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Abstract

Fast-developing single-cell multi-modal omics (scMulti-omics) technologies enable the 

measurement of multiple modalities, such as DNA methylation, chromatin accessibility, RNA 

expression, protein abundance, gene perturbation, and spatial information, from the same cell. 

scMulti-omics can comprehensively explore and identify cell characteristics, while also presenting 

challenges in developing computational methods and tools for integrative analyses. We review the 

integrative methods and summarize the existing tools for studying a variety of scMulti-omics data. 

The various functionalities and practical challenges in using the available tools in the public 

domain are explored through several case studies. Finally, we identify remaining challenges and 

future trends in scMulti-omics modeling and analyses.
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Single-cell sequencing technologies and multi-omics data

An individual cell maintains genetic heterogeneity that manifests unique cell functions and 

states [1]. With rapid developments in cell isolation and high-throughput sequencing 

technologies, single-cell omics (see Glossary) profiling can significantly benefit the study of 

characteristics and heterogeneity of individual cells, which has historically been confounded 

by bulk measurements[2]. Opportunities have arisen at the single-cell level to generate 
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molecular information about whole-genome gene copies [3, 4], gene expression [5, 6], 

epigenome [7, 8], CRISPR perturbation [9, 10], spatial information [11, 12], and protein 

abundance [13, 14], among other phenomena. However, different molecules in a cell work 

synergistically to determine the cell state, and such individual profiling provides only a 

partial landscape of the entire cell heterogeneity [15, 16].

Single-cell multi-modal omics (scMulti-omics) sequencing technologies have recently 

emerged and showed advantages of simultaneously measuring multiple modalities from the 

same individual cell, which enables a more comprehensive exploration of cell behavior and 

identity [2, 16–19]. These technologies have tremendous potential in precision treatments, 

drug resistance, and relapse potential for specific tumors since they are particularly useful 

for studying the cells undergoing rapid differentiation (e.g. cancer and Alzheimer diseases) 

or evolving highly-diverse sub-populations (e.g. immune cells)[20, 21]. Specifically, 

scMulti-omics can greatly impact clinical application by identifying novel disease 

mechanisms. The underlying modalities can help predict drug sensitivities in tumor cells, 

prior to any in vivo/vitro drug doses, in order to exclude low-sensitivity drugs and decrease 

the diagnostic cost. By 2025, the global scMulti-omics market is anticipated to be $5.32 

billion, mainly driven by the increasing need for non-invasive diagnosis and personalized 

medicine [22].

Intuitively, one omics profile can recover the missing values lost in another. Dropout issues 

in single-cell RNA-sequencing (scRNA-Seq) are prevalent. This problem stems from the 

inherent issue with sampling, in which samples do not fully represent their target population, 

especially for low expressed genes. Sampling inefficiencies coupled with the inherent 

uncertainty that follows sampling procedures lead to loss of data. The gene expression 

values missing from scRNA-Seq may be recoverable by integrating more omics levels; 

hence, the integrative analysis of scMulti-omics can theoretically lead to cell state 

prediction, cell trajectory elucidation, and other functional analyses with high accuracy and 

low bias [23]. However, considering the intrinsic challenges in sequencing multiple levels of 

information from the same cell, the sequencing technology accuracy, and the relevant cost, it 

is not currently feasible to comprehensively profile all aspects of cellular sequence types. 

Current approaches allow up to four types of omics data to be measured simultaneously, 

leading to 13 available combinations in the public domain (9 with double-modality 

sequencing, 3 with triple-modality sequencing, and 1 with quad-modality sequencing). For 

example, one technique combines measurements of RNA expression, chromatin 

accessibility, and DNA methylation; another combines RNA expression with spatial 

information (more details can be found in Figure 1).

It is not surprising that scRNA-Seq serves as a general mediator that is included in most 

scMulti-omics studies. Not only does RNA’s intermediate position in the central dogma 

allow for proximity to multiple molecular processes, but also, the application of scRNA-Seq 

is commercialized and routinely available [24, 25]. At least 43 papers in the past five years 

published scMulti-omics datasets that were profiled within the same cell (i.e., matched data) 

(Table 1). By jointly analyzing these matched data, integrative studies may reveal 

relationships and interactions between various types of molecular information that are 

otherwise missing in traditional single-omics studies. However, most existing scMulti-omics 
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tools analyze data obtained across single-cell experiments (i.e., unmatched data), which 

provide opportunities to utilize large amounts of existing single-cell omics data to discover 

novel insights by properly aligning cross-experimental datasets for integrative analysis. We 

review integrative methods and their affiliated computational tools designed for matched and 

unmatched scMulti-omics data. The derived knowledge and insights can provide guidance to 

choose proper tools regarding supported data types, expected analytical outcomes, 

functionalities, and performances.

Integrative methods for scMulti-omics data

Typically, single-omics data is represented by a matrix, with rows representing genes, 

columns representing cells, and each element of the matrix representing the specific omics 

information about a feature in the corresponding cell (e.g., gene expression). Joint analyses 

of scMulti-omics data simultaneously consider both the cross-modality variations and cross-

cell correlations. The challenges in developing such integrative methods for scMulti-omics 

data include unifying different modalities, batch effects between experiments (especially for 

unmatched data), low sequencing depth, and high-modality interactions. Based on the 

underlying method design, we summarize the existing integrative methods into the following 

four broad categories: feature projection, Bayesian modeling, regression modeling, and 

decomposition (Figure 2).

First, data from different profiling methods can be jointly analyzed through feature 

projection. Canonical correlation vectorization (CCV), modified from canonical 
correlation analysis, investigates the relationship between variables by capturing anchors 

that are maximally correlated across the datasets [24]. For instance, given matched scRNA-

Seq and single-cell ATAC-Sequencing (scATAC-Seq) data, CCV identifies the gene features 

shared between the two matrices by projecting cells. A single matrix can then be generated 

by projecting expression values and chromatin accessibility of each gene onto a common 

basis space and normalizing values by penalization and regularization. Manifold alignment 
is another method that has been applied to unmatched scRNA-Seq and epigenomics data to 

unravel the pseudo-time correlation between, e.g., gene expression and DNA methylation 

[26, 27]. However, how to legitimately account for batch effects is one of the major 

difficulties with the projection approach. CCV and Manifold alignment are both feature 

projection-based dimension reduction techniques. These have the theoretical ability to 

reduce high-dimensional data down to its critical components in non-linear spaces, ideally 

emphasizing the features that differentiate cell types. When these methods are applied to 

multi-omics data, they can denoise each individual dataset and highlight cell-type-specific 

features, resulting links between multi-omics datasets.

Second, variational Bayes (VB) is a stochastic variational inference method based on 

Bayesian modeling. The underlying method was designed using the hypothesis that the gene 

copy number (single-cell genome sequencing) is positively correlated with measures 

corresponding to gene expression (scRNA-Seq) [28]. VB fits the RNA expression matrix to 

a set of GxC sub-matrices (generated from gene phylogenic analysis, with genes as rows, 

cells as columns, and gene copy numbers as elements) and integrates the two modalities by 

finding the lowest variance between the fitted approximate distribution and the true 
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distribution in the original GxC matrix. While the underlying hypothesis for VB is naively 

intuitive, there are many complex interactions that dictate the level of gene expression. 

Assuming the hypothesis of a strong positive correlation between gene copy number and 

gene expression leads to the potential of inconsistent or unreliable results.

The third type of integrative analysis uses various regression models to accurately 

characterize the high heterogeneity among individual cells and multi-layer data types, 

simultaneously. Duan and colleagues described a method using a linear regression model to 

integrate covariates between spatial information and RNA-expression combined with an 

expectation-maximization approach to fit the two models. The least absolute shrinkage and 

selection operator (LASSO) regression method has been applied to correlate gene 

expression with chromatin accessible sites [29]. Gradient boosting regression (GBR) 

iteratively fits “weak” models to estimate response variables and align matched gene 

expression and chromatin accessibility patterns to predict differentially accessible genomics 

sites for cell type prediction [30]. Hidden Markov random field (HMRF) is a graph-based 

model widely used for pattern recognition in image data analysis. HMRF first builds 

connections between cells and spatial coordinates and clusters cell groups, integrating gene 

expression patterns and cell positions [31]. Marked point process (MPP) is a nonparametric 

statistical framework to identify the dependency of spatial distribution and gene expression 

levels [32]. A more complex multivariate normal model (MNM) for spatial transcription 

analysis defines spatial dependence by combining gene expression profiles with cell 

locations considering both spatial covariance and nonspatial variance [33]. These regression-

based integrative methods vary widely, as does their applicability to integrating multi-omics 

datasets. The underlying assumptions for regression models are often an issue when 

applying them to new areas. Specifically, linear regression has strict assumptions that would 

make it difficult to apply such a parametric approach to genetic data that often does not fit 

the parametric requirements. However, nonparametric approaches such as MPP do not suffer 

from this limitation. These types of robust methods have great potential for the integration of 

multi-omics datasets. In particular, parallels between longitudinal data analysis and spatial 

omics methods make these types of regression approaches a strong fit.

Lastly, decomposition is a straightforward method for unsupervised data integration. The 

basic idea is to decompose the original matrices into two low-dimensional submatrices: a 

coefficient submatrix records signature information (e.g. genes) and a residue submatrix 

records cell information. One widely used decomposition method in scMulti-omics studies 

is matrix factorization. The input matrices (e.g. scRNA-Seq and scATAC-Seq data) are 

decomposed into (i) an amplitude matrix (or coefficient matrix) composing genes as rows 

and factors as columns to reflect gene co-regulation patterns; and (ii) a pattern matrix (or 

residue matrix) composing factors as rows and cells as columns for further cell clusters. Four 

modified methods have been proposed: integrative nonnegative matrix factorization (iNMF) 

[34], coupled nonnegative matrix factorizations (coupleNMF) [35], group factor analysis 

(GFA) [36], and independent component analysis (ICA) [37]. TOPIC modeling is another 

decomposition method to discover the shared latent information among input matrices. It has 

been applied to derive the functional topics of each cell with specific perturbation by 

integrative analysis of matched scRNA-Seq and single-cell CRISPR screening data [38]. 

Ma et al. Page 4

Trends Biotechnol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similar to the feature project-based dimension reduction approaches, the decomposition 

methods allow for denoising of datasets through dimension reduction in an attempt to 

emphasize the key features of each cell. When implemented correctly, with the necessary 

assumptions met, decomposition has the potential to reliably integrate different omics 

datasets.

Apart from these integrative methods, various advanced methods—such as network 
simulated annealing and deep learning (e.g. autoencoder)—have emerged in the last three 

years for bulk multi-omics studies [39]. However, these approaches have yet to be applied at 

the single-cell level. Theoretically, all these models can be applied to scMulti-omics analysis 

with proper optimization, and we believe that the knowledge gained from these methods 

could be transferred from the bulk level to the single-cell level in the near future.

Analytical tools for scMulti-omics data

To decipher the secrets hidden in scMulti-omics data, a powerful integrative method is 

necessary, yet not entirely sufficient. An efficient tool should also be able to properly 

process the massive and chaotic data before analysis for a more accurate and reliable result. 

A proper combination of preprocessing steps is necessary to decrease bias and generate 

meaningful analytical results, including but not limited to data setup, removing low-quality 

genes and cells, normalizing values across modalities and cells, imputing missing values, 

and imaging digitalization to generate 2D coordination. In this section, we comprehensively 

review ten computational integrative tools for scMulti-omics analysis that are equipped with 

multiple functionalities and various analytical interpretations as mature pipelines (Figure 3, 

Key Figure).

Seurat3—which is based upon a CCV method—is one of the best-developed tools for 

scRNA-Seq and scMulti-omics data analyses with supreme functionalities and well-written 

documentation [24, 40]. Released in 2019, the authors demonstrated the use of Seurat3 by (i) 
co-embedding scRNA-Seq and unmatched scATAC-Seq data to reveal cell-type-specific 

regulatory loci, (ii) applying matched RNA expression and cell-surface protein expressions 

to leverage deeper connections between protein abundance and gene expression, and (iii) 
applying spatial transcriptomic data to predict spatial gene expression patterns and classify 

subpopulations [24]. Seurat3 inherited all functionalities from its previous version in 

comprehensive single-cell RNA-Seq analysis [41, 42], cross-experimental single-cell data 

analysis [43], and integrative bulk and single-cell RNA-Seq data analysis [44], resulting in a 

wide application range. Its key feature of analyzing multiple modalities at the single-cell 

level has also been widely applied by other independent labs. More applications of Seurat3 

can be found in Table 2.

MOFA was developed by Argelaguet and lab members as a statistically rigorous tool that 

decomposes modality and captures sources of variability between different datasets [36]. 

MOFA was originally applied on a study with parallel profiled DNA methylation and gene 

expression revealing the cooperation between the transcriptome and methylation sites. Each 

factor captured signatures that reflect a specific cell state and can be used to impute missing 

information in modalities [36]. Catalinas and colleagues applied MOFA on a perturbation-
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transcription dataset and showed the advantage in capturing relevant gene signatures, of both 

coding and non-coding transcription compared to the conventional gene differential analysis 

[45]. MOFA has also been applied to reveal connections between the transcriptome and the 

epigenetic state in enhancers during germ layer formation and capture the global cell-to-cell 

variability via factors inferred from triple-modalities [46, 47]. Its new version, MOFA+, 

claims to have better performance and more functionalities for discovering the association 

among gene expression, epigenetic variations, and cell fates commitment [48].

Welch’s lab recently developed a tool called LIGER (linked inference of genomics 

experimental relationships) that uses the iNFM method to best approximate the original data 

and identify dataset-specific and shared factors across different datasets. LIGER was 

originally applied to an unmatched scRNA-Seq and DNA methylation dataset showing the 

ability in identifying methylation regions that were anticorrelated specific expressions. As 

with Seurat3, LIGER can also be applied to analyze, e.g. cross-experimental single-cell 

RNA-Seq data analysis [49].

MATCHER aligns the underlying manifolds of diverse single-cell modalities (epigenome 

and transcriptome) to create an equivalent pseudo-time representation and has been applied 

to both matched and unmatched single-cell data [26]. MATCHER was initially applied on 

two publicly available datasets: (i) unmatched gene expression, DNA methylation, and 

chromatin accessibility data from mouse embryonic stem cells, and (ii) matched gene 

expression and DNA methylation data from human-induced pluripotent stem cells [50, 51] 

(Table 2). As a result, MATCHER identifies sequential changes and reveals the connections 

of trajectory changes among multiple modalities which provides a great potential for 

reprogramming and differentiation studies.

Clonealign is a tool uniquely designed for the integrative study of scRNA-Seq and gene 

copy numbers from single-cell DNA sequencing, based on the assumption that the 

increasing gene copy number will result in an increased expression of the corresponding 

gene [28]. It was applied to matched scDNA-Seq and 10X scRNA-Seq datasets to identify 

clone-specific gene expression patterns and the correlation of single-nucleotide variation and 

expression. However, Clonealign is not suitable for cancers that have quiescent genomes and 

are devoid of copy number changes, such as sarcomas and karyotypically normal acute 

myeloid leukemia. As an extension, Clonealign holds the potential to apply to other scMulti-

omics studies, such as methylation-transcription and chromatin accessibility-transcription 

[28].

Pooled CRISPR knockout screening is used to evaluate gene biological functions by 

comparing gene perturbations with phenotypes (e.g. cell growth). Combining CRISPR 

screening with scRNA-Seq can elucidate the effects of perturbation on the RNA expression 

level. MIMOSCA is used for perturbation-expression analysis which deciphers the effect of 

individual perturbations and the marginal contributions of genetic interactions using a 

maximum likelihood approach and linear model [52]. MUSIC is also a tool newly developed 

for analyzing CRISPR perturbation and RNA expression [38]. It utilizes the TOPIC method 

to model the perturbation and cell functions from the annotated expression matrix and shows 

better performance than MIMOSCA [38].
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Spatial transcriptomics links differentially expressed genes to the actual cell position in the 

interactions intra- or inter-subtypes and is critical for understanding cell identity and 

function in the context of tissue. By including spatial information, researchers can broadly 

define cell types and subtle alterations without the requirement of direct gene measurement. 

Giotto [53], Trendscreek [32], and SpatialDE [33] are three well-rounded tools for analyzing 

spatial transcriptomics data. These pipelines first process the photo image and scRNA-Seq 

data separately to generate a spatial coordinate figure and cell clusters, respectively. The 

predicted clusters are then correlated with spatial coordinates to map the spatial-specific cell 

cluster patterns. A cell spatial network can be built considering both the actual spatial 

distance between each cell pair and the cell clusters predicted from gene expressions. The 

spatial variable gene plot intuitively shows the expression patterns at different locations 

which are intuitively useful to construct the whole tissue regulatory landscape by combining 

with epigenetic features. Future studies could utilize other omics data to infer relationships 

between cell positions and causal genetic patterns, and a specific case study for spatial 

transcriptomics is showcased in our case study.

Despite these ten well-developed tools (Table 2), several other packages were available for 

specific scMulti-omics data analysis, yet with only scripts and limited functionalities. 

MOGSA claims to perform gene-set analysis from single-cell transcriptomics and 

proteomics data to yield insights into the complex molecular machinery of biological 

systems [54]. Duren and others developed De-Convolution and Coupled-Clustering using 

the coupleNMF integrative method to intake scHi-C and bulk HiChIP data in order to 

deconvolve the 3D gene contacts into cluster-specific profiles [55]; An R script integrates 

LASSO to jointly analyze matched RNA expression and chromatin accessibility data from 

scCAR-Seq [29]; Li and coworkers analyzed matched DNA methylation and chromatin 

architecture in single cells using an assay, called Methyl-HiC, to reveal coordinated DNA 

methylation status between distal genomics segments [56]; Clark and teammates developed 

the scNMT-Seq technique to simultaneously measure matched chromatin accessibility, DNA 

methylation, and RNA expression, and developed a Bernoulli likelihood-based regression 

assay to show how parallel profiling of the transcriptome and epigenome could reveal 

dynamic changes in how chromatin accessibility and DNA methylation interact during 

differentiation [57]; Adamson and colleagues developed an ICA dependent method named 

LRICA for Perturb-seq that analyzes gene perturbation and RNA expression in single-cell 

data [37]. Overall, these tools were only developed as prototypes without executable 

implementations and user-friendly interfaces. The robustness and usability of these tools 

need to be further improved for a wider application to other analytical studies.

Case studies and practical challenges

We applied four existing tools on four publicly available datasets downloaded online to 

evaluate their compatibilities and functions. We first reproduced the analysis of a spatial 

transcription dataset from Giotto to showcase the unique outcomes of such an integrative 

study [53, 58] (Figure 4A). Three signature features were reported: spatially correlated 

clusters, spatial cell networks, and spatial variable genes. Overall, Giotto is a user-friendly 

and powerful tool for spatial transcriptome analysis with concise and reproducible tutorials. 

The unique spatial network can be constructed by associating gene expression levels with 
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cell neighborhoods and intuitively presented on the spatial map. Giotto is one of the few 

tools that provide web-based interactive visualization and exploration for scMulti-omics 

analysis.

We further applied three well-cited and widely-used tools (MOFA, LIGER, and Seurat3) on 

three datasets (scRNA-Seq only, matched scRNA-Seq and scATAC-Seq, unmatched scRNA-

Seq and scATAC-Seq) with default parameters (Figure 4B). The performance evaluation and 

comparison in terms of the cell type prediction led to the following three insights. First, the 

joint analysis of scRNA-Seq and scATAC-Seq showed better performance in predicting cell 

clusters than using scRNA-Seq alone, in terms of adjusted rand index, which evaluates the 

similarity between predicted cell labels and benchmarked cell types (higher score means 

better clustering performance). Second, the clustering result using matched data was better 

than that using unmatched data. Third, MOFA was the best-performing tool to analyze 

matched data and Seurat3 was the best-performing tool for unmatched data. We further 

evaluated the three tools from four perspectives: CPU running time, enrichment of analytical 

functionalities, reproducibility of software tutorial, and diversity of result interpretations and 

visualizations. We conclude that Seurat3 is the most robust and easy-to-use tool among the 

three (ranked as +++ in Figure 4B). However, the above three tools, as well as most existing 

integrative tools for scMulti-omics analysis, require different input file formats. For 

example, Seurat3 requires a gtf file recording gene structure information to create an activity 

matrix to transfer ATAC peak regions to corresponding genes, while LIGER needs a BED 

file. MOFA failed to clearly state data preprocessing steps. Such multiple input files and 

vague tutorials greatly increase the difficulty of the application and reproducibility of tools. 

More challenges of scMulti-omics analyses can be found in the following section.

Remaining challenges

While recently developed methods for integrating scMulti-omics data provide new 

opportunities to jointly analyze different types of single-cell data, there remain several 

challenges and issues to address for the future of scMulti-omics studies and integrative 

methods. One challenge is related to the computational issues in dealing with large data. 

Analyzing massive amounts of data from technologies such as RNA-seq, whole-genome 

sequencing, and ChIP-seq is an established problem due to their sheer size. Furthermore, 

single-cell methods have the computational burden of including information from hundreds 

or thousands of cells. These issues, combined with the multi-omics paradigm of integrating 

two or more technologies, will exacerbate the problem of dealing with big data. As a result, 

an important computational challenge to address is to determine how to more efficiently 

generate, manage, store, and analyze large datasets from a practical and economics 

standpoint. Since this point is not unique to omics analyses, let alone scMulti-omics 

methods, there is strong evidence that computational resources will increase. However, 

technologies allowing for more samples and more levels of information will also be 

developed, requiring further computational resources. Nevertheless, our capabilities to 

handle the currently available data will only increase.

Another challenge is related to the analytical capabilities of integrative tools. We have 

described methods with a variety of functionalities when integrating multi-omics data from 
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both within the same cells and across experiments. However, to our knowledge, existing 

computational methods cannot perform several important functionalities. For example, from 

the standpoint of matched data, functionalities including identifying cis-regulatory motifs, 

finding cell-type-specific regulons, and inferring gene regulatory networks are not yet 

covered by existing integrative methods [59, 60]. While these functionalities may be 

addressed by methods that integrate data across experiments or even methods that analyze 

single-omics data [59, 61], there is a lack of integrative methods for matched data. With this 

type of integrative analysis still in its infancy, it is likely that more integrative methods will 

be developed to answer a wider range of complex biological questions. Furthermore, while 

there are options for integrating specific types of single-cell data, drawing inferences from 

the results is still troubling. Co-inference, the process of simultaneously making inferences 

from multiple single-cell data types, is quite a difficult challenge. Methods such as co-

biclustering, co-imputation, and co-deconvolution [62] are not as straightforward as their 

singular counterparts. For scMulti-omics to truly provide comprehensive insights, these co-

inference methods need to be explored and validated.

The need for a robust benchmarking pipeline is an even bigger concern for scMulti-omics 

methods than computational challenges. As the number of applicable methods grows, so 

does the potential benefit of an established benchmarking pipeline. Such a pipeline could 

retrospectively benchmark established methods or evaluate recently developed methods, 

allowing for robust scenario-specific validation of each approach. Furthermore, 

benchmarking pipelines can provide valuable insight into areas in which current methods 

underperform, highlighting areas of interest for future research and method improvement. 

Currently, there are benchmarking frameworks and evaluations of various computational 

methods for single-cell single-omics [63–65], however, no current method is available to 

scMulti-omics.

Concluding remarks and future perspectives

Integrative methods for scMulti-omics data provide the opportunity for researchers to jointly 

analyze different types of molecular information at the single-cell level, producing a more 

comprehensive view of cellular function. Rather than the traditional single-omics approach 

of studying biological processes from the genomics or transcriptomics perspective, multi-

omics methods allow researchers to explore how two or multiple other realms interact and 

jointly produce biological observations. We pose several outstanding questions to be 

answered in the field of scMulti-omics analysis (see Outstanding Questions). Several future 

trends in scMulti-omics data analyses are listed below.

The application of new methods will inevitably lead to substantial improvements in scMulti-

omics. One trend in single-omics single-cell analyses is the use of bulk RNA-seq data to 

impute scRNA-seq data [66–68]. The sparsity of scRNA-seq data stemming from low 

coverage and inefficiencies in sequencing methods means that the imputation of gene 

expression is a consistent hurdle in scRNA-seq analyses. Nevertheless, these issues will 

persist in scMulti-omics and must be dealt with accordingly.
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Another trend throughout much of the computational sciences is the development of 

machine learning (ML) and artificial intelligence (AI) methods [69–72]. Within the scope of 

multi-omics, these approaches most presumably benefit the areas of imputation and 

matching of data across experiments [73–77]. Using ML/AI methods, researchers can 

potentially construct tools that will capture intricacies between data across experiments that 

cannot be manually identified and programmed into methods. This would allow for a more 

reliable linkage of multi-omics data, which will prove especially beneficial for 

benchmarking. One example is the autoencoder, which compresses input data and filters it 

through a bottleneck, followed by the decoding of the same data in an attempt to preserve 

the key defining features of the data.

Lastly, the nature of all technologies is to advance. From Sanger sequencing in the 1970s to 

next-generation sequencing of the late 1990s and early 2000s, methods for profiling omics 

data have continually evolved [78]. More recently, so-called third-generation sequencing 

provides an even greater opportunity to understand complex systems biology, although there 

is some difficulty in separating the generations of sequencing due to the rapid advances [79]. 

The most advanced methods are now considered fourth-generation sequencing, and they 

allow for in situ profiling, preserving the available spatial context of the data [80]. These 

advancing technologies will inevitably be integrated within multi-omics methods, requiring 

further development of technologies to integrate the new levels of information gained.
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GLOSSARY

Artificial intelligence (AI)
a kind of machine algorithm processing data analysis with mimic cognitive functions.

Autoencoder
is a type of multi-layer artificial neural network for unsupervised and efficient data coding 

and specifically useful for dimension reduction.

Canonical correlation analysis
is a statistical method for investigating relationships between two data sets aiming to identify 

shared sources of variation in a pair of data sets (e.g. two scRNA-Seq data from different 

sources).

Canonical correlation vectorization (CCV)
is a dimensional reduction method based on augmented implicitly restarted Lanczos 

bidiagonalization algorithm capturing features that are maximally correlated across multiple 
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datasets. It takes datasets X1 … Xn and finds the projection vectors W = w1 … wn that 

optimize argmax
w1…wn

∑i < jwiTXi
TXjwj with wnTXn

TXnwn = 1.

Coupled nonnegative matrix factorization (coupleNMF)
finds a subset of genes in unmatched data in which one modality is highly predictable from 

another. It considers a regression model and estimates parameters by fitting a penalized 

least-square problem based on the two modalities.

CRISPR perturbation
is an artificial technique that induces specific genetic perturbations to the cells. It allows the 

controllable repression of gene expression by knocking out the corresponding genes or 

single nucleotides.

Dimensional reduction
is the process of reducing the variables by identifying the principle features that explain data 

variations.

Gradient boosting regression (GBR)
uses the idea of iteratively fitting “weak” models in order to build a “stronger” model that 

can more accurately estimate a response variable.

Group factor analysis (GFA)
is an unsupervised dimension reduction approach that decomposes input matrices into a 

product of matrices. A set of m data matrices can be decomposed as Ym = ZWmT + εm 

where Ym are input matrices and Z denotes latent factors. Wm is amplitude matrix reflecting 

feature patterns, and εm denotes cell clusters.

Hidden Markov random field (HMRF)
is a graph-based model for transfer pixel intensities over a 2D image using estimated 

variables from other modalities to reduce the spatial constraints and build connections 

between neighbor cells.

Independent component analysis (ICA)
is a dimensional reduction method that decomposes observed data before ICA is applied to a 

low-rank matrix to capture underlying processes. The ICA model can be defined as 

modeling Y = AS where Y is the input, A is the mixing matrix, and S contains the 

independent components.

Integrative non-negative matrix factorization (iNMF)
can be defined as Ei ≈ Hi (W + Vi) where Ei is the ith dataset, Hi contains the dataset-

specific components, Vi approximates dataset-specific effects, W approximates the shared 

effects.

LASSO regression
is a type of linear regression that shrinks regression coefficients by subjecting the 

coefficients to a constraint, allowing for feature selection and regularization.
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Machine learning (ML)
is an application of AI that automatically train parameters from known samples to predicting 

patterns from unknown samples, without explicit programming.

Manifold alignment
infers pseudotime patterns by simultaneously measuring shared latent variables from 

multiple modalities. Each modality fits in a linear or non-linear model embedded to a 

squared exponential kernel, and the latent time variable can be found by maximizing the 

posterior distribution of a multivariate Gaussian.

Multivariate normal modeling (MNM)
decomposes a data vector into spatial and nonspatial components, and can be defined as: y = 

f((x1, x2, …)) + ψ, where y is the spatial covariance, f is the spatial variance component that 

parametrizes covariance based on pairwise distances of samples of interest, (x1, x2, …) are 

the spatial coordinates, and ψ is an independent observation term that models the nonspatial 

variance component.

Network simulated annealing
is a probability technique for approximating the global optimum to solve the combinatory 

problems in network construction.

Omics is
a collection of comprehensive data reflecting the attribution of a particular molecular type, 

e.g. genomics, transcriptomics, proteomics, etc.

Pseudotime
represents a theoretical timeline that estimated from the progression of input modality 

patterns.

scHi-C
uses specific restriction enzymes to digest genome per individual cell allowing the 

examination of genome 3D organization [81]. It is very useful for predicting the 

topologically associated domains.

Single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-Seq)
identifies the open regions on chromatins to indicate whether the corresponding gene is 

accessible to be bound by the transcriptome factors.

Variational Bayes (VB)
derives a lower bound estimator (a stochastic objective function) for a variety of directed 

graphical models with continuous latent variables.

Topic modeling
is a probabilistic generative model that used to aim to detect “topics” across a collection of 

documents. When applying in the bioinformatics area, it identifies a shared topic distribution 

across each input modality.
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OUTSTANDING QUESTIONS

• How do the challenges in designing computational methods, from both 

infrastructure and algorithmic points of view, limit our understanding of 

single-cell multi-omics processes?

• How reliably do methods that integrate data across experiments replicate the 

connections between data types?

• What techniques would allow researchers to accurately conclude the reliable 

performance of integrating methods?

• Would efforts toward a generation of a robust single-cell multi-omics tool that 

can integrate any type of omics data be more beneficial to the single-cell 

multi-omics field than explicit work towards detailed improvements and 

innovations in focused on defined data types?

• To what extent can AI/ML be used to impute or infer the spatial information 

from single-cell multi-omics data?

• How can AI/ML methods be used to effectively integrate numerous multi-

omics data types across numerous experiments?

• What challenges does the “black box” problem in AI/ML pose in determining 

the effectiveness of linking cross-experiment data?

• Will single-cell multi-omics methods become so widespread that biologists 

begin to routinely collect data with these types of methods in mind?

• How will single-cell multi-omics drive insights into heterogeneous regulation 

across the same or different cell states and tissue types?

• How much insight from single-cell multi-omics can be gained in the scope of 

genomic variation—specifically intronic variation—and its impact on gene 

expression and regulation?

• How will single-cell multi-omics’ inevitable implementation in the realm of 

precision medicine aid in the elucidation of specific mechanisms behind 

cancer cell development and aid in targeted therapies?
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HIGHLIGHTS

• Applying integrative methods to single-cell multi-omics data opens a new 

window into the understanding of heterogeneous mechanism landscapes and 

cell-cell interactions.

• Integration of cross-experiment data poses a special challenge.

• A comprehensive understanding of the underlying methods is necessary to 

determine which pipeline is appropriate for a given single-cell multi-omic 

dataset.

• We designed and implemented two case studies to demonstrate the application 

of available single-cell multi-omic tools, where new insights and practical 

challenges are generated.

• Among the numerous remaining challenges in single-cell multi-omics, 

establishing a robust benchmarking pipeline is paramount.

• Trends observed in traditional multi-omics, including machine learning, 

artificial intelligence, and evolving technologies, are paralleled in single-cell 

multi-omics methods.
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Figure 1. 
Existing scMulti-omics combinations and representative sequencing techniques. By 

December 2019, multiple sequencing techniques have been developed to acquire nine 

combinations of two modalities from a single cell, and three for triple-modality and 1 for 

quad-modality. Names of sequencing methods are listed accordingly, and most of them are 

not commercialized.
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Figure 2. 
Integrative methods for scMulti-omics. We summarized all 13 integrative algorithms applied 

on scMulti-omics analysis into four categories, and each of which is followed by a graph for 

understanding.
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Figure 3, Key Figure. 
Ten tools integrated with proper preprocessing steps, core integrative methods, and adequate 

results interpretations for integrative analysis of scMulti-omics. U (unmatched), M 

(matched), and M&U (both matched and unmatched) represent the data type that the original 

tool’s paper claimed to support. The main outputs are summarized based on original papers 

and tool tutorials from our investigations. Black frames indicate unique outputs.
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Figure 4. 
Two case studies for scMulti-omics analysis. (A) Main outcomes of Giotto. (B) Assessment 

of cell type prediction using MOFA, LIGER, and Seurat3, in terms of ARI (adjusted rand 

index) scores on three datasets. The three tools were further systematically evaluated and 

ranked, where +++ represents the most efficient tool in terms of CPU running time, provides 

the best practical support in analytical functionalities and visualizations, and has the most 

robustness in reproducibility of results; and + represents less efficiency, practical support, 

and robustness.
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Table 1:

Publicly available matched scMulti-omics data.

Single-cell Profiling Seq tech Accession Ref

1 RNA expression

2 DNA copy number

G&T-seq
EGAS00001001204

[82, 83]
E-ERAD-381

SIDR PRJEB20144 [84]

TARGET-Seq GSE105454 [85]

SCTG SRP040646 [86]

DR-seq GSE62952 [87]

1 RNA expression

2 DNA methylation

sc-GEM SRR3748387 [51]

scM&T-seq GSE74535 [50]

scMT-seq GSE76483 [88]

1 RNA expression

2 Chromatin accessibility

sci-CAR GSE117089 [29]

scCAT-seq Along with the paper [89]

SNARE-seq GSE126074 [90]

CITE-seq + scATAC-Seq GSE139369 [91]

1 DNA methylation

2 Chromatin accessibility scNOME-seq GSE83882 [92]

1 RNA expression

2 Protein expression

CITE-seq
GSE100866 [13]

GSE128639 [24]

REAP-seq GSE100501 [14]

PLAYR Along with the paper [93]

PEA/STA Along with the paper [94]

1 DNA methylation

2 Chromosome conformation

Methyl-HiC GSE119171 [56]

sn-m3C-Seq GSE124391 [95]

1 RNA expression

2 DNA perturbation

Perturb-seq
GSE90546 [37]

GSE90063 [52]

CRISP-seq GSE90486 [96]

CROP-seq
GSE92872 [97]

GSE108699 [98]

Mosaic-Seq GSE81884 [99]

1 RNA expression

2 Spatial information

osmFISH http://linnarssonlab.org/osmFISH [11]

STARmap https://www.starmapresources.com/data/ [12]

seqFISH Along with the paper [100]

MERFISH
Along with the paper [101]

GSE113576 [102]

Slide-Seq https://singlecell.broadinstitute.org/single_cell/
study/SCP354/slide-seq-study [58]

Spatial transcriptomics (10X 
spatial)

https://github.com/
SpatialTranscriptomicsResearch/st_pipeline [103]
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Single-cell Profiling Seq tech Accession Ref

https://www.10xgenomics.com/solutions/spatial-
gene-expression/ [104–106]

MASC-Seq Along with the paper [107]

ST-RNA-Seq SRP100428 [108]

1 Chromatin accessibility

2 RNA perturbation Perturb-ATAC GSE116297 [10]

1 RNA expression

2 DNA methylation

3 Chromatin accessibility

scNMT-seq GSE109262 [57]

1 RNA expression

2 DNA copy number

3 DNA methylation

scTrio-seq GSE65364 [109]

scTrio-seq2 GSE97693 [110]

1 DNA copy number

2 DNA methylation

3 Chromatin accessibility

scCOOL-seq
GSE78140 [111]

GSE100272 [112]

iscCOOL-seq GSE114822 [113]

1 RNA expression

2 Protein expression

3 T cell receptor

4 Perturbation

ECCITE-Seq GSE126310 [114]
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