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Background. Previous studies suggest that the nose/throat microbiome may play an important role in shaping host immunity 
and modifying the risk of respiratory infection. Our aim is to quantify the association between the nose/throat microbiome and sus-
ceptibility to influenza virus infection.

Methods. In this household transmission study, index cases with confirmed influenza virus infection and their household con-
tacts were followed for 9–12 days to identify secondary influenza infections. Respiratory swabs were collected at enrollment to iden-
tify and quantify bacterial species via high-performance sequencing. Data were analyzed by an individual hazard-based transmission 
model that was adjusted for age, vaccination, and household size.

Results. We recruited 115 index cases with influenza A(H3N2) or B infection and 436 household contacts. We estimated that a 
10-fold increase in the abundance in Streptococcus spp. and Prevotella salivae was associated with 48% (95% credible interval [CrI], 
9–69%) and 25% (95% CrI, 0.5–42%) lower susceptibility to influenza A(H3N2) infection, respectively. In contrast, for influenza B 
infection, a 10-fold increase in the abundance in Streptococcus vestibularis and Prevotella spp. was associated with 63% (95% CrI, 
17–83%) lower and 83% (95% CrI, 15–210%) higher susceptibility, respectively.

Conclusions. Susceptibility to influenza infection is associated with the nose/throat microbiome at the time of exposure. The 
effects of oligotypes on susceptibility differ between influenza A(H3N2) and B viruses. Our results suggest that microbiome may 
be a useful predictor of susceptibility, with the implication that microbiome could be modulated to reduce influenza infection risk, 
should these associations be causal.
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Influenza causes an estimated 3 to 5 million severe illnesses 
and 400 000 deaths annually [1, 2]. Vaccination is currently the 
most effective strategy for controlling influenza transmission, 
but vaccine effectiveness has been suboptimal in recent seasons 
mostly due to vaccine–virus mismatch [3]. Moreover, vaccine 
coverage is typically low in low- and middle-income countries 
[4]. To develop complementary influenza-prevention strat-
egies, it is important to identify host determinants of influenza 
susceptibility.

One potential prevention strategy is to manipulate the host 
nasal/throat microbiome. Both animal models and human 
studies suggest that the respiratory microbiome in the nose/
throat may affect host immunity and modify susceptibility to 
viral respiratory infections, including influenza [5–9]. However, 

much remains to be learned, including associations between 
different microbiota compositions and risk of different viral in-
fections, and the possibility of manipulating the microbiome to 
prevent infection.

As one of the major venues for influenza transmission, the 
household is an ideal setting to examine the relationship be-
tween biological characteristics of hosts, including the respira-
tory microbiome, and their risk of influenza infection [10, 11]. 
In a typical household transmission study, exposed household 
contacts are closely monitored for influenza infection inten-
sively in the approximately 2 weeks following illness onset in an 
index case, a period when they are highly infectious [11]. The 
household secondary attack rate, defined as the risk of infection 
for household members living with an index case, of seasonal 
influenza ranges from 10% to 20% [12]. We conducted a house-
hold influenza transmission study in Managua, Nicaragua, 
during 2012–2014 and identified an association between in-
fluenza transmission and a microbiome community state type. 
However, that analysis is based on simple regression methods 
and the results are not specific to influenza type/subtypes [13]. 
Another analysis based on the same data found that higher bac-
terial community diversity prior to infection was associated 
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with longer shedding duration and earlier time to infection 
[14]. This indicates that the role of the microbiome in influenza 
transmission could be critical.

Here we present a more thorough analysis of the same data 
using a transmission model that is capable of quantifying the 
type/subtype-specific relationship between the nasal/throat mi-
crobiota and susceptibility to influenza A(H3N2) and B virus 
infection. This model accounts for transmission dynamics, in-
cluding timing of infections, community infection risk, and 
household transmission chains, providing a more compre-
hensive picture of the role of the respiratory microbiome on 
influenza risk.

METHODS

Study Subjects

Detailed methods for the household influenza transmission 
study have been published [15]. Briefly, index influenza cases 
were identified at the Health Center Sócrates Flores Vivas, a 
primary care facility. Index cases were enrolled if (1) they ex-
perienced influenza-like illness, defined as fever or feverishness 
with cough, sore throat, or rhinorrhea, with symptom onset at 
48 hours or earlier; (2) they were positive for influenza by rapid 
antigen test; (3) they had no other household members with in-
fluenza symptoms in the previous 2 weeks; and (4) they were 
living with 1 or more household member. Following enrollment, 
we conducted a household visit to collect initial respiratory sam-
ples and obtain demographic and symptom information. We 
visited each household up to 4 additional times, every 2–3 days, 
to collect respiratory samples and daily symptom information. 
This study was approved by the institutional review boards at the 
Nicaraguan Ministry of Health and the University of Michigan. 
Written consent to participate or parental permission was 
obtained for all participants. Verbal assent was obtained for chil-
dren aged 6 years or older.

Laboratory Methods

Combined nasal and throat swabs were stored at 4–8°C in viral 
transport medium and transported to the National Virology 
Laboratory within 12 hours of collection. Samples were tested 
for influenza virus types (A and B) and subtypes (H1N1pdm 
and H3N2) by real-time reverse transcriptase–polymerase chain 
reaction (RT-PCR) on an Applied Biosystems 7500 Fast PCR 
platform following validated protocols from the US Centers for 
Disease Control and Prevention. Sample aliquots were stored at 
−70°C for microbiota characterization.

Microbiota Characterization

We characterized the microbiota of swabs collected at the first 
home visit. Genomic DNA was extracted using the QIAamp 
DNA Mini Kit (Qiagen) and an additional solution consisting 
of cell lysis solution (Promega), lysozyme, mutanolysin, RNase 
A, and lysostaphin (Sigma-Aldrich).

The V4 hypervariable region of the 16S rRNA gene was 
sequenced using Illumina MiSeq V2 chemistry 2x250 (Illumina) 
and a validated dual-indexing method [13]. Following align-
ment and quality filtering in mothur v1.38.1 (www.mothur.
org/wiki/MiSeq_SOP, accessed 18 November 2016) reads were 
partitioned into unique taxonomic units (oligotypes) using 
Minimum Entropy Decomposition with default parameters 
(-M: 13779.0, -V: 3 nt). Representative sequences of oligotypes 
were classified using the Human Oral Microbiome Database 
v14.51 [16] and blastn v2.2.23 [17]. Taxonomic classifications 
with ≥Taxidentity (≥98% identity) were kept.

After excluding any sample with fewer than 1000 total 
reads, samples were assigned to 5 bacterial community types 
using Dirichlet multinomial mixture models [18] and the 
DirichletMultinomial v1.16.0 R package [19]. The final number 
of community types was selected based on fit of the negative log 
models and statistical power in downstream analysis. The com-
munity type for an individual was assigned as missing when his/
her maximum posterior probabilities for community types were 
less than 0.9 [18].

Statistical Models

Our analysis focused on RT-PCR–confirmed influenza 
A(H3N2) and B infection. There were only 16 index cases with 
influenza A(H1N1)pdm infection, which were insufficient to 
conduct robust estimation. We used an individual-based hazard 
household transmission model [20, 21] to characterize trans-
mission in households, involving risks of infection from out-
side the household (“community infections”) or from infected 
household members (“secondary or tertiary infections”) to 
estimate the association between the nose/throat microbiome 
at enrollment and influenza susceptibility. This relaxed an as-
sumption that all household contacts were infected by their 
index cases, which is commonly made in regression-type ana-
lyses (Supplementary Information, Section 1).

In this model, the infection risk of each contact depended 
on the infectivity of other infected household members (de-
termined by the time since symptom onset) and a daily infec-
tion risk from the community. Serial intervals, defined as the 
time between 2 consecutive cases, were assumed to follow a 
discretized Weibull distribution. In the transmission analyses, 
we adjusted for age (≤18 years vs >18 years), vaccination status 
(seasonal trivalent inactivated influenza vaccine prior to that 
influenza season), and household size (<4 people vs ≥5 people).

We used 2 different measures of the nose/throat microbiome 
in the model. First, we considered the community types iden-
tified as described above. Second, we used oligotypes that ac-
count for more than 50% of the difference between community 
types [22]. For the second measure, we conducted the analyses 
in 2 steps because the number of oligotypes is large. In step 1, 
we used the model to fit each oligotype separately to explore 
oligotypes potentially associated with susceptibility, defined as 
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a 90% credible interval of the risk ratio excluding 1. In step 2, 
we used the transmission model to fit all oligotypes selected by 
step 1 together.

Inference

Model fitting was conducted in a Bayesian framework. 
Association is defined as a risk ratio with a 95% credible interval 
excluding 1.  To account for missing data in community type, 
we constructed a Markov Chain Monte Carlo algorithm [23] 
that permits the sampling of missing community types. Hence, 
model parameters and missing community types were estimated 
jointly (Supplementary Information, Section 2). We conducted 
simulation to evaluate our model adequacy (Supplementary 
Information, Section 3). Statistical analyses were conducted 
using R version 3.2.1. Data and code availability are summarized 
in Supplementary Information, Section 4.

RESULTS

Study Participants

We recruited 76 individuals with PCR-confirmed influenza 
A(H3N2) virus and 39 individuals with PCR-confirmed in-
fluenza B virus infection together with 286 and 150 household 
contacts, respectively, between August 2012 and November 
2014 (Table 1). The proportion of households with at least 1 
secondary case for influenza A(H3N2) index cases was lower 
than that for influenza B index cases (P  =  .048). Other char-
acteristics of index cases were similar between the households 
affected by influenza A(H3N2) and influenza B. The proportion 
of vaccinated household contacts of influenza A(H3N2) index 
cases was lower than that of influenza B index cases (P < .0001). 
Other characteristics for household contacts were similar be-
tween influenza A(H3N2) and B households. The observed 
risks of PCR-confirmed infection in household contacts were 
15.0% (43/286; 95% confidence interval [CI], 11.1–19.7%) and 
21.3% (32/150; 95% CI, 15.1–28.8%) for influenza A(H3N2) 
and B, respectively.

The characteristics of household contacts stratified by influ-
enza virus type of index cases and baseline bacterial commu-
nity type are presented in Table 2. The proportion of children 
among household contacts with community type 4 was lower 
than those with other community types, regardless of influenza 

Table 1. Characteristics of Index Case Patients With Influenza A(H3N2) or 
B Virus Infection and Their Household Contacts

Characteristics
Influenza 
A(H3N2) Influenza B

Index cases   

 No. of index cases 76 39

 Age, years   

  0–5 47 (62) 16 (41)

  6–17 24 (32) 22 (56)

  >17 5 (7) 1 (3)

 Male 40 (53) 22 (56)

 Prior vaccination 2 (3) 3 (8)

 Oseltamivir treatment 67 (88) 37 (95)

 Microbial community type   

  1 23 (30) 8 (21)

  2 17 (22) 6 (15)

  3 10 (13) 5 (13)

  4 10 (13) 8 (21)

  5 15 (20) 10 (26)

  Missing 1 (1) 2 (5)

 Number of household contacts   

  1–3 45 (59) 25 (64)

  4–5 17 (22) 6 (15)

  ≥6 14 (18) 8 (21)

 Number of secondary cases in household   

  0 51 (67) 18 (46)

  1 15 (20) 14 (36)

  2 5 (7) 5 (13)

  ≥3 5 (7) 2 (5)

 Symptom profile   

  Fever 76 (100) 39 (100)

  Rhinorrhea 74 (97) 37 (95)

  Sore throat 37 (49) 15 (38)

  Cough 72 (95) 36 (92)

  ILIa 72 (95) 37 (95)

Household contacts   

 No. of contacts 286 150

 Age, years   

  0–5 33 (12) 19 (13)

  6–17 88 (31) 45 (30)

  >17 165 (58) 86 (57)

  Male 106 (37) 58 (39)

 Prior vaccination 6 (2) 18 (12)

 Bacterial community type   

  1 72 (25) 36 (24)

  2 57 (20) 38 (25)

  3 69 (24) 30 (20)

  4 41 (14) 23 (15)

  5 36 (13) 14 (9)

  Missing 11 (4) 9 (6)

Household contacts with RT-PCR–confirmed 
infection

  

 Overall 43/286 (15) 32/150 (21)

 Age, years   

  0–5 13/33 (39) 8/19 (42)

  6–17 17/88 (19) 16/45 (36)

  >17 13/165 (8) 8/86 (9)

 Symptom profile   

  Fever 19/43 (44) 22/32 (69)

  Rhinorrhea 24/43 (56) 20/32 (62)

Characteristics
Influenza 
A(H3N2) Influenza B

  Sore throat 15/43 (35) 14/32 (44)

  Cough 26/43 (60) 18/32 (56)

  ILIa 17/43 (40) 15/32 (47)

Data are presented as n (%) or n/N (%) unless otherwise indicated. 
Abbreviations: ILI, influenza-like illness; RT-PCR, reverse transcriptase–polymerase chain 
reaction.
aFever with sore throat or cough.

Table 1. Continued
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virus type (P < .01 for influenza A(H3N2), P = .046 for influ-
enza B). The observed risk of influenza A(H3N2) virus infec-
tion among household contacts with community type 4 was 
lower (2%; 95% CI, 0–13%) than with other community types 
(14–22%). Increased and decreased risks of influenza B infec-
tion among household contacts were observed for community 
type 1 (28%; 95% CI, 14–45%) and type 5 (7%; 95% CI, 0–34%), 
respectively, compared with other community types (17–28%). 
The distributions of oligotypes in each of the baseline commu-
nity types among household contacts, stratified by influenza 
type of the index case, are summarized in Supplementary Table 

1. The range of the abundance of those oligotypes is shown in 
Supplementary Figure 1.

Association Between Community Type and Influenza Virus Infection 
Susceptibility

We fitted our transmission model to estimate the associa-
tion between community type and susceptibility to influenza, 
while accounting for missing community types (Figure 1A, 
Supplementary Tables 2 and 3). Simulations suggested that 
our model provided reasonable fit to the data (Supplementary 
Figure 2). After adjusting for age groups, vaccination status, and 

Table 2. Characteristics of Household Contacts by Bacterial Community Type

Characteristics

Bacterial Community Type

1 2 3 4 5 Missing

Influenza A(H3N2)       

 No. of contacts 72 57 69 41 36 11

 Age, years       

  0–5 6/72 (8) 4/57 (7) 5/69 (7) 1/41 (2) 14/36 (39) 3/11 (27)

  6–17 30/72 (42) 21/57 (37) 15/69 (22) 10/41 (24) 7/36 (19) 5/11 (45)

  >17 36/72 (50) 32/57 (56) 49/69 (71) 30/41 (73) 15/36 (42) 3/11 (27)

 Male 29/72 (40) 17/57 (30) 21/69 (30) 18/41 (44) 16/36 (44) 5/11 (45)

 Prior vaccination 0/72 (0) 2/57 (4) 2/69 (3) 0/41 (0) 1/36 (3) 1/11 (9)

 Infection confirmed       

  Overall 11/72 (15) 8/57 (14) 13/69 (19) 1/41 (2) 8/36 (22) 2/11 (18)

  Age 0–5 years 3/6 (50) 0/4 (0) 3/5 (60) 0/1 (0) 5/14 (36) 2/3 (67)

  Age 6–17 years 6/30 (20) 5/21 (24) 3/15 (20) 1/10 (10) 2/7 (29) 0/5 (0)

  Age >17 years 2/36 (6) 3/32 (9) 7/49 (14) 0/30 (0) 1/15 (7) 0/3 (0)

 Symptom profile       

  Fever 5/11 (45) 4/8 (50) 4/13 (31) 1/1 (100) 5/8 (62) 0/2 (0)

  Rhinorrhea 4/11 (36) 7/8 (88) 6/13 (46) 1/1 (100) 6/8 (75) 0/2 (0)

  Sore throat 4/11 (36) 4/8 (50) 5/13 (38) 0/1 (0) 2/8 (25) 0/2 (0)

  Cough 5/11 (45) 7/8 (88) 8/13 (62) 1/1 (100) 5/8 (62) 0/2 (0)

  ILIa 4/11 (36) 4/8 (50) 4/13 (31) 1/1 (100) 4/8 (50) 0/2 (0)

Influenza B       

 No. of contacts 36 38 30 23 14 9

 Age, years       

  0–5 2/36 (6) 8/38 (21) 0/30 (0) 0/23 (0) 5/14 (36) 4/9 (44)

  6–17 10/36 (28) 12/38 (32) 12/30 (40) 5/23 (22) 4/14 (29) 2/9 (22)

  >17 24/36 (67) 18/38 (47) 18/30 (60) 18/23 (78) 5/14 (36) 3/9 (33)

  Male 13/36 (36) 14/37 (37) 9/30 (30) 12/23 (52) 6/14 (43) 4/9 (44)

 Prior vaccination 7/36 (19) 3/37 (8) 5/30 (17) 1/23 (4) 2/14 (14) 0/9 (0)

 Infection confirmed       

  Overall 10/36 (28) 8/38 (21) 5/30 (17) 4/23 (17) 1/14 (7) 4/9 (44)

  Age 0–5 years 2/2 (100) 4/8 (50) NA NA 0/5 (0) 2/4 (50)

  Age 6–17 years 3/10 (30) 3/12 (25) 5/12 (42) 3/5 (60) 1/4 (25) 1/2 (50)

  Age >17 years 5/24 (21) 1/18 (6) 0/18 (0) 1/18 (6) 0/5 (0) 1/3 (33)

 Symptom profile       

  Fever 5/10 (50) 4/8 (50) 4/5 (80) 4/4 (100) 1/1 (100) 4/4 (100)

  Rhinorrhea 7/10 (70) 5/8 (62) 3/5 (60) 2/4 (50) 0/1 (0) 3/4 (75)

  Sore throat 3/10 (30) 4/8 (50) 3/5 (60) 3/4 (75) 1/1 (100) 0/4 (0)

  Cough 5/10 (50) 6/8 (75) 3/5 (60) 2/4 (50) 1/1 (100) 1/4 (25)

  ILIa 3/10 (30) 4/8 (50) 3/5 (60) 3/4 (75) 1/1 (100) 1/4 (25)

Data are presented as n/N (%) unless otherwise indicated. 
Abbreviations: ILI, influenza-like illness; NA, not applicable.
aFever with sore throat or cough.
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household size, community type 4 was associated with lower 
susceptibility to influenza A(H3N2) infection, with risk ratios 
of 0.07 to 0.12 in reference to the other 4 community types. 
Community type 5 (shown in yellow; Figure 1B) was associated 
with lower susceptibility to influenza B infection, with risk ratios 
of 0.04 to 0.10, compared with the other 4 community types. As 
a sensitivity analysis, we refitted the model with symptomatic 
influenza infection and the results were similar (Supplementary 
Table 4).

Oligotype Contribution to Susceptibility

We explored which oligotypes that accounted for more than 50% of the 
difference between community types contribute to susceptibility. Step 
1 transmission analyses were models fitted for each oligotype, adjusted 
for age, vaccination, and household size (Figure 2A, Supplementary 
Table 5) We found that Streptococcus species (spp.) (dentisani, mitis, 
oralis, infantis, tigurinus, lactarius, peroris, pneumoniae) and Prevotella 
salivae were potentially associated with lower susceptibility to influ-
enza A(H3N2) infection. Step 2 transmission analyses were models 
fitted with these oligotypes together, adjusted for the same variables 
in the first step (Figure 2B). We estimated that a 10-fold increase in 
the abundance in Streptococcus spp. (dentisani, mitis, oralis, infantis, 
tigurinus, lactarius, peroris, pneumoniae) and Prevotella salivae was 

associated with 48% (95% credible interval [CrI], 9–69%) and 25% 
(95% CrI, 0.5–42%) lower susceptibility to influenza A(H3N2) in-
fection. Streptococcus spp. (dentisani, mitis, oralis, infantis, tigurinus, 
lactarius, peroris, pneumoniae) was the most abundant oligotype in 
community type 4, suggesting that the lower susceptibility to influ-
enza A(H3N2) infection with community type 4 may be possibly ex-
plained by this oligotype.

In contrast, we found 5 oligotypes that were potentially as-
sociated with susceptibility to influenza B infection in step 1 
analyses (Figure 2A, Supplementary Table 3). Based on the mul-
tivariate model including these 5 oligotypes, we found that a 
10-fold increase in the abundance of Streptococcus vestibularis, 
salivarius, and gordonii spp. was associated with 63% (95% CrI: 
17%, 83%) lower susceptibility, while a 10-fold increase in the 
abundance of Prevotella spp. (veroralis,  fusca, histicola, scopos, 
melaninogenica) was associated with 83% (95% CrI, 15–210%) 
higher susceptibility to influenza B infection. Different from 
community types 1–4, Streptococcus vestibularis, salivarius, 
and gordonii spp. and Prevotella spp. veroralis, fusca, histicola, 
scopos, and melaninogenica were the most and least abundant 
oligotypes in community type 5, suggesting that the lower sus-
ceptibility to influenza B infection among individuals with com-
munity type 5 may be mostly explained by these 2 oligotypes.

Figure 1. A and B, Association between bacterial community types in household contacts and susceptibility to PCR-confirmed influenza infection, by influenza type esti-
mated by the household transmission model. Squares (black), larger circles (purple), triangles (blue), diamonds (red), and smaller circles (orange) represent community types 
1 to 5, respectively. Abbreviations: PCR, polymerase chain reaction; Ref, reference group.
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Associations With Age, Household Size, and Vaccination Status

We found that child household contacts (<18  years) were 
more susceptible to influenza A(H3N2) and B infection 
than adult contacts (≥18  years), with a risk ratio of 3.1 
(95% CrI, 1.7–6.1) and 9.1 (95% CrI, 3.9–23.4), respectively 
(Figure 3, Supplementary Table 4). We estimated that in-
fluenza vaccine protected household contacts against influ-
enza B virus infection, with a risk ratio of 85% (95% CrI, 
11–99%), but not for influenza A(H3N2) virus infection 
(Figure 3, Supplementary Table 4). Residing in a house-
hold with 5 or more people was associated with a 48% (95% 
CrI, −1% to 73%) and 73% (95% CrI, 40–88%) lower risk 
of influenza A(H3N2) and B virus infection, respectively, 
compared with those in smaller households (Figure 3, 
Supplementary Table 4).

Serial Interval

We estimated that the mean serial interval for within-household 
transmission for influenza A(H3N2) and B virus infection was 
2.4 days (95% CrI, 1.1–3.9 days) and 3.1 days (95% CrI, 0.9–
6.6 days), respectively (Figure 4).

DISCUSSION

Compared with the earlier analysis using a mixed-effects re-
gression model [22], the current transmission analyses ad-
vance our understanding about the association between the 
nasal/throat microbiome and the risk of influenza virus in-
fection by providing influenza-type–specific associations in a 
household transmission setting. We identified bacterial com-
munity types and oligotypes associated with the susceptibility 

Figure 2. Association between bacterial oligotype and susceptibility to PCR-confirmed infection for household contacts estimated by household transmission model. 
Circles (red) and triangles (blue) indicate PCR-confirmed influenza A(H3N2) and B virus infection, respectively. A, The points and lines represented the point estimate and 90% 
credible intervals of the association between oligotypes and susceptibility estimated in separate models in step 1. B, The points and lines represented the point estimate and 
95% credible intervals of the association between oligotypes and susceptibility estimated in a single model that included those oligotypes with 90% credible intervals did 
not cover 1 in panel A. Abbreviation: PCR, polymerase chain reaction.
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to influenza A(H3N2) and B, while adjusting for age, house-
hold size and vaccination status. Our framework allows for 
imputing missing community types to include more house-
holds in the analyses to increase the power for detecting 
associations.

According to the transmission analyses, the community type 
but also the oligotype of the nasal/throat microbiome were as-
sociated with susceptibility to influenza A(H3N2) and B. These 
associations differ between influenza subtypes. Our findings 
are consistent with mouse models demonstrating associations 
between mouse commensal microbiota within the respiratory 
tract and susceptibility to influenza infection [5, 6].

The abundance of Streptococcus spp. was associated with 
lower susceptibility for influenza A(H3N2) and B infection in 
our analyses. This is consistent with previous studies showing 
that stimulation of the immune system by Streptococcus col-
onization may inhibit influenza viral replication [24–26]. 
In a mouse model, prior S.  pneumoniae infection protected 
against severe influenza virus infection [26]. Among healthy 
young adults inoculated with live attenuated influenza vaccine, 
Streptococcus infantis was positively associated with influenza 
H1 immunoglobulin A (IgA) titers [27].

In contrast, the abundance of Prevotella spp. was associated 
with increased susceptibility to influenza B but not to influ-
enza A(H3N2). Prevotella has previously been associated with 
increased severity of influenza, tuberculosis, and chronic ob-
structive pulmonary disease [28–30], but this is the first time its 
association with susceptibility to influenza has been detected. 
More in vitro or in vivo studies are needed to verify whether 
and how Prevotella modify host innate immunity or immune 
response specific to influenza viruses.

Our dataset has been analyzed without microbiome data [15] 
based on models without the subtype differences. Here, the 
microbiome data were added to the model and the estimates for 

factors affecting transmission were similar, suggesting that the 
association between microbiome and susceptibility may be in-
dependent of those factors. Consistent with the literature [31–
33] and our previous analysis [15], we estimated that the mean 
serial interval for influenza B virus is 3.1 days, longer than the 
2.4 days estimated for influenza A(H3N2) virus. Also consistent 
with the literature and our previous analysis [15], children were 
more susceptible to influenza A(H3N2) and B virus infection 
than adults [12, 21, 31, 34] and the differences for influenza B 
were more extreme than H3N2 [31, 35]. Potential explanations 
are the lower levels of pre-existing immunity among children, 
their higher frequency of contact and hence higher risk of expo-
sure to influenza [36], or an inherent difference in the transmis-
sibility between influenza A and B viruses [37]. Also, we found 
that smaller households were associated with higher secondary 
attack rate, which was consistent with our previous report [15] 
and other studies [20, 34].

In our study population, vaccine effectiveness for influenza 
A(H3N2) was much lower than for influenza B, which is con-
sistent with a meta-analysis published in 2016 [3]. Other studies 
suggest that this difference may be due to poor vaccine-induced 
protection in some hosts [38] or mismatch of vaccine strain and 
circulating A(H3N2) strains due to egg adaptation [39].

Our study has several limitations. Index cases were recruited 
from health center attendees whose influenza was detected 
using a rapid test, suggesting they had more severe symptoms 
and higher transmissibility than general influenza cases. The 
enrollment of index cases was limited to 2 days or fewer after 

Figure 4. Serial interval distribution estimated under the transmission model, by 
influenza type, accounting for tertiary infections and infections from outside house-
holds. The estimated mean serial intervals for influenza A(H3N2) and B virus infec-
tion were 2.4 days (95% CrI, 1.1–3.9 days) and 3.1 days (95% CrI, 0.9–6.6 days), 
respectively. Abbreviation: CrI, credible interval.

Figure 3. Effect of age group, vaccination status, and household size on transmis-
sion estimated under the household transmission model. Circles (red) and triangles 
(blue) were for household contacts with index cases with PCR-confirmed influenza 
A(H3N2) and B virus infection, respectively. Abbreviations: PCR, polymerase chain 
reaction; Ref, reference.
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symptom onset. As adults with illness usually tend to present 
later to clinics than children, our study likely has an overrep-
resentation of child index cases. Some tertiary infections may 
have been missed since the duration of follow-up was from 
9–12 days after recruitment. However, the effect of this right-
censoring should be minimal since the mean serial interval was 
around 3 days [15, 21]. Diet information was not collected, and 
hence the effect of diet on the nose/throat microbiome could 
not be explored. Infections were defined by PCR positivity, with 
no culture results. While PCR is the gold standard, it may de-
tect infections with low infectiousness [40]. Finally, although 
important risk modifiers were adjusted for in our analyses [20, 
34], we cannot be sure that detected associations are causal 
as there could be other important unmeasured confounders. 
A major strength of our study was that up to 5 respiratory sam-
ples were collected from household contacts over a period of 
9–12 days after enrollment, regardless of symptoms. Therefore, 
the likelihood of missing infections due to peak viral shedding 
occurring between collection of sequential respiratory samples 
under such an intense sampling should be small.

In conclusion, we found that some bacterial community types 
and oligotypes of the nose/throat microbiome were associated 
with susceptibility to influenza. Importantly, these associations 
were dependent on influenza virus type/subtype. Our results 
suggest that the microbiome may serve as a useful predictor 
for susceptibility and have an implication for an alternative ap-
proach to the prevention of influenza infection via modulating 
the microbiome in the upper respiratory tract, should these as-
sociations be causal.
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