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Abstract

Selectivity is a key requirement of high-quality chemical probes and lead medicines, however 

methods to quantify and compare the selectivity of small molecules have not been standardized 

across the field. Herein, we discuss the origins and use of a comprehensive, single value term to 

quantify selectivity, the Gini coefficient. Case studies presented include compounds that target 

protein kinases, small molecules that bind RNA structures, and small molecule chimeras that bind 

to and degrade target RNA. With an increasing number of transcriptome- and proteome-wide 

studies, we submit that reporting Gini coefficients as a quantitative descriptor of selectivity should 

be used broadly.

Graphical Abstract

The development of chemical probes and lead medicines has historically benefitted from 

various ligand-metrics to help optimize compounds and establish features that ideal probes 

should display.1 Fundamental features of high-quality chemical probes include: (i) 
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physicochemical properties that confer solubility and metabolic stability in cellulis and in 
vivo; (ii) demonstrated target engagement; (iii) demonstrated potency for modulating 

phenotype; and (iv) selectivity. [We direct the reader to two notable reviews on this topic for 

additional information.2, 3] Selectivity can be a challenge to quantify, and yet it is one of the 

most critical features of a chemical probe. Current metrics of selectivity include comparison 

of IC50s for inhibition of related targets, ratio of Kis, occupancy of the desired vs. related 

targets, in vitro binding affinity, etc. Herein, we describe the Gini coefficient as a 

standardized metric of selectivity. We explore its historical development, the calculation of 

this metric, its limitations, and its implementation with respect to kinase inhibitors, RNA-

targeted small molecules, and small molecule chimeras that bind and facilitate cleavage of 

the target RNA through nuclease recruitment.

History of the Gini Coefficient

The Gini coefficient was first described in 1912 by Corrado Gini as a quantitative metric 

generated from Lorenz curves4 to describe the statistical distribution of wealth amongst a 

country’s residents, i.e. the wealth inequality amongst the members of a population.5 A 

population where wealth is evenly distributed translates to a Gini coefficient of 0, whereas a 

population in which a single member possesses all wealth is assigned a Gini coefficient of 1. 

As the Gini coefficient does not have an economic-specific meaning, it has been broadly 

applied in fields such as sociology,6–8 agriculture,9 ecology,10 engineering,11 and the natural 

sciences.12–17 In the natural sciences, the Gini coefficient has been applied to study the 

selectivity of small molecule inhibitors, if in the economic definition: i) “population” is 

replaced by a panel of biomolecules, whether proteins or nucleic acids; and ii) “wealth” is 

changed to the percent inhibition of a biomolecule’s activity. The estimated “wealth 
inequality” therefore translates to the selectivity of an inhibitor against a panel of 

biomolecules. Thus, a Gini coefficient of 0 indicates a non-selective inhibitor/modulator, 

while a coefficient of 1 describes an exquisitely selective compound.

Indeed, in 2007, Piotr Graczyk introduced the Gini coefficient as a single value to quantify 

the selectivity of kinase inhibitors.18 Below, we summarize how Gini coefficients are 

calculated (Supplemental Figure S1 and Supplemental Dataset 1). For a detailed discussion 

of how the calculation is completed, we direct the reader to Graczyk’s original report. In 

brief, a Gini coefficient is calculated by measuring the percentage by which each target is 

inhibited by a small molecule at a single concentration. The targets are then rank ordered 

from least to most potently inhibited, and a cumulative fraction of each target is calculated. 

For example, if 20 targets were evaluated, the least potently inhibited target would have a 

cumulative fraction of 0.05 (1/20), while the second would have a value of 0.1 (0.05 + 0.05), 

the third 0.15, and so on and so forth.

The percent inhibition for each target is then summed to afford the “total cumulative effect”. 

The fraction of total inhibition is calculated for each target by dividing its percent inhibition 

by the total cumulative effect. The cumulative inhibition fraction is then calculated for each 

compound and the targets are positioned in rank order, akin to the cumulative fraction of 

each target described above. The cumulative fraction of inhibition is plotted as a function of 

cumulative fraction of targets, similar to a Lorenz curve4 (Figure 1A). The Gini coefficient is 

Ursu et al. Page 2

ACS Chem Biol. Author manuscript; available in PMC 2021 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculated by the formula G = 1 − 2 × B, where B is the area under the resulting curve, 

calculated by using the trapezium method (Figure 1A).18

In the case that a small molecule equally inhibits all targets (Gini coefficient = 0), a diagonal 

line is obtained (black line in Figure 1A). As selectivity increases, the curvature of the 

Lorenz curve increases. That is, the curve will initially increase slowly followed by a sharp 

rise for the latter half (green and orange dotted lines in Figure 1A). The sharper the 

curvature of this line the more selective the compound is. In general, a compound is 

considered selective if its Gini coefficient > 0.75.19

Inaugural Application of Gini Coefficients to Biological Systems: General 

Features and Considerations

Graczyk’s implementation of Gini coefficients used available data for the inhibition of 85 

kinases by 40 different inhibitors evaluated at a single concentration.18 His study verified 

that non-selective inhibitors have Gini coefficients close to 0, and as selectivity increases the 

Gini coefficient approaches 1 (Figure 1B). For example, Staurosporine (a known non-

selective kinase inhibitor)20 has a Gini coefficient of 0.150 (blue dotted line; Figure 1A), 

while AG1024 (a moderately selective kinase inhibitor)21 and PD184352 (a selective 

inhibitor of MAPKK1)22 have Gini coefficients of 0.637 and 0.905, respectively (green and 

orange lines, respectively; Figure 1A).18 These studies also revealed that the size of the 

dataset analyzed, i.e., the number of kinases, does not significantly affect the average Gini 

coefficient, indicating that a subset of randomly chosen kinases could be used as a proxy or 

estimate for the entire kinome. A sufficient number of kinases (i.e. ~50 in this case), 

however, should be used in the panel to mitigate errors that occur when the Gini coefficient 

is calculated using too small of a subset of kinases (i.e., 10 targets in this example).18 The 

targets that are included in the panel do indeed influence the value of the Gini coefficient, 

and thus the subset of kinases used must be selected carefully to include known or suspected 

off-targets.

Since Gini coefficients are calculated at a single concentration, several factors must be 

carefully considered to ensure the accuracy and precision of Gini coefficients. For example, 

precision is increased when the compound is profiled at a concentration where strong 

inhibition is observed (maximum inhibition between 91 – 99%), corresponding to 10 – 100 

times the IC50.18 In the simplest case, the Gini coefficients of two compounds assayed at the 

same concentration can be compared directly, provided their most potent IC50 against a 

target in the panel is similar and their maximal observed percent inhibition is similar 

(AG1024 and PD184352, for example; Figure 1A). If these two criteria are not met, then the 

concentrations of inhibitors should be adjusted accordingly, so the ratios of maximum 

potency/concentration for each compound are equal. For example, in Figure 1, Staurosporine 

(1 μM) is compared to AG1024 and PD184352 (10 μM),18 demonstrating that the data 

analyzed to calculate the Gini coefficient may be from inhibitor concentrations that are the 

same or different (Figure 1A). Interestingly, for a set of five inhibitors with similar 

maximum percent inhibition and IC50s, although the concentration affected the value of the 

Gini coefficient, it did not affect the selectivity ranking of the compounds,18 indicating that 
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Gini coefficients can predict relative selectivity across a range of concentrations. Although 

this observation is likely a general feature of Gini coefficients, independent of the system 

studied, it should be verified experimentally.

In addition to the Gini coefficient, other metrics have been used to assess the selectivity of 

small molecule kinase inhibitors. For example, the standard selectivity score (S(x) where x 

represents a user-defined threshold of kinase activity inhibition upon compound treatment) 

has also been applied to kinase profiling studies.23 The main disadvantage of this metric is 

the need to establish a threshold for the enzymatic activity of inhibited protein kinases. 

Variations in the value of the applied threshold have been reported to affect the final value of 

the selectivity score.24 Similarly, the partition index (PI) has also been used to define 

selectivity.25 This metric, however, uses Kd, Ki, or IC50 values obtained from dose-

dependent studies that are not cost effective for large panels.24 As in the case of PIs, 

selectivity entropy (Ssel) also employs Kd, Ki, or IC50 values.26 This results in increased 

costs for kinase inhibitor profiling projects, a disadvantage in academic settings. 

Comparison studies among these traditional selectivity metrics have been reported24 and 

produce selectivity rankings of kinase inhibitors in good agreement across all three methods.

Since each selectivity metric has its own limitations, none has been clearly established as a 

standard for assessing small molecule selectivity. At present, measuring selectivity needs to 

be treated with care, while considering the goal of the research project as well as the 

resources available. Due to the low costs of acquiring percentage kinase inhibition data, the 

Gini coefficient allows for robust ranking of the overall selectivity of kinase inhibitors, 

offering an attractive alternative for academic labs to measure chemical probe selectivity in a 

reproducible manner.

Expanding Gini Coefficients Across the Biological Sciences

The biological sciences have benefitted from the versatility of the Gini coefficient, which 

allowed analysis of the extent of the statistical distribution of the property/parameter under 

investigation. For example, Weidlich et al.15 applied the Gini coefficient to assess the 

chemical diversity of random and publicly available compound sets. By representing the 

structural features of the molecules within the databases as binary fingerprints, the authors 

generated a simple quantitative measure of how chemically diverse one compound set is 

compared to another. In another example, Jiang et al.27 implemented the Gini coefficient 

within a computational method termed GiniClust, which detects rare cell types within a large 

population of cells with high sensitivity. By applying GiniClust to publicly available single-

cell RNA-seq datasets, the normalized gene expression data identified rare clusters of cells 

within heterogeneous mouse embryonic stem cell, glioblastoma primary tumor, mouse 

somatosensory cortex, and hippocampus CA1 region cell populations. Similarly, the Gini 

coefficient was used to measure the extent of expression variation of a gene of interest 

within a dataset.13 This allowed for the identification of higher quality “housekeeping” 

genes to be applied in the normalization of gene expression profiling studies. Therefore, 

repurposing the Gini coefficient for different biological applications is straightforward and 

can broadly be applied to various datasets.
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Expanding Gini Coefficients to Assess the Selectivity of Small Molecules 

Interacting with RNA in cellulis

The Gini coefficient has proven a useful metric for proteins, particularly kinase inhibitors,
28–30 and likely will be equally useful for chemical probes targeting other biomolecules. 

RNA has become an increasingly important drug target, as it causes or contributes to a wide 

variety of diseases including cancer,31, 32 microsatellite/repeat expansion disorders,33 and 

dementia via RNAs that encode toxic proteins,34, 35 amongst others. Indeed, a number of 

small molecules interacting with RNA (SMIRNAs) have been developed to recognize the 

three dimensional (3D) folds within these disease-causing RNAs and ameliorate their 

dysfunction in cells and in vivo.36–38 As targeting RNA with small molecules is an emerging 

field, it will be important not only to demonstrate direct target engagement in cells,37 but 

also to define and compare the selectivity of these compounds. Thus, we hypothesize that 

Gini coefficients will be key in the comprehensive characterization of SMIRNAs.

Beginning with the traditional definition of the Gini coefficient from social sciences, 

transcriptome-wide SMIRNA selectivity can be assessed if: i) “population” is represented by 

a randomly chosen panel or all RNA targets that can be detected in disease-relevant cells; 

and ii) “wealth” is changed to the alteration of expression levels within the RNA target 

population upon SMIRNA treatment at a previously validated concentration and time period. 

We recommend that SMIRNA selectivity should be measured at a concentration that affects 

a target RNA and triggers an RNA-centric phenotypic change. This modulation of RNA 

target abundance and phenotypic change must be linked to direct target engagement. 

Selectivity data for SMIRNAs in cellulis can be easily generated through RT-qPCR 

profiling, microarrays, or high throughput RNA sequencing (RNA-seq). Typically, the 

resulting data are visualized with volcano plots (Figure 2A) or with plots comparing 

expression levels in treated and untreated cells (Figures 2B–C). Fortuitously, such datasets 

can be used as input to calculate Gini coefficients by employing either the fold-change 

directly provided by RT-qPCR or microarray measurements or by converting the fold-change 

to percentage inhibition (a step-by-step guide is provided in Supplemental Figure 1 and 

Supplemental Dataset 1).

Below, we discuss the application of Gini coefficients to small molecules targeting 

structured motifs in microRNA (miRNA) precursors to inhibit biogenesis of the mature 

miRNA.39–41 Briefly, miRNAs regulate gene expression by binding to complementary 

regions in the 3’ untranslated regions (UTRs) of messenger (m)RNAs, inducing cleavage or 

translational repression.42–44 Their biogenesis requires two steps: (i) processing of the 

primary transcript (pri-miRNA) in the nucleus by Drosha45 and (ii) subsequent processing of 

the resultant precursor (pre-miRNA) in the cytoplasm by Dicer.46, 47 It has been shown in 

various iterations that small molecule binding to these functional processing sites can inhibit 

production, and hence function, of the mature miRNA, de-repressing its downstream protein 

targets.

In our previous studies of small molecules targeting miRNA precursors, we assessed 

selectivity by measuring the compound’s effect on the levels of all expressed mature 

miRNAs typically by RT-qPCR39, 48 but also in one instance by microarray.49 Using these 
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previously reported data, we calculated Gini coefficients for these compounds, all of which 

are ~0.7.39, 48, 49 In the first example, we studied the selectivity of a designed, dimeric small 

molecule that simultaneously binds the 3D structure present in the Drosha processing site of 

pri-miR-515 and a neighboring structured element.48

Named Targaprimir-515 (TGP-515; Figure 2A), this dimeric compound inhibits pri-

miR-515 biogenesis with an IC50 of ~1 μM.48 Analysis of the effect of TGP-515 on 

miR-515 levels vs. the entire miRNome in MCF-7 breast adenocarcinoma cells, upon 24 h 

treatment, afforded the volcano plot highlighted in Figure 2A, where miRNAs that are 

significantly affected upon compound treatment fall outside of the dotted lines which 

represent -log10 of the P-value (in this case P = 0.01). The data generated by the RT-qPCR 

profiling experiment was then used to calculate a Gini coefficient, which is equal to 0.75 

(Supplemental Figure 1), indicating that TGP-515 is indeed selective (Figure 2A). 

Therefore, a Gini coefficient can be generated from RT-qPCR profiling data and can be 

presented alongside a volcano plot to quantitatively express the selectivity of chemical 

probes targeting RNA.

We have also designed two traditional small molecules that inhibit two other miRNAs: (i) 

96-SM (Figure 2B) binds the Drosha site in oncogenic pri-miR-96, inhibiting its biogenesis, 

de-repressing the pro-apoptotic transcription factor Forkhead box protein O1 (FOXO1), and 

inducing apoptosis of breast adenocarcinoma cells;39 and (ii) 544-SM (Figure 2C) that binds 

the Dicer site of the hypoxia-inducible oncogenic pre-miR-544, inhibits its biogenesis, 

boosts levels of its downstream target mammalian target of rapamycin (mTOR), and induces 

apoptosis of MDA-MB-231 triple negative breast cancer cells (TNBC).49 The Gini 

coefficients for 96-SM, determined from fold-change data generated from RT-qPCR 

profiling of the miRNome, and 544-SM, calculated from microarray analysis of the 

miRNome, are 0.71 and 0.73, respectively (Figure 2B–C). Interestingly, for all three studies 

presented, the Gini coefficients for the SMIRNAs were similar to oligonucleotide-based 

antagomiRs for the corresponding target (range: 0.62 – 0.72; also measured at their IC50s).

Collectively, these studies show that Gini coefficients can be applied to small molecules that 

target RNA and importantly, that SMIRNAs that recognize structure can indeed be selective. 

The highlighted examples also show that Gini coefficients offer a more quantitative estimate 

to express and compare selectivity of chemical probes targeting RNA, which can be difficult 

to grasp from volcano plots and change in expression plot representations alone (Figure 2). 

Further, these studies will enable the optimization of SMIRNAs,50 balancing potency and 

selectivity, to provide higher quality chemical probes capable of targeting the transcriptome 

with reduced off-target effects.

Gini Coefficients to Quantify Selectivity of SMIRNAs that Recruit 

Endogenous Nucleases, Ribonuclease Targeting Chimeras (RIBOTACs)

Emerging modalities with novel modes of action hold the promise to change the landscape 

of modulating biological targets for therapeutic benefit.51, 52 For example, proteolysis 

targeting chimeras (PROTACs)53 and ribonuclease targeting chimeras (RIBOTACs)54,55 are 

recently developed small molecule strategies to hijack cellular machineries to promote 
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targeted degradation of protein and RNA targets, respectively. Their modular nature, 

comprising a protein- or RNA-binding small molecule and an enzyme recruiting module, is 

well-suited to convert a simple binding compound into a degrader, which generally exhibit 

superior potency and selectivity.55, 56

Indeed, Gini coefficients can be used to evaluate and compare the selectivity of small 

molecules with different modes of action, for example traditional small molecules, dimeric 

compounds that bind two sites in an RNA target simultaneously, and nuclease recruiting 

RIBOTACs, i.e., an enzymatic cleavage mechanism. Costales et al.56 recently reported such 

a comparison in the targeted degradation of oncogenic miR-21 by recruiting endogenous 

RNase L. Three compounds were profiled at their IC50s for reducing mature miR-21 levels: 

monomeric compound 21-SM (10 μM), dimeric derivative TGP-21 (1 μM), and TGP-21 
RIBOTAC (0.05 μM) (Figure 3A). MiRNome-wide profiling upon compound treatment of 

MDA-MB-231 TNBC cells via RT-qPCR generated the volcano plot shown in Figure 3B; 

here miRNAs that are significantly affected fall outside of the dotted lines which represent -

log10 of the P-value (in this case P = 0.01). With the volcano plots alone, it was difficult to 

quantitatively estimate the difference in selectivity between TGP-21 and monomeric 21-
SM. Thus, the same data sets were used to calculate Gini coefficients, which clearly 

indicated that TGP-21 exhibited higher selectivity (Gini coefficient = 0.68) than monomeric 

21-SM (Gini coefficient = 0.52) (Figure 3B). Indeed, various reports have shown that 

dimerization improves both potency and selectivity compared to the monomeric components 

from which they are derived.57, 58

Converting the simple binding compound TGP-21 into nuclease recruiting TGP-21 
RIBOTAC further increased selectivity at an ~20-fold lower dose, yielding a Gini 

coefficient of 0.84 (Figure 3B). The increased potency of TGP-21 RIBOTAC can, at least in 

part, be attributed to its substoichiometric and catalytic nature. Further, the enhanced 

selectivity of the TGP-21 RIBOTAC can be traced to the combined selectivity of the 

dimeric RNA-binding component, TGP-21, and inherent substrate specificity of the 

nuclease RNase L.54, 55 Collectively, Gini coefficients can quantitatively express the 

selectivity of SMIRNAs and RIBOTACs and therefore compare biological selectivity 

between chemical probes with different modes of action. Moreover, this analysis 

demonstrated the conversion of SMIRNAs to RIBOTACs is a robust and straightforward 

method to generate more potent and selective chemical probes targeting disease-causing 

RNAs in cells.

Discussion

Drug discovery campaigns and chemical probe development have been driven by the 

integration of various parameters that have guided the prioritization, optimization and further 

advancement of lead molecules identified in target- and/or phenotypic-based screens into 

potent, selective and safe clinical candidates. Overall, these metrics improved the decision 

making process to pursue the most promising chemical probes for further phenotypic 

profiling59 in physiologically relevant models,60 in vivo, and ultimately success in clinical 

trials.
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An important parameter in the drug discovery process is the assessment of selectivity of the 

small molecule leads across diverse biological targets in vitro and in vivo. Steering 

biological target selectivity61 via the incorporation of Gini coefficients can standardize the 

representation and comparison of hit compounds’ selectivity and simplify lead discovery and 

development campaigns, allowing for faster identification of the most promising and 

selective chemical probes. For example, the development of selective kinase inhibitors is 

challenging as they share an ATP binding site across more than 500 family members. 

Despite this obvious hurdle, the development of kinase inhibitors into clinically approved 

entities has greatly expanded in recent decades. Besides technological advancements, one 

key factor has been the availability of in vitro kinase profiling studies, which facilitated 

ranking compounds according to their Gini coefficient.30 These data guided the optimization 

towards candidates with enhanced selectivity suitable for testing in vivo29, 62 and further in 

clinical trials. Alternatively, it provided a rational approach to repurpose kinase inhibitors 

towards new disease indications63 and design of kinase inhibitors with rationally controlled 

polypharmacology.64

Kinase profiling studies are routinely implemented in the early stages of drug discovery 

efforts to investigate selectivity.65 Indeed, Gini coefficients were applied in the profiling of 

fragments to enable their development into lead-like kinase inhibitors.66, 67 The public 

availability of these selectivity metrics allowed the development of safer medicines 

exhibiting favorable selectivity profiles. Interestingly, PD184352 (Gini coefficient = 0.905) 

was the first highly selective mitogen-activated protein kinase kinase (MEK) targeted 

derivative which entered clinical trials. PD184352 exhibits no considerable off-target effects, 

which combined with its favorable safety profile, allows for continuous dosing. Although 

there is no record of the implementation of the Gini coefficient in the optimization of 

PD184352, the exquisite selectivity of this compound was later quantified due to data 

availability of numerous massive kinase profiling studies.68, 69

Another consequence of assessing selectivity of kinase inhibitors is the development of 

chemogenomic sets of chemical probes for kinases, such as Published Kinase Inhibitor Set 

(PKIS)70, 71 and kinase chemogenomic set (KCGS).19, 72 Ideally, these sets encompass 

highly potent and selective chemical probes with kinase-annotated inhibitor activity in vitro 
and in cellulis, which can be used in an open-source fashion to validate the contribution of a 

particular kinase or kinase isoform in disease-relevant phenotypic assays.

Herein, we highlighted the potential of using a single Gini coefficient selectivity metric to 

quantitatively evaluate transcriptome-wide selectivity of SMIRNAs and RIBOTACs in cells. 

Considering the technological advancements and the high-throughput capabilities of RNA 

sequencing,73 we encourage the medicinal chemistry and chemical biology communities to 

incorporate Gini coefficients broadly in their selectivity studies. Considering the impact of 

the Gini coefficient and other selectivity metrics in developing selective kinase inhibitors, 

we similarly envision an increase in the quality of chemical probes targeting disease-causing 

RNAs when Gini coefficients are adopted as a standard metric of selectivity. Indeed, 

reporting selectivity data as Gini coefficients will allow a more reliable and reproducible 

measure of small molecule chemical probe selectivity across research groups. Upon rigorous 

assessment of target engagement of newly developed RNA-targeted chemical probes, both in 
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vitro and in cellulis, selectivity can be benchmarked against already established SMIRNAs 

or RIBOTACs.

Since the concentration, time of exposure, cell lines used, and readout all play crucial roles 

in the assessment of selectivity, these parameters need to be carefully selected to allow for 

robust quantification of selectivity via Gini coefficients, and subsequent comparison among 

a group of compounds. The concentration of chemical probe used should be ≥IC50 value, 

where the cellular phenotype in a disease-relevant cell population is significantly affected. 

Of key importance is the number of RNA targets in the panel in which selectivity is 

assessed, as well as the cell line in which selectivity is measured. These parameters should 

be identical when comparing Gini coefficients between different chemical probes and 

research groups. Since the Gini coefficient is largely population independent, it is likely 

possible to use RT-qPCR or microarray data obtained for only a subset of the transcriptome 

to calculate Gini coefficients (see discussion about the size of kinase panels above). Here, 

the incorporation of jackknifing or bootstrapping resampling procedures can further add 

statistical rigor through standard error, variance, confidence intervals, percentiles, etc., of the 

calculated Gini coefficient value.74 These are evaluated by either sampling various subsets 

from the already available database in the case of jackknifing or by replacing subsets from 

the initial database with randomly generated sample sets in the case of bootstrapping.

Incorporation of the Gini coefficient in small molecule profiling studies will further aid the 

chemical biology community in exploring the selectivity of novel chemical probes targeting 

disease-causing RNAs and will allow for selectivity to be standardized amongst academic 

labs. Calculating the Gini coefficient for chemical probes targeting RNA at various 

concentrations, over extended time periods, and in different cell lines will help assess the 

broad selectivity of these compounds across cell lines and tissues. Such selectivity 

investigations will be crucial to mitigate potential off-target effects when optimized 

compounds are advanced to clinical evaluation. In addition, reporting Gini coefficients of 

different chemical probes within the community will better guide the medicinal chemistry 

optimization towards more selective leads.

The RNA target selectivity of a chemical probe evaluated by the Gini coefficient is target 
agnostic, i.e. not expressed relative to a particular RNA target. It rather expresses the extent 

of inhibition selectivity across the entire RNA target population in cells. Such studies can be 

integrated with analysis of statistical confidence associated with changes in expression levels 

of individual RNA targets which can be expressed on volcano plots. We encourage the 

community to include both volcano plots and Gini coefficient representations in reporting 

selectivity of chemical probes targeting RNA. Volcano plots will indicate the RNA target(s) 

significantly affected by the treatment with the chemical probe under investigation while 

Lorenz curves and Gini coefficients will express the extent of selectivity across the entire 

RNA population considered.

There are fundamental differences between the kinase inhibition studies performed in vitro 
and the inhibition of RNA targets by chemical probes in cells. In the former case, profiling is 

performed in isolation and does not recapitulate the complexity of the cellular milieu. One 

potential caveat of measuring inhibition of RNA targets in cells is that changes in gene 
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expression may be due to direct and/or indirect effects. For example, direct effects, including 

off-target effects, result from the occupancy of the engaged RNA target(s) and its subsequent 

inhibition. Indirect effects arise from the downstream effects of deactivating the RNA target, 

which might trigger compensatory mechanisms. Consequently, the fold change in expression 

of RNA targets provided by RT-qPCR or microarray upon treatment with a chemical probe 

is the sum of such direct and indirect effects. Therefore, we emphasize the importance of 

combining selectivity assessment of chemical probes in cells with rigorous target 

engagement studies,75 to better define and understand cellular occupancy, selectivity, and 

downstream consequences in cells.

As highlighted in the previous sections, chemical biology studies will immediately benefit 

from comparisons to benchmark selectivity between small molecules76 and emerging 

modalities,77 such as PROTACs and RIBOTACs. Although Gini coefficients have not yet 

been applied to PROTACs, we imagine that the selectivity of such probes can be measured 

using whole-proteome quantitative mass spectrometry (MS)-based techniques, which have 

greatly improved in terms of multiplexing, sensitivity and proteome-coverage. Here, 

abundance in the proteome can be evaluated and selectivity of different PROTAC probes78 

could easily be assessed. Notably, direct and indirect effects of the proteasomal degradation 

mediated by PROTAC probes have been reported in the literature,79 which will play an 

important role in the safety evaluation of novel modalities before their integration in full-

fledged drug discovery programs.

As highlighted in this Perspective, Gini coefficients can be generated using different input 

data and can be integrated with bioinformatic approaches.17, 27, 80 As Gini coefficients 

become more widely used, it will also be important to consider potential disadvantages of 

using this metric. Studies of kinase inhibitor selectivity do not rely on a threshold value, 

such as Ki, Kd or IC50, but instead uses the calculated percent inhibition of targets, which 

can be highly dependent on experimental conditions such as the concentration of probe or 

ATP, etc.24 Target panel size and composition are also important factors to consider to 

ensure an unbiased assessment of selectivity.24 The limitations of the Gini coefficient in the 

case of chemical probes targeting RNA will be uncovered as the metric is incorporated more 

broadly. Furthermore, it is important to not rely solely on selectivity measurements in the 

development of novel chemical probes, but also to perform a variety of target validation and 

engagement experiments to confirm the probe’s mechanism of action in cells.37 For 

example, it is possible for two compounds to have the same Gini coefficient in vitro, but 

differ in the physiological response they produce in cells, providing a rationale to advance 

one compound over the other.

Conclusions

Targeting proteins with small molecule chemical probes81 has revealed valuable lessons 

about the importance of rigorous assessment of selectivity in vitro and in vivo to confirm 

mechanistic hypotheses.82 We envision that quantifying selectivity with Gini coefficients in 

translational chemical biology83 will become an important feature in the generation of 

higher quality chemical probes,2, 84 leading to a better understanding of the causality 

between small molecules and modulated biological targets. RNA has emerged as an 
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important biological target to consider for both drug development and when assessing off-

target effects of advanced clinical candidates. Determination of transcriptome-wide 

selectivity, via Gini coefficients, will provide selectivity data in a timely and cost-effective 

manner, providing a rationale for further optimization by eliminating off-target effects of 

novel chemical probes. To maximize the impact of chemical biology tools in drug discovery,
85 quantifying protein and RNA selectivity of chemical probes via robust and easy to grasp 

metrics will be essential to drive innovation towards the generation of transformative 

medicines with improved clinical success.
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Figure 1. 
Gini coefficients to quantify the selectivity of kinase inhibitors. A) Kinase inhibition maps 

for Staurosporine, AG1024, and PD18432 and the corresponding Lorenz curves used to 

calculate their Gini coefficients. Data were taken from Graczyk (100 μM ATP 

concentration).19 B) Gini coefficients for each kinase inhibitor calculated from Lorenz 

curves.19

Ursu et al. Page 16

ACS Chem Biol. Author manuscript; available in PMC 2021 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Application of Gini coefficients to quantify the cellular selectivity of SMIRNAs. A) 
Selectivity of TGP-515 (1 μM, the IC50) in MCF-7 cells generated from RT-qPCR profiling 

data as shown by the Volcano plot (left panel) and the Lorenz curve (right panel). TGP-515 
binds to adjacent loops (highlighted in orange and blue) near the Drosha processing site of 

pri-miR-515. B) Selectivity of 96-SM (40 μM, the IC50) in MCF-7 cells via change in 

expression plot (left panel) and Lorenz curve (right panel) generated from RT-qPCR 

profiling data. 96-SM binds to an internal loop in the Drosha processing site of pri-miR-96 
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(highlighted in purple). C) Selectivity of 544-SM (0.02 μM, the IC80) in MDA-MB-231 

triple negative breast cancer cells via change in expression plot (left panel) and Lorenz curve 

(right panel) generated from microarray profiling data. 544-SM binds to an internal loop in 

the Dicer processing site of pre-miR-544 (highlighted in green).
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Figure 3. 
Comparing the selectivity of a traditional small molecule, 21-SM, a dimeric compound with 

improved potency, TGP-21, and the nuclease recruiting TGP-21 RIBOTAC with Gini 

coefficients. A) Structure of the pre-miR-21 hairpin, where compound binding sites are 

highlighted in blue. Chemical structures of SMIRNA chemical probes 21-SM and TGP-21 
and nuclease recruiting chemical probe TGP-21 RIBOTAC. B) RT-qPCR profiling data of 

chemical probes 21-SM (10 μM), TGP-21 (1 μM) and TGP-21 RIBOTAC (0.05 μM) in 

MDA-MB-231 cells shown as a Volcano plot. Gini coefficients and Lorenz curves calculated 
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from the profiling data indicate selectivity for miR-21 increases in the following order: 21-
SM < TGP-21 < TGP-21 RIBOTAC.
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