue components. However, cancer hijacks such physiological responses to 

create a favourable tumour microenvironment (TME) for its successful growth8. In the 

words of Harold Dvorak, cancer behaves like “wounds...that never heal”, and stromal 

transformation is a result of “wound healing gone awry”9.

Given the clear importance of the TME in tumorigenesis, approaches to target specific 

features within the TME have garnered much attention. For example, in the past decade 

advances in immuno-oncology have led to ground-breaking therapeutic options for multiple 

cancer types. However, even immunotherapeutic strategies, such as immune-checkpoint 

inhibition, have yielded limited responses in PDACs10. Furthermore, therapeutic strategies 

aimed at ablating the stromal barriers that restrict drug delivery have also demonstrated 

disappointing and contradictory responses11,12.

In this Review, we provide an overview of the complexities and the multi-faceted nature of 

several therapeutic targets within the PDAC microenvironment. We also examine some of 

the multi-modal strategies that are currently under investigation and designed to overcome 

the challenges by reprogramming the stroma into an antitumour milieu.

Limitations of targeting desmoplasia

A histopathological hallmark of PDAC is a desmoplastic reaction to the tumour; this 

hallmark is present in both primary and metastatic tumours13. Myofibroblast-like cells in the 

pancreas (that is, pancreatic stellate cells) are activated by cancer cells to produce fibrosis 

surrounding the tumour14,15. The resultant desmoplasia is known to be responsible for 

creating a mechanical barrier around the tumour cells, preventing appropriate vascularization 

and thus limiting exposure to chemotherapy and leading to poor immune cell infiltration16. 

Early research largely stemmed from the idea that the surrounding desmoplasia is tumour 

promoting (FIG. 1; BOX 1); this view of its role is an imperfect one. The current 

understanding is that desmoplasia is in fact multi-faceted and that a more holistic approach 

to targeting the stroma is warranted.

Matrix metalloproteinases

The surrounding extracellular matrix (ECM) has long been implicated in the regulation of 

cancer progression (for example, migration and invasion). Efforts in the late 1990s and early 

2000s focused on the non-specific alteration of the ECM within the surrounding stroma by 

targeting the proteins that remodel the ECM. Studies showed that proteolytic matrix 

metalloproteinases (MMPs) and tissue inhibitors of MMPs are differentially expressed 

between non-transformed pancreas and PDAC tissues, with higher expression of particular 

MMPs being associated with metastatic disease and/or poorer prognosis17–19. Increased 

expression of MMP2, a type IV collagenase detected within the stromal components in 

pancreatic cancer specimens, was found to increase invasiveness in vitro and to correlate 

with the degree of desmoplasia20–23. MMP7, a zinc-dependent endopeptidase predominantly 

expressed by glandular epithelial cells, is overexpressed in PanIN and PDAC24,25 and 

contributes to tumour growth and metastasis in a mutant Kras-driven mouse model of 

PDAC26.
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The interplay between stromal cells and cancer cells via MMPs is further exemplified by the 

role of the tumour cell-associated MMP inducer (EMMPRIN) in stimulating MMP2, MMP9 

and EMMPRIN production following co-culture of EMMPRIN-expressing tumour cells and 

fibroblasts27. These observations supported the rationale behind the development and 

application of multi-MMP inhibitors to suppress cancer progression in the B16 melanoma, 

colon xenograft and gastric xenograft mouse models28–30. Despite the preclinical successes 

in other cancers and overall tolerability in patients, MMP inhibitors such as marimastat and 

tanomastat failed to show any significant clinical activity in patients with advanced-stage 

pancreatic cancer31–33, suggesting that non-specific targeting of the ECM alone is not 

effective in pancreatic cancer.

Hyaluronan

A more specific approach to disrupting the ECM within the desmoplastic barrier is targeting 

hyaluronan, a non-sulfated glycosaminoglycan. Hyaluronan is a major constituent of the 

stromal ECM, and high deposition of hyaluronan in PDAC is associated with poor 

prognosis13,34. On the basis of this association, researchers investigated an enzymatic 

approach to targeting the desmoplastic barrier using human recombinant PH20 

hyaluronidase (PEGPH20). A 2013 study demonstrated that targeted depletion of 

hyaluronan led to improved vascular permeability and increased drug delivery in a mouse 

model of PDAC, leading to improved chemotherapeutic efficacy when used in combination 

with cytotoxic chemotherapy with gemcitabine34.

Subsequently, clinical trials investigated the effects of PEGPH20 with two standard-of-care 

combination chemotherapeutic regimens, gemcitabine plus nab-paclitaxel12 and 

FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan and oxaliplatin)11. A randomized 

phase II trial showed that the addition of PEGPH20 enhanced the effects of gemcitabine plus 

nab-paclitaxel as measured by improved progression-free survival (PFS)12, but another 

phase Ib/II trial showed that adding PEGPH20 reduced overall survival in patients receiving 

FOLFIRINOX11. Furthermore, a follow-up phase III trial revealed that combining 

PEGPH20 with gemcitabine plus nab-paclitaxel did not improve overall survival when 

compared with gemcitabine plus nab-paclitaxel alone (HR 1.00; P = 0.97)35. The failure of 

PEGPH20 to enhance the efficacy of chemotherapy does not necessarily exclude ECM-

targeting agents from future anticancer therapeutic developments but suggests that this 

component of the desmoplastic barrier does not sufficiently account for the ineffectiveness 

of chemotherapeutics in PDAC.

Sonic hedgehog signaling

Distinct from directly targeting a specific component of the ECM, another approach 

targeting desmoplasia is to focus on a specific signalling pathway responsible for the 

development of tumour stroma. The hedgehog signalling pathway is key in pancreas 

development. During embryogenesis, repression of endodermal Sonic hedgehog (SHH) by 

inhibin-βB and FGF2 permits expression of Pdx1 and insulin (Ins), which then initiates 

pancreatic differentiation36. The fact that SHH inhibition initiates pancreatic differentiation 

was corroborated by the observation that an inhibitor of SHH, cyclopamine, promotes 

heterotopic expansion of pancreatic tissues into adjacent endodermic areas37.
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Unsurprisingly, studies have shown that dysregulated hedgehog signalling leads to 

pancreatic carcinogenesis. SHH expression under Pdx1 control results in the development of 

tubular structures mimicking PanIN in mice genetically engineered to express mutated 

Kras38. Also, injury responses in the pancreas induce hedgehog signalling, which then leads 

to metaplasia with features of PanIN38. A 2008 study also showed that hedgehog signalling 

promotes desmoplasia, and that antibody-mediated inhibition and overexpression of SHH 

were associated with reduced and increased presence of desmoplasia, respectively39. 

Moreover, SHH overexpression provided paracrine stimulation of stellate cell differentiation 

and myofibroblast invasion39.

Given the evidence indicating that SHH contributes to both cell-intrinsic carcinogenesis and 

desmoplastic processes, inhibition of SHH was investigated as a therapeutic strategy in 

PDAC. In a mouse model of PDAC driven by Kras and Cdkn2a, tumours were found to 

overexpress SHH, and administration of cyclopamine suppressed tumour growth and 

prolonged survival in cancer-bearing mice40. Furthermore, similar to findings with 

hyaluronan, SHH inhibition in the KPC mouse model (where pancreatic cancer is driven by 

Kras and Tp53 mutations) led to improved vascular density within the tumour and increased 

antitumour efficacy of gemcitabine, resulting in improved survival41.

The results of clinical trials of SHH inhibition, however, have been largely disappointing. A 

randomized phase II study was stopped early because preliminary results showed that the 

combination of the SHH inhibitor saridegib and gemcitabine led to a higher rate of 

progressive disease than did placebo and gemcitabine42. A randomized phase Ib/II study 

showed that the addition of the SHH inhibitor vismodegib to gemcitabine did not improve 

overall survival or PFS43. Another study showed that adding vismodegib to gemcitabine plus 

nab-paclitaxel did not improve PFS over historical rates observed with chemotherapy 

alone44.

Reconciling contradictions

A number of lessons can be learned from the observed contradictions between preclinical 

and clinical responses and across several clinical trials focused on stromal desmoplasia. 

First, the potential for toxic effects occurring in humans that were not observed in mice 

makes incorporating novel therapies into any existing treatment paradigm challenging. In 

humans, the addition of PEGPH20 to nab-paclitaxel plus gemcitabine was associated with 

increased rates of thrombotic events and ultimately the need for the use of prophylactic 

anticoagulation12. MMP inhibitors and PEGPH20 were associated with the development of 

musculoskeletal symptoms, not unexpectedly as both MMP inhibitors and PEGPH20 could 

in theory alter physiological connective tissue remodelling12,31,32,45. Also, higher rates and 

severity of nausea, vomiting and diarrhoea were seen with PEGPH20 and FOLFIRINOX 

compared with FOLFIRINOX alone, which led to reduced treatment duration and dose 

reductions with the combination11. With these toxic effects occurring in the setting of novel 

combinations, the efficacy of standard regimens might be adversely affected by such reduced 

treatment durations and dose reductions. These examples illustrate that even judicious 

combinations based on rigorous preclinical studies of novel therapies with known 

mechanisms of action and safety data can lead to unexpected outcomes in clinical trials.
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Second, although the tumour-promoting role of desmoplasia is well established, 

accumulating evidence demonstrates that desmoplasia is not solely tumour promoting but 

rather a neutral reactive process to carcinogenesis that also has antitumour functions. 

Specifically, when studying the role of SHH in KPC mice, Shh deletion specifically within 

pancreatic cancer cells leads to decreased myofibroblastic and desmoplastic content in the 

stroma in association with reduced survival of the KPC mice, a poorly differentiated 

histology and increased metastatic ability46. The tumour-suppressive effects of SHH 

signalling were also observed in another study using Kras-driven and KPC models with 

genetic deficiency of Shh as well as in mice treated with the SHH inhibitor vismodegib from 

5 weeks of age47. Shh-null KPC tumours were also shown to exhibit significantly increased 

vascular density and sensitivity to anti-VEGFR therapy46.

The contradictory observations between the two outcomes of SHH inhibition in mouse 

experiments can be partly reconciled by the differences in the duration of SHH inhibition. In 

other words, acute SHH inhibition seems to help in breaking down the barrier to facilitate 

enhanced drug delivery, but chronic or early SHH inhibition eventually benefits the tumour. 

The optimal duration of stroma-targeted therapy is unclear at present. Together, these studies 

suggest that the natural function of the stroma is to restrain tumour growth, tumour 

angiogenesis and metastatic spread; however, during cancer development, the stromal cells 

(that is, surrounding fibroblasts) are reprogrammed by tumour cells to support tumour 

growth48. Indeed, the stroma is composed of a variety of different stromal cells that have 

both antitumour and tumour-promoting functions49,50.

Of note, the studies did not take into account the heterogeneity of stromal composition in 

PDAC. Although the stroma-targeted therapies in the preclinical models are tested against a 

relatively more homogeneous stromal content, previous observations established that 

patients with PDAC do in fact show a wide range of diversity within the desmoplasia13. 

Variability occurs not only between patients but also within patients, manifested by site-to-

site variability. One could speculate that stroma-targeted agents would be beneficial in sites 

with high stromal density and that they could be harmful in sites with low stromal density. 

Thus, a valuable approach might be to further develop non-invasive methods such as 

imaging to characterize or quantify the degree and type of stromal content within the tumour 

as a key component of trial design51. Also, according to consensus clustering of expression 

levels of key genes, the stroma could be classified as being ‘normal’ or ‘activated’, each 

portending a different prognosis52. Moreover, stromal heterogeneity is not an independent 

entity; rather, stromal heterogeneity is inherently linked with tumour heterogeneity as it is 

able to programme tumour behaviour (via quasi-mesenchymal or epithelial phenotype 

switching)53. The tumours of patients with metastatic PDAC on presentation were more 

likely to have a quasi-mesenchymal signature than an epithelial signature54. Interestingly, 

the quasi-mesenchymal and epithelial subtypes showed different responses to chemotherapy 

regimens54, with epithelial phenotype tumours being associated with a longer metastasis-

free survival than the quasi-mesenchymal phenotype. Therefore, a possibility exists that 

therapies aimed at the stroma might yield divergent effects owing to molecular 

heterogeneity.
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Stromal cells

Another approach towards reprogramming the ECM has been to focus on the cells that 

deposit the components of the ECM. Cancer-associated stromal cells or cancer-associated 

fibroblasts (CAFs) are a heterogeneous group of cells known to be major producers of ECM 

proteins. These generally spindle-shaped cells are positive for one or more activated 

fibroblast markers (for example, fibroblast activation protein (FAP) and a-smooth muscle 

actin) and classically have been linked with various tumour-promoting functions including 

tumorigenesis, angiogenesis, immunosuppression and metastasis, as reviewed elsewhere55.

Targeting of fibroblasts to treat patients with cancer was first assessed using inhibitors 

targeting FAP The first clinical trial of FAP inhibition was a phase II trial that used a 

humanized monoclonal antibody, sibrotuzumab, to inhibit CAFs in patients with colorectal 

cancer. This trial failed to meet its end point, and sibrotuzumab was not investigated 

further56.

Small molecule inhibitors of FAP have also been explored in pancreatic cancers. In 

subcutaneous mouse models of PDAC, the small molecule inhibitor UAMC-1110 did not 

demonstrate any meaningful activity as a single agent57. Similarly, a phase II trial showed 

that the combination of talabostat and gemcitabine, while relatively well tolerated, had very 

limited efficacy against metastatic PDAC58.

Given the lack of success with targeted FAP inhibition, researchers investigated the cellular 

depletion of activated fibroblasts. On the one hand, genetic deletion of a-smooth muscle 

actin-expressing fibroblasts in mouse models of PanIN or PDAC led to a disease with a more 

aggressive phenotype59, suggesting that fibroblasts naturally have a cancer-restraining 

function. Also consistent with the tumour-constraining functions of the stroma, pancreatic 

cancer cells co-cultured with irradiated fibroblasts showed increased invasiveness over 

pancreatic cells co-cultured with non-irradiated fibroblasts60. On the other hand, the 

adoptive transfer of T cells engineered with chimeric antigen receptors (CARs) specific to 

FAP (to deplete FAP-expressing CAFs) has been shown to disrupt tumour-promoting 

desmoplasia and to have antitumour efficacy in a mouse model of lung cancer and in KPC-

based pancreatic cancer61,62, motivating the clinical translation of CAR-T cell therapy 

against FAP (NCT03932565).

The direct targeting of CAFs, however, is complex and can result in unexpected biological 

outcomes. Studies on fibroblasts in the pancreatic stroma have revealed the heterogeneity of 

CAFs by highlighting their phenotypic and functional diversity49,50,53,63 (FIG. 1). 

Fibroblasts are cells that typically facilitate homeostatic wound repair, but cancer has the 

ability to co-opt their function. Specifically, researchers previously discovered that cancer-

led signalling via IL-1 or transforming growth factor-β (TGFβ) can differentiate surrounding 

fibroblasts into inflammatory CAF and myofibroblastic CAF phenotypes, respectively64. 

IL-6 secreted by inflammatory CAFs then provides pro-proliferative effects on the tumour 

whereas myofibroblastic CAFs are stimulated by TGFβ to produce the surrounding stroma. 

Subsequently, a third subtype of CAFs was characterized that express MHC class II 

molecules and have the ability to present antigens to CD4+ T cells, suggesting that some 

CAFs are important for shaping the antitumour immune responses49.
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Again, instead of simply eliminating the stromal fibroblasts from the TME, a more 

sophisticated approach might be to exploit the altered microenvironment, particularly the 

immune TME, that occurs as a result of stromal reprogramming by tumour cells. As proof of 

concept, a 2019 murine study demonstrated that the addition of PEGPH20 significantly 

enhanced the effects of cancer-specific vaccines in promoting T cell infiltration into the 

TME65. Another study in KPC mice showed that depletion of FAP+ CAFs resulted in the 

immune control of tumour growth and an effective response to immune-checkpoint 

inhibitors (ICIs)66. Both of these studies elucidated the importance of CXCL12–CXCR4 

signalling as a means of stromal–immune crosstalk, presenting yet another target for therapy.

Related to these preclinical observations, although not specific to pancreatic cancer, a 

clinical trial examining the efficacy of combining the antibody targeting PD-1 

(pembrolizumab) and the FAP inhibitor talabostat is ongoing (NCT03910660). One small 

molecule inhibitor of CXCR4, AMD3100, which demonstrated efficacy in the KPC mouse 

model in combination with anti-PD-1/PD-L1 signalling66, is now being studied in patients 

with metastatic pancreatic cancer in combination with an anti-PD-1 inhibitor 

(NCT04177810). Another CXCR4 antagonist, the peptide-based motixafortide (BL-8040), is 

also under active investigation to treat PDAC in combination with standard chemotherapy 

and pembrolizumab, with encouraging results (NCT02826486)67. These findings are 

generally consistent with the perspective that a multi-modal alteration of the TME 

combining stromal and immune modulation is probably a more appropriate therapeutic 

approach instead of targeted depletion; however, caution is needed given that the 

combination of nivolumab, an antibody against PD-1, and the anti-CXCR4 monoclonal 

antibody ulocuplumab failed to demonstrate efficacy against PDAC (NCT02472977).

Immune compartment targeting in PDAC

Immune cells in the TME have a key role in the development and progression of pancreatic 

cancer. Inflammation has long been linked with PDAC according to epidemiological studies, 

as reviewed in depth elsewhere68. In a KrasG12V-driven model of PDAC, pancreatic 

inflammation from exposure to caerulein was essential for carcinogenesis69. Furthermore, 

using this model, inflammation was shown to inhibit an oncogene-induced senescence 

programme that physiologically prevents adult acinar cells or precursor lesions from 

persistent progression towards invasive carcinoma70. In addition, studies have established 

the Kras-specific immune recognition of mutant Kras-driven cancers using a murine lung 

tumour model71, T cells from patients with colon cancer72,73 and T cells from patients with 

pancreatic cancer73,74. These studies have demonstrated a clear link between immunological 

processes and PDAC carcinogenesis. Despite these findings, PDACs are typically known as 

immunologically ‘cold’ tumours. Analyses of large PDAC genomic datasets showed that 

only a subset of pancreatic cancers are immunologically active75,76. Studies have identified 

high tumour mutation burdens exhibiting neoantigenicity to be a key characteristic of 

inflamed tumours, especially melanomas and lung cancers. However, PDACs have relatively 

low tumour mutation burdens77–79, which is consistent with the limited responses observed 

when PDACs are treated with ICIs80,81.
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Presenting PDAC antigens to the immune system

To overcome the issue of low immune recognition of PDACs, researchers have explored 

several vaccine therapy approaches to enhance antigen presentation and drive expansion of 

tumour-specific T cell clones82 as a way to elicit novel or boost pre-existent immune 

responses. Strategies targeting PDAC-associated antigens (including telomerase83, 

KRAS84,85, gastrin86, CEA87, MUC1 (REF88) and mesothelin89,90) have included peptide-

based vaccines83–85, virus-based vaccines87,91, Listeria-based vaccines90, DNA-based 

vaccines (neoantigens)92,93 and cell-based vaccines88,89,94. On the basis of the results of a 

multitude of studies, vaccination strategies have now been well established to yield antigen-

specific immunological responses in patients with PDAC83,85,90,95.

Studies have also demonstrated that the use of lethally irradiated allogeneic cell-based 

vaccines engineered to express granulocyte–macrophage colony-stimulating factor (GM-

CSF), such as GM-CSF secreting allogeneic pancreatic tumour cell vaccine (GVAX), 

successfully recruited immune cell aggregates into the TME with activated signatures and 

enhanced T cell repertoires96,97. Despite positive immunological responses and encouraging 

findings in early phase trials, many vaccines including TeloVac (telomerase), Primo Vax 

(telomerase), PANVAC-V (CEA and MUC1) and algenpantucel-L (two allogeneic PDAC 

cell lines) failed to show significant clinical benefit in phase III trials82.

The major theme from this series of findings is that vaccination strategies alone might not be 

sufficient for generating clinically meaningful antitumour effects. Thus, studies are ongoing 

to explore the effects of combining vaccination strategies with other therapeutic modalities. 

Importantly, the fact that the overall clinical effect of vaccination strategies is limited despite 

positive immune recognition of tumours suggests that other immunosuppressive pathways 

that restrict successful antitumour immune responses are present and could be targeted and 

reversed.

Targeting immunosuppressive cells to modulate the immune TME

PDAC development is intertwined with multiple types of immunosuppressive cells, 

including regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs) and tumour-

associated macrophages (TAMs), and leads to an inherently immunosuppressed TME.

A mechanistic link between KRAS mutations and immunosuppressed TME of PDAC has 

previously been characterized, in which KrasG12D-dependent upregulation of GM-CSF can 

lead to recruitment of Gr1+CD11b+ MDSCs and limit antitumour T cell activity98. In fact, 

infiltration of immunosuppressive cells is detected very early in PDAC carcinogenesis. In 

the Kras-driven mouse model of PDAC, Treg cells and MDSCs dominated the immune 

infiltration in early PanIN; effector T cells were scarce and generally lacking activation99. 

Similarly, in a TGFα-overexpressed Tp53-mutated mouse model of pancreatic cancer, 

MDSCs were detected in premalignant lesions within the pancreas100.

Analogous to the findings in mouse models, Treg cells are observed in human PanIN and 

increase with progression to PDAC, and increased prevalence of Treg cells confers poor 

prognosis for patients with PDAC101. In delineating the function of Treg cells and MDSCs, 

several depletion experiments established Treg cells to be suppressors of antitumour immune 
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responses, as reviewed elsewhere102. However, a precise understanding of MDSCs has been 

difficult to achieve given their heterogeneity in both mouse and human contexts103. 

Nevertheless, MDSCs — which can be further subtyped into being monocytic or 

granulocytic — are known to also exert immunosuppressive effects on T cells via arginase, 

nitric oxide synthase, TGFβ, IL-10 and COX2 (REF.103).

In addition to Treg cells and MDSCs, TAMs are known to be involved in PDAC 

carcinogenesis as their infiltration accompanies KRAS G12D-mediated inflammation104. 

Macrophages have been shown to drive pancreatic acinar-to-ductal metaplasia via secretion 

of TNF, RANTES and induction of MMP9 (REF.105). They also secrete IL-6 to drive 

progression of early lesions via the JAK-STAT3 signalling pathway106. TAMs are not just 

able to promote cancer growth, they also foster cancer invasiveness by stimulating 

angiogenesis and inhibit natural killer and T cell function by expressing non-classical MHC 

class I molecules (for example, HLA-G) and ligands of co-inhibitory receptors PD-1 (PD-L1 

and PD-L2) and cytotoxic T lymphocyte antigen 4 (CTLA-4)107. In the early stages of 

carcinogenesis, PanIN interacts with macrophages in the TME via IL-13 to polarize them 

towards a more immunosuppressive phenotype (that is, an M2 subtype107). Moreover, 

persistence of colony-stimulating factor-1 (CSF-1) in the TME polarizes macrophages 

towards the M2 subtype (whereas GM-CSF shifts macrophages towards CD80+ MHC class 

IIhigh proinflammatory macrophages)108.

Compared with TAMs, tumour-associated neutrophils (TANs) are less mechanistically 

established with pancreatic carcinogenesis. However, TANs are detected even in PanIN109, 

and their presence in the TME is associated with poor prognosis in cancers in general110. 

Importantly, inhibition of TAN infiltration into KPC tumours by knocking out CXCR2, the 

key chemotactic receptor for neutrophils, resulted in T cell-dependent suppression of tumour 

growth111. Therefore, Treg cells, MDSCs, TAMs and TANs provide targets for immune 

modulation of the PDAC microenvironment.

Strategies to directly target immunosuppressive cells in the TME have been explored (FIG. 

2; TABLE 1). One well-studied example is the incorporation of cyclophosphamide in 

treatment regimens to target Treg cells. Evidence supports the idea that low-dose 

cyclophosphamide selectively eliminates Treg cells112. Therapeutic strategies have 

successfully utilized cyclophosphamide in combination with GVAX to augment immune 

responses to PDAC89,97,113.

In addition to low-dose cyclophosphamide, CTLA-4 (REF.114) and neuropilin-1 (REF.115) 

have been investigated as targets for intratumoural Treg cells. Another example of targeting 

immunosuppressive cells in the TME, TAMs in particular, is antagonizing the CSF-1 

receptor (CSF-1R). The CSF-1R is a member of the receptor protein tyrosine kinase family 

of growth factor receptors that is expressed by TAMs and MDSCs116. Inhibition of CSF-1R 

has been shown to substantially deplete TAMs and increase the CD8+:CD4+ T cell ratio in 

mouse models and has demonstrated efficacy in patients with diffuse-type giant cell 

tumours108. In pancreatic cancer models, CSF-1R inhibition resulted in increased expression 

of immune checkpoints, PD-L1 and CTLA-4, and targeting of PD-1 and CTLA-4 

demonstrated superior antitumour efficacy to CSF-1R inhibition alone when used in 
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combination with CSF-1R inhibition117. The utility of CSF-1R in augmenting the 

antitumour immune response was recapitulated in a study showing its efficacy in 

combination with GVAX and anti-PD-1 therapy in a liver metastatic mouse model of 

PDAC118. Antibody-based and small molecule inhibition of CSF-1R strategies are actively 

being investigated clinically in multiple cancer types including PDAC116.

Another approach to reprogramming immunosuppressive cells in the TME is to target CD40, 

a costimulatory molecule present on antigen-presenting cells including macrophages. 

Targeting CD40 with an antibody has been shown to induce TAMs to express higher levels 

of CD86 and MHC class II molecules and to be tumoricidal against PDAC in KPC mice119. 

Anti-CD40 therapy was also associated with substantial stromal degradation119, establishing 

CD40 as another integrated therapeutic target that can modify the TME. Early-phase clinical 

trials for PDAC of an anti-CD40 antibody with gemcitabine and with or without nivolumab 

(an anti-PD-1 monoclonal antibody) are ongoing and showing promising results120. Other 

modes of enhancing co-stimulation include targeting STING121,122 and ICOS123 signalling. 

An agonist cellular vaccine of the STING pathway demonstrated anticancer efficacy in 

multiple murine models of cancer including a metastatic pancreatic cancer model 

(Panc02)121. A STING vaccine, MK-1454, is currently being tested in a phase I clinical trial 

in lymphoma and solid tumours including PDAC with an overall acceptable safety profile 

and encouraging efficacy (NCT03010176)122. Targeting the ICOS pathway has shown 

generally promising results in other cancer types with regards to tolerability and efficacy and 

has been reviewed elsewhere124. The use of KY1044, a fully human antibody that depletes 

ICOShigh Treg cells while stimulating ICOSlow effector T cells, in solid tumours including 

PDAC is actively being investigated (NCT03829501)123.

Modulation of chemokine signalling is another approach to altering the immune TME. 

CCR2, expressed on myeloid cells, interacts with the multi-functional ligand CCL2 (as well 

as CCL3 and CCL5) to recruit monocytes into the TME125. In mouse models of PDAC, 

small molecule inhibitors of CCR2 led to blockade of TAM infiltration and improved 

resistance against tumour progression125. This change in the TME also potentiated anti-

PD-1 therapy126. Thus far, early phase trials using the CCR2 inhibitors PF-04136309 and 

CCX872 in combination with conventional chemotherapy regimens in patients with PDAC 

have had varying results (NCT02732938, NCT01413022 and NCT02345408)127–129. A 

phase Ib study of PF-04136309 in combination with gemcitabine and nab-paclitaxel raised 

concerns about pulmonary toxicity and did not show superior efficacy compared with 

gemcitabine and nab-paclitaxel alone (NCT02732938)129, but more encouraging results 

were reported when both PF-04136409 and CCX872 were combined with FOLFIRINOX 

(NCT01413022 and NCT02345408)127,128. Myeloid-targeted effects of CCX872 were also 

noted as peripheral monocyte counts at baseline inversely correlated with overall survival 

(NCT02345408)127.

The strategy of targeting CXCR2 was explored in order to inhibit TAN infiltration and 

demonstrated that small molecule inhibition of CXCR2 can abrogate PDAC metastasis, 

augment T cell infiltration and synergize with anti-PD-1 therapy to extend survival130. An 

orthotopic PDAC model also showed that the chemotherapy response could be enhanced by 

CXCR2 inhibition131. In light of these findings, a phase Ib/II clinical trial investigating 
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AZD5069, an oral small molecule inhibitor of CXCR2, in combination with the PD-L1 

inhibitor durvalumab in patients with PDAC has just completed, demonstrating limited 

efficacy (with median PFS and overall survival durations of 1.6 months and 2.8 months, 

respectively) (NCT02583477). Additional studies incorporating CCR2 and CXCR2 

inhibition into the treatment paradigm are warranted.

Other clinically investigated immune-oriented methods of targeting the PDAC 

microenvironment include the use of oncolytic viruses (adenovirus132, reovirus133 and 

herpes simplex virus 1 (REF.134)), epigenetic modifiers135 and bispecific antibodies against 

immune checkpoints136 (FIG. 2; TABLE 1). A 2018 paper revealed that yet another 

immune-modulatory agent, pegylated IL-10 (pegilodecakin)137, has failed to meet the 

primary end point of overall survival in a phase III trial for treating PDAC in combination 

with chemotherapy, but the search for the next novel effective therapy for PDAC is far from 

over; many of these approaches are just beginning to be tested in patients with PDAC. 

Additionally, even unsuccessful immunotherapeutic agents might benefit from more in-

depth preclinical investigation, especially when being tested in novel combinations with 

other modalities.

Exploiting integrated targets of TME

Despite the aforementioned failures of TME-targeted therapies, exploiting the unique 

features within the PDAC microenvironment as therapeutic targets warrants further 

investigation. Prior experiences have made it clear that an entirely stroma-based or immune-

oriented approach to treating PDAC is of limited benefit (FIG. 3). Instead, more effective 

remodelling of the TME might be achieved by building on these prior efforts and exploiting 

particular points of biological convergence.

Targeting a metabolic convergence to enable TME remodeling

Cancer cell metabolism can be described by the Warburg effect, in which cancer cells 

maintain high glycolytic activity in order to grow138. Cancer cells require glutamine to fuel 

the tricarboxylic acid cycle for continued anabolic metabolism139. Importantly, T cells 

depend on similar metabolic pathways for successful activation and proliferation140. Thus, 

cancer cells are able to divert the stroma into a tumour-promoting metabolic environment 

that hinders T cells from providing proper antitumour immune responses.

Using multiple mouse models, one study demonstrated that broad pharmacological blockade 

of glutamine metabolism enhanced antitumour immune response by augmenting the nutrient 

availability with which CD8+ T cells can thrive and maintain an activated phenotype141. The 

use of anti-PD-1 ICIs in conjunction with a glutamine antagonist was superior to either 

therapy alone. Of note, glutamine blockade also led to a significant decrease in the activity 

of the hexosamine biosynthesis pathway141. This pathway is a source of uridine diphosphate 

N-acetylglucosamine142, an important substrate for hyaluronan synthesis, and thus has an 

important role in nutrient sensing in the context of stroma generation143,144.

Another study fully recapitulated this concept by showing that glutamine antagonism led to 

a reduction of hyaluronan in the TME, an increase in CD8+ T cell infiltration and improved 
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sensitivity to anti-PD-1 therapy145. Other researchers demonstrated that IFNγ released from 

CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the 

glutamate–cystine antiporter system xc
−, and impairs the uptake of cystine by tumour 

cells146. Cystine is known to counteract lipid peroxidation, and this study demonstrated that 

lack of cystine induces tumour cell peroxidation and ferroptosis, another independent 

mechanism of tumour cell death.

These clear examples show how a point of biological convergence, as related to 

desmoplasia, cancer metabolism and the immune microenvironment, might be a target in 

order to optimize therapeutic strategies. A well-studied glutamine antagonist, 6-diazo-5-oxo-

L-norleucine (DON), was limited by toxic effects in previous trials, but a novel prodrug 

form of DON has been developed and is under investigation147. Other metabolic targets 

including the adenosine-generating enzymes CD39 and CD73 (REF.148), creatine transporter 

SLC6A8 (REFS149,150) and tryptophan catabolic enzyme IDO1 (REF.151) are also under 

investigation (FIG. 2; TABLE 1).

TME remodelling by targeting the focal adhesion kinase pathway

Studies have established the importance of the focal adhesion kinase (FAK) signalling 

pathway in shaping the PDAC stroma152,153. FAK signalling has long been implicated in 

processes of wound healing and pathologic fibrosis across various organs154–158. FAK has a 

mechanosensing role in propagating activating signals toward tissue fibrosis within 

fibrogenic cells such as cardiac myocytes and fibroblasts following stretching or 

loading157,159.

In direct relevance to cancer cells, FAK overexpression has been well established as a 

feature of PDAC, and inhibition of FAK has been shown to suppress pancreatic cancer cell 

growth, survival and spread160–165. Accumulating evidence suggests the importance of FAK 

in integrating cell–cell or cell–matrix interaction signals with immunomodulation. 

Specifically, FAK functions downstream of αvβ3 integrin to positively regulate interferon 

signalling towards expression of PD-L1 upon binding of αvβ3 integrin to ECM166. Also 

within cancer cells, FAK signalling primes a more immunosuppressive TME via recruitment 

of Treg cells via transcriptional activation of Ccl5 expression167. This pathway is bolstered 

by FAK-induced expression and nuclear translocation of IL-33 (REF.168).

Leveraging the biology that converges on FAK signalling, a 2016 study demonstrated that 

small molecule inhibition of FAK resulted in significantly suppressed tumour growth and 

increased survival of KPC mice in association with decreased stromal fibrosis and reduced 

presence of immunosuppressive cells within the TME152. Notably, this change in the TME 

was maximized by combining FAK inhibition with anti-PD-1 therapy, signifying a 

successful reprogramming of the TME towards immune-responsiveness. Nevertheless, a 

follow-up study showed that as FAK inhibition led to progressive fibroblast depletion, 

eventual loss of TGFβ production by the stroma conferred resistance against FAK inhibition 

through decreased suppression of the STAT3 signalling pathway153. As such, the importance 

of understanding the downstream effects of any therapeutic strategy and how these effects 

affect the TME cannot be overstated. At least three FAK inhibitors have been clinically 

tested in PDAC, one of which — defactinib — is being actively studied in PDAC in 
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combination with the PD-1 inhibitor pembrolizumab (NCT03727880 and 

NCT02546531)169–171.

Disrupting TGFβ signalling in the TME

TGFβ is a pleiotropic molecule that generates both tumour-promoting and antitumour 

effects. Although TGFβ initially suppresses epithelial cell proliferation, it promotes stromal 

support of cancer and immunosuppression172. With regards to immunosuppression, TGFβ 
induces Treg cells and directly represses several effector T cell functions172.

In patients with metastatic urothelial cancer, high levels of TGFβ predicted poor response to 

anti-PD-Ll therapy173. Accordingly, inhibition of TGFβ enhanced the actions of ICIs in 

several mouse models including the KPC model of PDAC173–175. In a mouse model of liver 

metastatic PDAC, combining anti-TGFβ therapy with GVAX was also able to reshape the 

immune TME with greater infiltration of CD8+ T cells and reduction of Treg cells in 

association with better survival176.

Galunisertib, a small molecule inhibitor of TGFβ, has been tested in patients with 

unresectable PDAC. A randomized phase II trial demonstrated that galunisertib in 

combination with gemcitabine led to improved overall survival versus gemcitabine alone177. 

The combination of galunisertib and durvalumab was also investigated in patients with 

metastatic PDAC178. Further investigation of galunisertib has since been terminated by the 

sponsor179. Instead, newer generation TGFβ pathway inhibitors, such as TGFβR180 

inhibitors and TGFβ-checkpoint traps181, are being developed. In addition, as blockade of 

the angiotensin II type I receptor leads to reduced TGFβ levels in fibroblasts182,183, the 

angiotensin receptor blocker losartan was tested both in preclinical models of pancreatic 

cancer184 and subsequently in a phase II trial in the neoadjuvant setting in combination with 

FOLFIRINOX and enabled 69% (30 of 49) of patients with locally advanced disease to have 

an R0 resection185. A randomized phase II trial assessing the effect of losartan in 

combination with FOLFIRINOX and stereotactic body radiation therapy again in the 

neoadjuvant setting is ongoing (NCT03563248). Given the multi-faceted nature of TGFβ, 

the clinical outcome of targeting TGFβ in PDAC is difficult to predict and might depend on 

how TGFβ inhibition is combined with other modalities. More studies are needed to clarify 

the utility of TGFβ in treating PDAC.

Conclusions

Accumulating evidence illustrates the importance of understanding the multi-faceted roles of 

the complex TME components in tumour suppression and progression. Future approaches 

should therefore prioritize integrated or convergent targets that would reprogramme the 

TME rather than deplete particular targets. Combination and/or multi-modal strategies that 

target multiple features of the TME simultaneously might also be successful (FIG. 3). 

Nevertheless, combination approaches must take into account the complementarity of the 

targeted pathways. When developing novel therapeutic strategies we should investigate 

whether there are TME features that are organ specific and should be considered when 

treating metastatic cancers (for example, differences of primary versus hepatic versus lung). 

In addition, we should be aware of the feedback responses that occur with any treatment and 
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consider how they should be leveraged in a combinatorial fashion, taking into account how 

the preceding conventional chemotherapy and/or radiation will affect the efficacy of a 

therapeutic strategy of interest. Another important point to consider is how we can inform 

therapeutic decisions on the basis of individualized characterization of the TME in an 

individual patient. Given the relatively low incidence of PDACs, future trials should involve 

deep profiling of the TME and personalization of therapeutics when possible to accelerate 

progress towards more effective treatment strategies. This goal is ever closer to becoming a 

reality as multiplexed imaging, immunophenotyping and mutational analysis tools are 

increasingly high-throughput. Many trials have failed, but given the progress in our 

understanding of the PDAC microenvironment and the emerging strategies we have reasons 

to be hopeful for the future successful treatment of pancreatic cancers.
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Box 1 | Limitations in preclinical assessment of novel therapies

Studying therapies that target features within the tumour microenvironment (TME) 

requires that 1) the cancer resides within an intact biological stroma (that is, in vivo tissue 

space) and 2) the cancer is recognized by the surrounding stroma and the immune system 

as self. Therefore, the most ideal models for preclinical testing of TME-targeted therapies 

consist of syngeneic transplantation of cancer cells or sporadic models of carcinogenesis 

rather than any in vitro culture systems or xenograft models. Early studies in the 1980s 

commonly used a mouse model of pancreatic cancer that was generated in C57BL/6 mice 

using a local implantation of the carcinogen 3-methylcholanthrene186. The cell line 

established from this model, Panc02, can be syngeneically transplanted to assess 

therapeutics. Given the method of carcinogenesis, the Panc02 cell line, unsurprisingly, 

harbours numerous mutations (586 missense, 19 stop gains and 32 indels)187. While 

Panc02 exhibits a stop-gain mutation in Smad4 it does not have mutations in Kras or 

Tp53 (REF.187). Based on these genetic differences between Panc02 and the majority of 

human pancreatic ductal adenocarcinomas that bear KRAS and TP53 mutations188, 

successful translation of the findings in syngeneic models based on Panc02 are limited. 

Nonetheless, one of the first proof-of-concept animal models demonstrating the benefit of 

STING agonist vaccination in cancer was the Panc02 model121.

To overcome the limitations of the Panc02 model, genetically engineered mouse models 

were developed in which KrasG12D and Tp53R172H mutations were inserted under Cre 

recombinase expression driven by the pancreas-specific promoter Pdx1 (the ‘KPC 

model’)189. In fact, most of the TME-oriented studies that have led to clinical trials in 

pancreatic cancer in the past decade have utilized the KPC model16,41,47,66,119,152,174. In 

all of these studies, however, the most common method of assessing therapeutic efficacy 

has been to begin therapy at the time when ultrasound shows that a minimum tumour size 

is reached at the primary pancreatic site (for example, 5–10 mm in diameter). The mice 

are then followed for survival and maximal reduction of tumour size via ultrasound 

measurements. Although this method is perhaps the most accurate way to recapitulate the 

real-life heterogeneity in disease progression and metastatic spread, the model fails to 

emulate how most of the therapies are tested in clinical trials in which patients are 

enrolled with metastatic disease and very commonly after prior lines of therapy. Many 

studies have demonstrated that the TME in the primary site is different from that of 

metastatic sites and that prior therapy reprogrammes the tumour13,51,53,54. Furthermore, 

reliable biological or molecular correlates are often not defined during the preclinical 

stage as it is challenging to do so. Without defining key correlates a priori, additional 

development of or gain of insight from the failed therapy becomes even more limited. To 

improve the chances of translational success of preclinical findings, it might be 

preferable, in some cases, to design the preclinical model to mimic the disease state in 

which the therapy is to be tested. One such example is a murine pancreatic tumour model 

in which metastatic liver disease is modelled by the intraportal injection of KPC cells via 

the splenic vasculature190. Alternatively, neoadjuvant trial paradigms in humans enable 

evaluation of an intact TME and enable a deeper understanding of the effects of therapy, 
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allowing ‘reverse’ translations (that is, analysis of clinical correlates informing 

preclinical target or therapy development).

Ho et al. Page 25

Nat Rev Clin Oncol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key points

• Therapeutic approaches to target stromal desmoplasia, a histopathological 

hallmark of pancreatic ductal adenocarcinoma, have classically focused on 

depleting the stromal constituents; results have been generally disappointing, 

owing to the multi-faceted nature of tumour stroma.

• Isolated strategies to overcome specific immune targets have also met with 

limited success, likely owing to the presence of multiple immunoregulatory 

pathways within the pancreatic ductal adenocarcinoma microenvironment.

• In recognition of the functional complexity of the tumour microenvironment 

(TME), combining complementary stromal-targeted and immune-targeted 

treatment modalities to leverage the changes in the TME offers a more 

rational treatment approach.

• Points of biological convergence, such as stromal–immune crosstalk, 

including glutamine metabolism, focal adhesion kinase and transforming 

growth factor-β signalling, are promising targets for remodelling the TME 

into an antitumour milieu.
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Fig. 1 |. Targeting PDAC-associated stroma.
The role of the stroma to either promote or resist tumour formation and progression is 

influenced by the surrounding signals. Both cell–cell and paracrine interactions between 

cancer-associated fibroblasts (CAFs) and cancer cells are involved in programming the 

stroma. CAFs, key constituents of the pancreatic ductal adenocarcinoma (PDAC) stroma, are 

heterogeneous, and include myofibroblastic, inflammatory and antigen-presenting subtypes. 

Fibroblasts in proximity to cancer cells are induced by transforming growth factor-β (TGFβ) 

from cancer cells into myofibroblastic CAFs, producing the mechanical barrier that can be 

both tumour promoting and antitumour. Inflammatory CAFs, located in the stroma away 

from the cancer cells, are reprogrammed by cancer-secreted IL-1 to produce cytokines and 

chemokines (for example, IL-6), which further promote cancer growth. The subsequently 

developed antigen-presenting CAFs, which express MHC class II molecules, modulate the 

immune cells in the stroma. Approaches to deconstruct the stroma have included the use of 

matrix metalloproteinase (MMP) inhibitors, hyaluronidase, Sonic hedgehog (SHH) 

inhibitors, fibroblast activation protein (FAP) targeting agents and CXCR4 inhibitors. Ab, 

antibody; CAR, chimeric antigen receptor; ECM, extracellular matrix.
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Fig. 2 |. Myeloid and Treg targeting strategies to treat PDAC.
Antigen-presenting machinery relying on dendritic cells or inflammatory macrophages 

(TAM M1) and supported by helper T cells (CD4+ T cells) steers the antitumour immune 

response to eliminate pancreatic ductal adenocarcinoma (PDAC) — for example, via 

cytotoxic T cells (CD8+ T cells). However, myeloid-derived suppressor cells (MDSCs), anti-

inflammatory tumour-associated macrophages (TAM M2), and regulatory T (Treg) cells 

regulate these processes via several inhibitory pathways, establishing an immunosuppressive 

tumour microenvironment. Many strategies to abrogate or overcome these immunological 

targets have been proposed. Clinically tested approaches are listed in the corresponding 

boxes with the specific types and names of the agents in parentheses. APC, antigen-

presenting cell; CSF-1R, colony-stimulating factor-1 receptor; CTLA-4, cytotoxic T 

lymphocyte antigen 4; GVAX, granulocyte–macrophage colony-stimulating factor secreting 

allogeneic pancreatic tumour cell vaccine; TCR, T cell receptor.
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Fig. 3 |. Remodelling the PDAC microenvironment.
Pancreatic ductal adenocarcinoma (PDAC) is classically surrounded by desmoplastic stroma 

composed of cancer-associated fibroblasts and extracellular matrix (ECM). The stroma 

provides a dense mechanical barrier (both antitumour and tumour promoting) against 

vascularization, immune cell trafficking and cancer invasiveness. The tumour 

microenvironment is also characterized by the presence of multiple immunosuppressive 

pathways. Exploiting biologically integrated targets of the stroma (such as glutamine 

metabolism, transforming growth factor-β (TGFβ) and focal adhesion kinase (FAK) 

signalling) and the immunosuppressive pathways is the most likely approach to remodel the 

tumour microenvironment into an effective antitumour environment. MDSC, myeloid-

derived suppressor cell; Treg cell, regulatory T cell.
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