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Seventy-year long record of 
monthly water balance estimates 
for Earth’s largest lake system
Hong X. Do   1,2 ✉, Joeseph P. Smith   3, Lauren M. Fry4,5 & Andrew D. Gronewold1

We develop new estimates of monthly water balance components from 1950 to 2019 for the Laurentian 
Great Lakes, the largest surface freshwater system on Earth. For each of the Great Lakes, lake storage 
changes and water balance components were estimated using the Large Lakes Statistical Water 
Balance Model (L2SWBM). Multiple independent data sources, contributed by a binational community 
of research scientists and practitioners, were assimilated into the L2SWBM to infer feasible values 
of water balance components through a Bayesian framework. A conventional water balance model 
was used to constrain the new estimates, ensuring that the water balance can be reconciled over 
multiple time periods. The new estimates are useful for investigating changes in water availability, or 
benchmarking new hydrological models and data products developed for the Laurentian Great Lakes 
Region. The source code and inputs of the L2SWBM model are also made available, and can be adapted 
to include new data sources for the Great Lakes, or to address water balance problems on other large 
lake systems.

Background & Summary
Among the most severe impacts of climate change is the intensification of the hydrologic cycle1,2. The 
Clausius-Clapyeron relation3, which defines specific humidity of the atmosphere as a function of temperature, 
suggests that the rising trend of global mean surface air temperature will lead to an increase in evaporation and 
precipitation4, and potentially exacerbate observed changes in river flows5, hydrological extremes6,7 and water 
availability8,9. These changes are particularly pronounced over Earth’s large lakes10 (which hold more than 90 per-
cent of all global surface fresh water), where rapid increases in lake temperature11 have led to unprecedented water 
level dynamics on many of those lakes12,13. The intensified hydrologic cycle, coupled with the ever-increasing 
water demands of a rapidly growing population14, have strained global water resources, indicating a need for 
improved understanding of how the different components of the Earth’s system (e.g., climate, land surface, and 
human) have influenced the hydrologic cycle15. To meet this demand, hydrological models are often used16, in 
part because of their capacity to represent hydrologic variables across the global landmass. Model simulations 
have corroborated observed changes in components of the water cycle17–19, and related these changes to natural 
and anthropogenic factors20,21.

As hydrological models have become more advanced, simulations of water balance components (e.g. runoff, 
evaporation) have also been made available in the public domain22–24, providing opportunities to advance under-
standing of the hydrologic cycle at multiple spatiotemporal scales. However, uncertainties in global data products 
are often high, especially in regions with very large lakes25, as lake-atmospheric feedbacks can be challenging 
to simulate accurately26,27. To offset limitations of hydrologic model simulations, remote sensing data products 
are among the potential alternatives for large lakes research. Recent advances in remote sensing techniques28 
have improved the accuracy of data products representing important variables of large lakes hydrology such as 
water levels29 and evaporation30. However, the development of remote sensing data sets usually does not take into 
account mass flux balance in the context of the overall hydrologic cycle. This limitation hinders the applicability 
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for large lakes of remote sensing data sets, as they often cannot be used together with other independent data 
sources to explain the mechanisms driving changes in water storage31.

The Laurentian Great Lakes (hereafter referred to as the Great Lakes; Fig. 1), the largest system of freshwater 
lakes on Earth, represent many of the challenges facing global large lakes. Water levels of the Great Lakes have 
fluctuated in response to natural climate variability (e.g., variations in precipitation and evaporation) as well 
as direct anthropogenic factors such as regulation of outflows and inter-basin diversions32–34. The intensified 
dynamic of water levels in the last two decades35 has elevated societal concern of a potential new norm for the 
Great Lakes hydrologic cycle12,36 in the future as global temperatures continue to rise37, posing new challenges for 
regional water management. Although there are multiple data sources available to study the Great Lakes water 
balance22,38–45, none of them adequately quantify uncertainty46,47 or reconcile the water balance because they were 
developed independently.

To provide a framework for incorporating independent data sets and informing water management decisions 
for large lakes, a statistical framework (the Large Lakes Statistical Water Balance Model, hereafter referred to as 
the L2SWBM) has been recently developed48,49. This new model can assimilate independent data products to infer 
the value of water balance components through a Bayesian framework. A conventional water balance equation 
is used within the L2SWBM to constrain the estimates, ensuring that outputs can close the water balance over 
multiple time periods. The L2SWBM has been used to support Great Lakes hydrological research, particularly by 
attributing water level changes to climatic conditions50, assessing bias of different data products representing a 
common water balance component47,51, and benchmarking the performance of operational forecasts31.

This article presents a seventy-year record of Great Lakes water balance estimates using the L2SWBM. This 
dataset can be used to explore the mechanisms underlying long-term changes as well as the most recent surge of 
Great Lakes water levels, and provide new insight into how climate change has influenced, and might continue to 
influence large lakes. The inputs and source code of the L2SWBM are also made available, and can be customized 
to incorporate new measurements, estimates or simulations when they become available in the future.

Methods
Figure 2 shows a schematic of the Bayesian inference approach encoded in the L2SWBM. The following sections 
elaborate on the independent data sources used as inputs, and describe the components of the L2SWBM in 
greater detail.

A compilation of multiple data sources for the Great Lakes water balance.  Multiple hydro-climate 
datasets are available to represent the water balance of the Great Lakes31 ranging from gauge-based aggre-
gated data43,52 to model simulations47 and remote sensing products40. However, they were mostly developed 

Fig. 1  The main features of the Laurentian Great Lakes basin (shaded region) including lake surfaces (light 
blue), location of major cities, main inter-basin diversions, and connecting channels (Source: NOAA Great 
Lakes Environmental Research Laboratory and U.S. Army Corps of Engineers, Detroit District).
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independently with limited consideration of fidelity to the water balance31. This inconsistency among available 
data sets is a long-standing challenge facing Great Lakes hydrologic research41, and has motivated the develop-
ment of the L2SWBM50. To inform the Bayesian framework encoded within the L2SWBM, we selected eight 
independent data sources, including:

•	 Beginning of month (BOM) water levels (H) for each of the Great Lakes, provided by the binational Coordi-
nating Committee on Great Lakes Basic Hydraulic and Hydrologic Data (referred to as “Coordinating Com-
mittee”, or CCGLBHHD, hereafter; for more information about this ad-hoc group, please see Gronewold, 
et al.31). Lake wide-average water levels were calculated as the arithmetic mean of daily water level measure-
ments over a subset of in situ gauges located across the coastline of each lake. A greater detail of the underly-
ing data sets is discussed in Gronewold, et al.31.

•	 Diversions (D) into, or out of, each lake were provided by the Coordinating Committee31. Diversions include 
the Long Lac and Ogoki Diversion into Lake Superior, the Chicago Diversion from Lake Michigan-Huron, 
and the Welland Canal, which diverts water from Lake Erie to Lake Ontario.

•	 Connecting channel flows (I or Q) are obtained from two independent data sources. The first dataset was 
estimated by the Coordinating Committee using a variety of methods such as stage-fall discharge equations 
or aggregation of discrete flow measurements31. The second dataset was measured using Acoustic Doppler 

Fig. 2  Schematic figure of the approach to generating new monthly estimate for the Great Lakes water balance.
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Velocity Meters, which were installed across International Gauging Stations (IGS) maintained by the United 
States Geological Survey and Water Survey Canada31.

•	 Over-lake precipitation (P) is obtained from four data sources: (i) the NOAA-GLERL Great Lakes Monthly 
Hydrometeorological Database (GLM-HMD)43; (ii) output of the Great Lakes Advanced Hydrologic Pre-
diction System (AHPS)53, which is operated by the United States Army Corps of Engineers (USACE); (iii) 
National Weather Service Multisensor Precipitation Estimates (NWS MPE)54; and (iv) Meteorological Service 
of Canada’s Canadian Precipitation Analysis (CaPA)40,55.

•	 Over-lake evaporation (E) is obtained from three data sources: (i) the NOAA-GLERL GLM-HMD43; (ii) 
output of the USACE AHPS41; (iii) the Environment and Climate Change Canada’s Water Cycle Predic-
tion System (ECCC WCPS)39; and output of the NOAA-GLERL Finite-Volume Community Ocean Model 
(FVCOM)56.

•	 Tributary lateral runoff (R) is obtained from three data sources: (i) the NOAA-GLERL GLM-HMD43; (ii) 
output of the USACE AHPS41; and (iii) the ECCC WCPS39.

Table 1 provides a summary of these data sets and indicates which data set was used to estimate the prior 
distributions and likelihood functions. Besides the data sets included in Table 1, there are other regional31 and 
global57,58 data products that have been identified for potential applications of the L2SWBM on the water balance 
of the Great Lakes (and other large lakes) in the future.

The Large Lakes Statistical Water Balance Model (L2SWBM).  The L2SWBM uses a conventional 
water balance model to constrain component estimates, ensuring that the water balance can be closed over multi-
ple timespans for the Great Lakes system. For Lake Superior, Lake Michigan-Huron, Lake Erie, and Lake Ontario, 
changes in storage over a specific time window were defined using Eq. (1).

∑ εΔ = − = − + + − + ++
=

+ −
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(1)
j w j w j

i j

j w

i i i i i i i,

1

where: ΔH: change in lake storage over w months, i.e. from month j to month j + w (mm);
P: over-lake precipitation (mm);
E: over-lake evaporation (mm);
R: lateral tributary lake inflow (mm);
I: inflow from upstream lake (m3/s);
Q: outflow to downstream lake (m3/s);
D: inter-basin diversions (to or from a specific lake) and consumptive uses (m3/s);
ε: process error term representing water level changes not explained by the other components (mm) such 
as ground-water fluxes or glacial isostatic rebound59.

We note that the L2SWBM code converts I, Q, and D from flow rate (m3/s) to lake-depth (mm) using lake 
surface area whenever required (e.g., the unit of millimetre is required to calculate water balance closure). The 
sign of D depends on whether water is diverted to (positive values) or from (negative values) a specific lake. In 
addition, this study used a rolling window of w = 12, which generally leads to better results regarding water bal-
ance closure48,49.

Over Lake St. Clair, which has a substantially smaller surface area relative to the other four lakes, the combined 
effect of inflow (from Lake Michigan-Huron via the St. Clair River) and outflow (to Lake Erie via the Detroit 

Data sources Variables
Temporal 
coverage

Used in

Data reference
Prior distribution 
estimate

Likelihood function 
estimate

NOAA GLERL 
GLM-HMD P, E, R 1900–2016(*) X X Hunter, et al.43

USACE AHPS P, E, R 1900–2019(*) X Croley53

CCGLBHHD I, Q, D, H 1900–2019 X X Gronewold, et al.31

IGS I, Q 2008–2019 X Gronewold, et al.31

GLERL FVCOM E 2018–2019 X Kelley, et al.56

ECCC CaPA P 2006–2019 X Fortin, et al.40 and 
Lespinas, et al.55

NWS MPE P 2016–2019 X Stevenson and 
Schumacher54

ECCC WCPS E, R 2016–2019 X Durnford, et al.39

Table 1.  Summary of data sets, and an indication of which were used to calculate the prior probability 
distribution and likelihood functions, for each of the water balance components including over-lake 
precipitation (denoted as P), over-lake evaporation (denoted as E), lateral runoff (denoted as R), inflow through 
main channels from upstream lake (denoted as I), outflow through main channels (denoted as Q), diversion 
(denoted as D) and lake storage (denoted as H). Note that only data from 1950 to 2019 was used in this study. (*): 
over-lake evaporation is only available starting in 1949.
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River) generally dominates the hydrologic cycle. Therefore, only net basin supply (NBS = P − E + R) was mod-
elled, and the water balance equation for Lake St. Clair was modified as below.

∑ εΔ = − = + − ++
= =

+ −
H H H NBS Q Q( )

(2)
j w j w j

i ji j

j w

i MHU i i,

1

i

where QMHU is the outflow from Lake Michigan-Huron while the other variables are defined following those of 
Eq. 1.

Each water balance component was then inferred through a Bayesian approach, in which the “true” value of 
a variable (e.g., over-lake precipitation for Lake Superior) at a specific time-step (e.g., Jan 2019) was probabilis-
tically estimated using a prior probability distribution and likelihood functions parameterized from multiple 
independent data sources. The following section will describe our approach to parameterizing the Great Lakes 
water balance using the L2SWBM. It is informative to note that the following sections share some similarity to 
the recent publication on the L2SWBM48. However, we also included more details on specific modifications (e.g., 
data used to derive the L2SWBM parameters) in our application to derive a seventy-year long record for the Great 
Lakes water balance.

Prior distributions of water balance components.  We first modelled each water balance component with a prob-
ability distribution family, representing a “prior belief ” of the possible range of values. The parameters of these 
distributions were empirically estimated from historical data spanning from 1950 to 2019 (presented in Table 1). 
Specifically, over-lake evaporation (E), connecting-channel inflow (I), connecting-channel outflow (Q), diver-
sions (D) as well as net basin supply (NBS; for Lake St. Clair) corresponding to each calendar month m 
( ∈m [1, 12]) were modelled with a normal distribution:

π μ τ=E( ) N( , /2) (3)m E m E m, ,

π μ τ=I( ) N( , ) (4)m I m I m, ,

π μ τ=Q( ) N( , ) (5)m Q m Q m, ,t

π μ τ=D( ) N( , ) (6)m D m D m, ,t

π μ τ=NBS( ) N( , ) (7)m NBS m NBS m, ,

where the mean (μ) and precision (τ) parameters were calculated empirically from historical data. The use of the 
precision (τ σ= 1/ 2) rather than the variance (σ2) in this study is the conventional practice for Bayesian infer-
ence60. We note that the precision of the prior probability distribution for E was divided by two (i.e., the variance 
was doubled) as showed in Eq. 3. This modification allowed a broader range of feasible values to account for a 
potential shift of evaporation in a warming climate48.

Lateral runoff (R) drained to each lake from the corresponding basin for each calendar month m ( ∈m [1, 12]), 
which is always positive, was then modelled with a lognormal prior probability distribution:

π μ τ=R( ) LN( , ) (8)t R m R mln( ), ln( ),

where t is a specific time step, and prior mean (μ R mln( ), ) and precision (τ R mln( ), ) were calculated for each calendar 
month m using historical data records for that month. For example, at time step (t) January 2019, we have m 
equals 1 and the lateral runoff is modelled using mean and precision calculated from all observed January runoff 
values.

We modelled over-lake precipitation (P) using a gamma probability distribution, where the distribution 
parameters for each calendar month m were also calculated empirically from historical data.

π ψ ψ=P( ) Ga( , ) (9)m m m
1 2

The shape (ψ1) and rate (ψ2) parameters of the gamma distribution were defined as below (following Thom61).
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,

where μP m,  (Eq. 11), and μ P mln( ),  (Eq. 12) are respectively the mean of historical precipitation, and the mean of the 
logarithm of precipitation for calendar month m.
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The error term ε in Eq. 1 and Eq. 2 was also modelled using a vague normal prior probability distribution 
following Gelman62 across all calendar months:

π ε = .( ) N(0, 0 01) (13)m

Likelihood functions for analysis period.  To derive the likelihood functions for the analysis period, data from 
multiple data sources spanning over the 1950–2019 period was used (note that the temporal coverage varies sub-
stantially across the data sets, as presented in Table 1).

For changes in lake storage over a period of w months, the likelihood function was defined as:

τ= − ΔΔ Δ+
~y y y N H( , ) (14)H H H j w H,j w j w j j w, ,

in which the observed change in storage over a rolling window of length w months (
Δy Hj w,

) is the difference 
between water level measurements (yH) at the beginning of month j + w and month j. We modelled this value with 
a normal distribution with mean ΔHj w,  and precision τΔHj w,

.
The likelihood functions for water balance components on the right hand side of Eq. 1 (Eq. 2 for Lake St. Clair) 

follow a normal distribution:

θ η τ+θ θ θ~y N( , ) (15)t
n

t
n

m
n

t
n

, , ,t

where θ ∈ P E R I Q D NBS( , , , , , , ), θyt
n
,  is data source ∈n N[1, ] for component θ (which has N independent data 

sources) at time step t (e.g., t = Jan 2019; note that mt = 1 in this case); ηθ m
n
, t

 is the bias of data source number nth 
in calendar month m ( ∈m [1, 12]) and τ θt

n
,  is the precision of data source number nth at time step t.

Similar to other applications of the L2SWBM50,51, the precision of changes in lake storage (τΔHj w,
) and the pre-

cision of data sources of each water balance component over each time step (τ θt
n
, ; θ ∈ P E R I Q D NBS, , , , , , ) were 

modelled with a gamma prior probability distribution with both shape and scale parameters equal 0.1:

τ = . .Δ Ga(0 1, 0 1) (16)Hj w,

τ = . .θ Ga(0 1, 0 1) (17)t
n
,

Except for channel flows (of which the bias is relatively low for most lakes46), the bias of each contributing data 
set was modelled using a normal distribution with mean 0 and precision 0.01 (i.e., a standard deviation of 10):

π η = .θ( ) N(0, 0 01) (18)m
n
, t

Statistical inference of water balance components.  To infer new estimates for the Great Lakes water balance over 
the 1950–2019 period, the L2SWBM was used to encode the prior distributions and likelihood functions esti-
mated from available independent datasets into a JAGS (Just Another Gibbs Sampler) model inference routine63, 
which is an open-source successor to BUGS (Bayesian inference Using Gibbs Sampling)64. The ‘rjags’ package 
within the R statistical software environment65 was then used to simulate the JAGS model over 1,000,000 Markov 
Chain Monte Carlo (MCMC) iterations using two parallel MCMC chains. We omitted the first 500,000 iterations 
as a “burn-in” period. The remaining 500,000 iterations were then thinned at 250-iteration intervals to retain the 
final subset of 2,000 iterations. The 95% credible interval of the final subset was used to infer a feasible range for 
each water balance component.

It is informative to note that historical estimates of over-lake evaporation are not readily available from 1900 
to 1949. As a result, this study only used data spanning from 1950 to 2019 to inform the statistical inference. To 
ensure that no observation was used to estimate both the prior distribution and the likelihood function (and thus 
would be favoured by the L2SWBM) at any specific time step, we used the following approach to derive the prior 
distributions:

•	 For the analysis period from 1950 to 1984: the prior distributions are generated from historical data covering 
the 1985–2019 period.

•	 For the analysis period from 1985 to 2019: the prior distributions are generated from historical data covering 
the 1950–1984 period.

Data Records
The new estimates of the Great Lakes water balance, together with the L2SWBM source code and inputs synthesized 
for this project (monthly data available up to December 2019 depending on variables), are compressed as multiple 
zip-archives that are available for download66. The total file size of the dataset is approximately 4 MB, and contains:

	 (i)	 The L2SWBM source codes, stored in multiple R-script files, together with the R-script of the BUGS model 
and the model configuration file (accompanied with a text file explaining the variables of this configuration 
file). The configuration file can be adjusted to include more data sources or focus on a different analysis 
period. The abovementioned files were compressed into a zip archive named as “L2SWBM_Model.zip”.

https://doi.org/10.1038/s41597-020-00613-z
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	(ii)	 Inputs of the L2SWBM. These independent data records were used to derive the prior distribution and 
likelihood functions for each of the variable. Data for each variable of a specific lake is stored in a separate 
csv file. All inputs files were compressed into a single zip archive named as “L2SWBM_input.zip”.

	(iii)	 Outputs of the L2SWBM. The L2SWBM generated multiple outputs that are organized as four separate 
folders (each folder was compressed into one single zip archive). Table 2 provides a description of the data 
available as well as naming convention of these outputs.

Technical Validation
Figure 3 provides a visual assessment of a representative time series of inferred values (95% credible interval of 
L2SWBM simulations) of storage changes and water balance components for Lake Superior from 2015 to 2019. 
We note that the published dataset66 also contains the graphs for each of the decadal periods (e.g., 1950–1959) 
across all lakes. The results in Fig. 3 (and other figures in Do, et al.66) indicate the presence of important differ-
ences among the historical data sets. For instance, there are substantial differences between over-lake precipita-
tion (the top panel) aggregated from ECCC CaPA gridded product and that available in a legacy dataset (USACE 
AHPS).

The Bayesian inferred values (the vertical grey bars in Fig. 3) show generally consistent seasonal and 
inter-annual patterns, but also contain important differences relative to the other datasets. We also note that 
estimates over downstream lakes (i.e., Lake Erie and Lake Ontario) show generally higher uncertainty relative 
to the upstream lakes (i.e., Lake Superior and Lake Michigan-Huron), potentially due to the accumulation of 
uncertainty of the model simulations.

It is informative to note that the bias in channel flows (i.e., inflow, outflow and diversion) was not modelled 
by the L2SWBM, owing to relatively reliable records of river discharge comparing to estimates of other variables 
such as over-lake precipitation46. In addition, only one data source is available to represent changes in lake stor-
age. As a result, estimates of channel flows and lake storage changes appear to be well constrained across all time 
steps relative to the other variables. Moving forward, we plan to assimilate new global data products of water 
level (e.g. water level derived from Gravity Recovery and Climate Experiment data57), and river flow simulated 
by hydrological models (e.g. WRF-Hydro model67) to provide a more holistic view of the uncertainty associated 
with L2SWBM estimates of these variables.

Tables 3–6 provide an overview of the new estimates of over-lake precipitation, over-lake evaporation, and 
lateral runoff across Lake Superior (Table 3), Lake Michigan-Huron (Table 4), Lake Erie (Table 5), and Lake 
Ontario (Table 6). Here we calculated the mean and the standard deviation of the median (denoted as MED) and 
the 95% credible interval (denoted as CI) estimated by the L2SWBM for each calendar month. Over-lake precip-
itation tends to have the highest inter-annual variations (indicated by a high standard deviation of MED) in Lake 
Superior and Lake Michigan-Huron, while lateral runoff has the highest inter-annual variation in Lake Erie and 
Lake Ontario, of which the ratio of land area to lake area is relatively high32.

The CI of the new estimates is generally consistent across all time steps, indicated by a relatively small value 
of both the mean and the standard deviation. Our calculated uncertainties in each water balance component are 
susceptible to both the a priori range of values for that component, and to the range of variability in assimilated 

Output Type Description Naming Convention Filename example

Prior 
distribution 
plots (output_
plot_prior.zip)

Folder
Multiple PDF files that 
contain plots of the prior 
probability distributions of the 
water balance components

<VAR>PriorCompare_<PriorPeriod>.pdf evapPriorCompare_19501984.pdf

Data-preview 
plots (output_
plot_preview.
zip)

Folder

Multiple PDF files that 
contain plots of inputs over 
the analysis period. Each pdf 
file shows independent data 
sources for a specific lake over 
one decade (from decade no. 0 
to decade no. n-1, with n = no. 
of years/10).

<LAKE>TS_Preview_<DECADE No.>_<PROJECTNAME>.pdf superiorTS_Preview_d0_GLWBData.pdf

Posterior 
inference plots 
(output_plot_
posterior.zip)

Folder

Multiple PDF files that 
contain plots of outputs over 
the analysis period. Each pdf 
file shows all data for a specific 
lake over one decade (from 
decade no. 0 to decade no. 
n-1, with n = no. of years/10).

<LAKE>TS_ALL_<DECADE No.>_<PROJECTNAME>.pdf miHuronTS_ALL_d5_GLWBData.pdf

Posterior 
inference time-
series (output_
ts_posterior.zip)

Folder

Multiple CSV files that 
contain monthly inference 
(2.5, 50 and 97.5 percentile of 
the MCMC iterations) of each 
water balance component 
across each lake over the 
analysis period.

<LAKE><VAR>_<PROJECTNAME>.csv erieRunoff_GLWBData.csv

Table 2.  Description and naming convention of outputs generated by the L2SWBM. “Naming Convention” 
field represents the naming convention of individual files within a specific folder (compressed into a zip 
archive).
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Fig. 3  Comparison between the newly-derived water balance components generated by the L2SWBM (vertical 
grey bars) and corresponding observations from independent data sets (horizontal dashes) for Lake Superior 
from 2015 to 2019. From top to bottom: over-lake precipitation (denoted as P), over-lake evaporation (denoted 
as E), lateral runoff (denoted as R), outflow (denoted as Q), diversions (denoted as D) and changes in lake 
storage (denoted as ΔH). All of the included data sets are made available in Do, et al.66. Figures for each of the 
decadal periods (e.g., 1950–1959 or 1960–1969) across all lakes are also available in Do, et al.66.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P MED 52 (17) 36 (15) 43 (20) 53 (25) 72 (24) 79 (24) 75 (26) 76 (28) 86 (30) 76 (30) 64 (23) 56 (17)

P CI 22 (3) 21 (2) 22 (3) 23 (2) 24 (3) 24 (1) 24 (2) 25 (2) 25 (2) 25 (2) 24 (2) 23 (3)

E MED 100 (15) 59 (16) 41 (14) 16 (6) 2 (2) -3 (1) -1 (3) 13 (10) 48 (16) 70 (14) 96 (16) 114 (19)

E CI 19 (1) 19 (1) 18 (0) 15 (1) 11 (0) 8 (3) 13 (2) 17 (2) 19 (1) 18 (1) 19 (2) 21 (2)

R MED 33 (5) 30 (5) 40 (9) 88 (25) 93 (33) 58 (16) 44 (13) 35 (10) 36 (13) 47 (17) 45 (12) 38 (9)

R CI 16 (2) 15 (2) 17 (1) 22 (1) 24 (1) 20 (1) 18 (1) 17 (1) 18 (2) 19 (2) 19 (1) 17 (2)

Table 3.  The mean and standard deviation (values inside the brackets) of the median (denoted as MED) and the 
95% credible interval (denoted as CI) of the L2SWBM inference for over-lake precipitation (denoted as P), over-
lake evaporation (denoted as E), and lateral runoff (denoted as R) over Lake Superior. The mean and standard 
deviation were calculated for each calendar month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P MED 55 (18) 43 (17) 52 (23) 70 (22) 73 (26) 77 (27) 73 (19) 80 (21) 85 (32) 77 (31) 70 (23) 62 (20)

P CI 19 (2) 18 (2) 19 (2) 20 (1) 21 (2) 21 (1) 20 (2) 19 (3) 22 (2) 21 (2) 20 (2) 20 (2)

E MED 75 (14) 40 (11) 28 (10) 9 (5) 0 (3) -1 (3) 8 (9) 33 (13) 61 (16) 77 (16) 94 (17) 105 (18)

E CI 15 (2) 13 (2) 13 (4) 10 (2) 8 (1) 8 (1) 12 (2) 14 (3) 15 (3) 15 (3) 16 (2) 16 (3)

R MED 58 (16) 53 (15) 84 (22) 115 (32) 87 (28) 54 (18) 38 (11) 31 (5) 34 (12) 47 (19) 59 (20) 63 (19)

R CI 20 (3) 20 (3) 22 (3) 24 (2) 23 (3) 20 (3) 18 (3) 15 (2) 18 (3) 20 (3) 21 (3) 21 (4)

Table 4.  The mean and standard deviation (values inside the brackets) of the median (denoted as MED) and 
the 95% credible interval (denoted as CI) of the L2SWBM inference for over-lake precipitation (denoted as P), 
over-lake evaporation (denoted as E), and lateral runoff (denoted as R) over Lake Michigan-Huron.
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estimates. Consequently, some estimates, such as over-lake evaporation, can have low uncertainty values because 
evaporation has a very strong seasonal cycle, with very low values in the summer months. In future research, we 
intend to experiment with different expressions of the a priori water balance uncertainty to determine whether 
they impact the uncertainties of the L2SWBM estimates.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P MED 65 (21) 56 (22) 60 (22) 73 (24) 73 (29) 75 (31) 68 (22) 75 (21) 80 (28) 79 (33) 78 (24) 75 (22)

P CI 24 (3) 23 (3) 23 (3) 24 (2) 24 (3) 25 (3) 24 (2) 24 (3) 25 (4) 25 (4) 24 (3) 24 (3)

E MED 99 (17) 55 (14) 39 (11) 13 (7) 3 (5) 9 (9) 34 (14) 62 (12) 78 (14) 82 (15) 87 (17) 111 (21)

E CI 14 (1) 13 (1) 11 (2) 10 (2) 9 (1) 11 (1) 14 (2) 13 (2) 13 (2) 13 (3) 14 (1) 16 (2)

R MED 158 (60) 147 (60) 252 (74) 299 (88) 172 (75) 91 (38) 61 (29) 48 (16) 58 (30) 97 (47) 143 (60) 174 (58)

R CI 39 (20) 39 (18) 42 (18) 44 (17) 42 (18) 35 (19) 31 (19) 26 (15) 30 (18) 37 (20) 40 (20) 41 (20)

Table 6.  The mean and standard deviation (values inside the brackets) of the median (denoted as MED) and 
the 95% credible interval (denoted as CI) of the L2SWBM inference for over-lake precipitation (denoted as P), 
over-lake evaporation (denoted as E), and lateral runoff (denoted as R) over Lake Ontario.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P MED 63 (26) 53 (24) 66 (25) 80 (26) 79 (30) 84 (31) 80 (25) 81 (30) 84 (32) 78 (33) 79 (30) 73 (24)

P CI 23 (6) 23 (5) 23 (5) 24 (5) 25 (4) 25 (4) 24 (5) 25 (5) 26 (5) 25 (6) 24 (5) 24 (6)

E MED 42 (11) 22 (9) 17 (6) 7 (6) 14 (11) 32 (11) 71 (15) 111 (15) 155 (25) 179 (25) 139 (23) 92 (16)

E CI 15 (3) 14 (4) 12 (3) 12 (3) 14 (4) 15 (2) 16 (3) 16 (3) 19 (2) 19 (4) 19 (2) 17 (4)

R MED 95 (63) 97 (52) 142 (55) 123 (40) 75 (39) 50 (28) 34 (20) 25 (12) 28 (19) 37 (27) 63 (38) 90 (50)

R CI 42 (6) 42 (6) 45 (5) 43 (5) 41 (6) 38 (7) 34 (8) 30 (7) 32 (8) 35 (8) 40 (7) 43 (6)

Table 5.  The mean and standard deviation (values inside the brackets) of the median (denoted as MED) and 
the 95% credible interval (denoted as CI) of the L2SWBM inference for over-lake precipitation (denoted as P), 
over-lake evaporation (denoted as E), and lateral runoff (denoted as R) over Lake Erie.

Fig. 4  Water balance closure assessment using our new L2SWBM water balance estimates across the Great 
Lakes from 2015 to 2019. Vertical grey bars represent simulated cumulative changes (95% posterior predictive 
intervals) while black points represent observed cumulative changes in storage over one month (top panels), 
12 month (middle panels), and 60 month periods (lower panels). Note that the range of the y axis varies across 
different rolling windows.
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To assess long-term water balance closure, we also compared the cumulative changes in lake storage simulated 
by the L2SWBM with those obtained from observed data. Figure 4 shows the results of this comparison over the 
2015–2019 period, indicating the capacity of L2SWBM estimates to close the water balance over consecutive 
periods of 1-, 12-, or 60-months.

The ability of the new estimates to reconcile the water balance provides a potential pathway towards improved 
understanding of hydrologic response to long-term climate variability. In addition, the uncertainties of water 
balance components inferred through the new estimate could be used to identify the time windows that need 
additional information such as new simulations using state-of-the-art hydrological models.

Code availability
The statistical model (L2SWBM) used to produce the new estimate for Great Lakes water balance was 
programmed in R (version 3.6.1). The scripts are open source and available for download as part of the published 
dataset66.
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