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PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and
PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and
pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that
vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will
mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate
tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules
involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in
the review.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) as
ligand-activated transcription factors belong to the steroid
receptor superfamily, which includes three isoforms, PPAR
alpha, PPAR beta/delta, and PPAR gamma [1]. PPARs form
heterodimers with retinoic X receptors and regulate the
expression of various genes upon ligand binding. PPARs also
interact with corepressors or coactivators to modulate the
transcription of its downstream target genes. PPARs as
important transcriptional regulators have been suggested to
be involved in lipid metabolism and multiple cellular func-
tions. For instance, PPAR alpha also functions in fatty acid
beta-oxidation and vascular inflammation [2]. PPAR gamma
acts as a regulator in adipocyte differentiation and type 2 dia-
betes [3]. PPAR beta/delta is a key player in cardiac energy
production, angiogenesis, and particularly in cancer progres-
sion [4].

PPAR alpha and PPAR gamma exert predominantly an
antiangiogenic effect [5–10], but there still exist conflicting
studies showing opposite results [11, 12]. On the contrary,
PPAR beta/delta produces more obviously proangiogenic
effects [13–18]. In this review, we will focus on the promoting

role of PPAR beta/delta in angiogenesis, especially in tumor
angiogenesis. The network of interplay between PPAR beta/-
delta and its various downstream signal molecules, and also
between those key molecules, will be further discussed and
established. Remarkably, diverse important signal molecules
involved in tumor angiogenesis and progression, and cancer
cell metabolism have been identified as direct PPAR beta/-
delta target genes.

2. Angiogenesis

Angiogenesis is the physiological process through which a
new capillary network forms from the preexisting vasculature
[19, 20], whereas vasculogenesis denotes de novo blood
vessel formation mostly during embryogenesis in which
endothelial progenitor cells (EPC) migrate to sites of vascu-
larization, then differentiate into endothelial cells (EC), and
coalesce into the initial vascular plexus [21, 22]. Besides the
interaction between proangiogenic factors and antiangio-
genic factors, angiogenesis is also a multiple step biological
process during which a variety of molecules cooperate
including cell adhesion molecules, matrix metalloproteinases
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(MMPs), extracellular matrix (ECM), and basement mem-
brane components.

Angiogenesis is a physiological and vital process in devel-
opment and growth. An imbalance of proangiogenic and
antiangiogenic factors causes angiogenesis in pathological
conditions such as diabetic retinopathy and tumor growth.
Thus, when the imbalance comes to a point at which angio-
genesis is triggered by tumor cells, then an “angiogenic
switch” of tumor cells is turned on; during tumor progres-
sion, the “angiogenic switch” is often activated and remains
on [23–25]. Inducing angiogenesis is known as a hallmark
of cancer [26], and angiogenesis is also a fundamental step
by which most benign tumors transition into malignant ones.

2.1. Tumor Angiogenesis. Tumor needs to sprout new vessels
and further develop a vascular network in order to supply
nutrients and oxygen, remove waste products, support a con-
tinually high proliferative rate, and ultimately expand neo-
plastic growth [23, 27]. Hence, angiogenesis is essential for
helping sustain tumor growth and facilitate tumor progres-
sion. Besides being a requirement for angiogenesis, an abnor-
mal vasculature also helps to promote tumor progression and
metastasis. The tumor vascular wall is imperfect and prone to
leakage, so it is much easier for tumor cells to directly pene-
trate into the blood vessels or lymphatic vessels and then pro-
liferate at another distant site to form metastasis [28].

Due to intensive abnormal neovascularization in tumor
tissues, most malignant tumors grow rapidly and acquire
the ability to spread to adjacent and distant organs, which
makes them more malignant and even life threatening.
Therefore, angiogenesis indeed plays an important role in
tumor progression and metastasis, and to intervene with this
process would obviously prevent tumor development and
spread. Thus, this has been regarded as a critical target for
antitumor therapy.

3. PPAR Alpha and Angiogenesis

It was reported firstly that a selective PPAR alpha agonist
WY14643 did not show any effect on angiogenesis or EC pro-
liferation [29]. But some subsequent studies showed that the
activation of PPAR alpha inhibited angiogenesis in vitro by
using fenofibrate, a clinically used PPAR alpha agonist [30].
Moreover, fenofibrate suppressed EC proliferation, migra-
tion, and tube formation through inhibition of protein kinase
B (Akt) and disruption of the cytoskeleton [31]. Further-
more, PPAR alpha activation was shown to inhibit vascular
endothelial growth factor- (VEGF-) induced EC migration
and basic fibroblast growth factor- (bFGF/FGF2-) induced
corneal angiogenesis in vitro and in vivo [5]. Especially,
in vivo, reduced tumor growth and microvessel numbers
were observed in mice implanted with melanoma, Lewis lung
carcinoma (LLC), fibrosarcoma, and glioblastoma due to a
systemic treatment of PPAR alpha ligand, and the antiangio-
genic state induced through activation of PPAR alpha with
elevated thrombospondin-1 (TSP1) and endostatin expres-
sion [5].

However, in that same year, it was demonstrated in
another observation that activation of PPAR alpha stimu-

lated neovascularization in vivo with increased phosphoryla-
tion of endothelial nitric oxide synthase (eNOS) and Akt via a
VEGF-dependent manner [32]. Furthermore, Zhang and
Ward also suggested that PPAR alpha activation induced
proangiogenic responses in human ocular cells [33]. In
another study, it was shown that a new PPAR alpha agonist
(R)-K-13675 had no effect on angiogenesis [34]. Recently,
PPAR alpha activation is further shown to have antineovas-
cularization effects with downregulation of VEGF and angio-
poietin expression in a rat alkali burn model [35].

In summary, the role of PPAR alpha in angiogenesis is
still controversial. Some observations showed that ligand
activation of PPAR alpha had antiangiogenic effects medi-
ated either through upregulation of antiangiogenic factors
such as TSP1 and endostatin, or downregulation of proangio-
genic factors including VEGF, FGF2, AKT, and angiopoie-
tins. Others also reported opposite results showing a
proangiogenic role upon PPAR alpha activation. Thus, the
specific molecular mechanism is still unclear and needs to
be further studied.

4. PPAR Gamma and Angiogenesis

Ligand activation of PPAR gamma was previously shown to
inhibit human umbilical vein endothelial cell (HUVEC) tube
formation in collagen gels [36] and VEGF-induced choroidal
neovascularization in vitro and in vivo [37]. Another study
also demonstrated that EC apoptosis was induced through
treatment with the PPAR gamma ligand 15d-PGJ2 [38]. Fur-
thermore, rosiglitazone, a potent PPAR gamma agonist, was
shown to inhibit primary tumor growth and metastasis
through both direct and indirect antiangiogenic effects
in vitro, and bFGF-induced corneal neovascularization
in vivo [8]. Moreover, a similar observation also displayed
the inhibition of VEGF-induced angiogenesis in a chick
chorioallantonic membrane model [39]. In a mouse model
with ischemia-induced retinopathy, pioglitazone, a PPAR
gamma agonist, also showed a protective effect against path-
ological neoangiogenesis through upregulation of anti-
inflammatory adipokine adiponectin [40]. Additionally, the
PPAR gamma antagonist GW9662 was shown to reverse
Omega-3 polyunsaturated fatty acid-induced reduction of
E-Selectin, angiopoietin-2, vascular cell adhesion molecule-
1, and intracellular adhesion molecule-1 [41], implicating
an antiangiogenic potential of PPAR gamma itself. However,
opposite results also showed that pioglitazone enhanced neo-
vascularization and inhibited apoptosis of EPC in vitro and
in vivo via a Phosphoinositide-3-Kinase- (PI3K-) dependent
manner [42].

Nadra et al. observed that PPAR gamma-null embryos
displayed a vascular structural defect at E9.5. Moreover, dis-
organized placental layers and an altered placental microvas-
culature were observed in pregnant wild-type mice treated
with the PPAR gamma agonist rosiglitazone, as well as
reduced expression of proangiogenic factors including
VEGF, proliferin, and platelet-endothelial cell adhesion
molecule-1 (PECAM1/CD31) [43], suggesting a crucial role
of PPAR gamma in placental vascular development. The
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major antiangiogenic properties on PPAR gamma activation
were also reviewed here [44].

Notably, in most cancers, the canonical Wnt/beta-
catenin pathway is upregulated, while on the contrary, PPAR
gamma is downregulated. Interestingly, in numerous tissues,
the activation of PPAR gamma inhibits the beta-catenin
pathway, whereas the stimulation of the canonical
Wnt/beta-catenin signal cascade also inactivates PPAR
gamma [45], implicating a negative regulatory role of PPAR
gamma in carcinogenesis where tumor angiogenesis might
be a fundamental step.

In summary, PPAR gamma predominantly displays an
antiangiogenic effect that may be mediated through the inhi-
bition of VEGF or bFGF-induced neovascularization and
reduction of the expression level of some proangiogenic
factors.

5. PPAR Beta/Delta and Angiogenesis

Unlike PPAR alpha and PPAR gamma, on the contrary,
many studies have explicitly shown the proangiogenic effects
of PPAR beta/delta on physiological and pathological angio-
genesis. The first evidence provided in a study is that activa-
tion of PPAR beta/delta with GW501516, a highly selective
PPAR beta/delta agonist, induces HUVEC proliferation
and an increased expression of VEGF and its receptor
VEGFR1 (FLT1) [46]. Besides inducing EC proliferation,
PPAR beta/delta activation by its ligand prostacyclin
(PGI2) also stimulates upregulation of 14-3-3 alpha expres-
sion, an antiapoptotic and anti-inflammatory protein, which
thereby protects ECs from H2O2-induced apoptosis and oxi-
dant injury [47]. Moreover, a subsequent study further pro-
vides evidence that activation of PPAR beta/delta with
GW501516 induces angiogenesis during which VEGF
release is considered as a major trigger factor [48], firstly
suggesting the promotion for angiogenesis upon PPAR
beta/delta activation.

Müller-Brüsselbach et al. show that PPAR beta/delta -/-
mice implanted with LLC and B16 melanoma exhibit dimin-
ished blood flow and immature microvascular structures
compared with wild-type mice. Moreover, reexpression of
PPAR beta/delta into the matrigel-invading cells triggers
microvessel maturation and restores normal vascularization
[17], indicating a crucial role of PPAR beta/delta in tumor
vascularization. Additionally, another study also observed
reduced levels of calcium intracellular channel protein 4
(CLIC4), but it observed enhanced expression of cellular ret-
inol binding protein 1 (CRBP1) in migrating ECs from PPAR
beta/delta-null mice [49], both of which play a role in tumor
vascularization [50, 51]. It was reported that PPAR beta/delta
was required for placentation [52], and most of the PPAR
beta/delta-null mutant embryos died at E9.5 to E10.5 due to
abnormal cell-to-cell communication at the placental-
decidual interface [53]. However, in these studies [52–54], a
defect in angiogenesis was not observed during normal devel-
opment in PPAR beta/delta-knockout mice.

Some observations also show the important role of PPAR
beta/delta in physiological angiogenesis. For instance, skele-
tal muscle-specific PPAR beta/delta overexpression leads to

an increase in the number of oxidative muscle fibers and
running endurance in adult mice [55–57]. Moreover, PPAR
beta/delta activation promotes a rapid muscle remodeling
via a calcineurin-dependent manner, and induces muscle
angiogenesis in highly selective PPAR beta/delta agonist
GW0742-treated animals [58]. Furthermore, in the heart,
pharmacological PPAR beta/delta stimulation with
GW0742 induces rapid cardiac growth and cardiac angio-
genesis through direct transcriptional activation of calcine-
urin [15]. Interestingly, the same cardiac phenotype was
also observed after treatment with the PPAR beta/delta ago-
nist GW501516, implicating a response specificity for
PPAR beta/delta stimulation [15]. Calcineurin activation
further leads to the stimulation of nuclear factor-activated
T cell c3 (NFATc3) and an enhanced expression of hypoxia
inducible factor 1 alpha (HIF-1alpha) and cyclin-dependent
kinase 9 (CDK9) [15]. Overall, the remodeling in skeletal
muscle and heart is perfectly the same as the phenotype
observed with exercise, and both of them are mediated
through activation of calcineurin.

PPAR beta/delta may act as a key regulator in mediating
pathological angiogenesis. For instance, PPAR beta/delta was
shown to regulate retinal angiogenesis in vitro and in vivo,
and its inhibition reduced preretinal neovascularization pos-
sibly via an Angiopoietin-like protein 4- (Angptl4-) depen-
dent manner [59], implicating the potential of PPAR
beta/delta in modulating pathological ocular angiogenesis.
Recently, an observation reported that PPAR beta/delta
knockdown in both retinal pigment epithelial and choroidal
endothelial cells caused an antiangiogenic phenotype, and
PPAR beta/delta promoted laser-induced choroidal neovas-
cular (CNV) lesions in PPAR beta/delta +/+ mice [60]. More-
over, pharmacological inhibition of PPAR beta/delta with the
antagonist GSK0660 also resulted in a significantly decreased
CNV lesion size in vivo, suggesting a functional role of PPAR
beta/delta in the development of CNV lesions [60]. This indi-
cates that PPAR beta/delta has an important association with
pathological angiogenesis.

Angiotensin II (Ang II), the biologically active peptide of
the renin-angiotensin system (RAS), is a major blood pres-
sure and cardiovascular homeostasis regulator and is also
recognized as a potent mitogen. Angiotensin-converting
enzyme inhibitors were introduced approximately 30 years
ago as antihypertensive agents and have since become a
successful therapeutic approach for high blood pressure,
congestive heart failure, and postmyocardial infarction. In
experimental systems, the antitumor effects of diverse
ACE inhibitors show that these inhibit cell proliferation
and possess antiangiogenic, antimetastatic, and anti-
inflammatory effects [61–63]. It has been shown recently
that activation of PPAR beta/delta inhibits Ang II-
stimulated protein synthesis in a concentration-dependent
manner and suppresses Ang II-induced generation of reac-
tive oxygen species (ROS) in vascular smooth muscle cells
[64]. PPAR beta/delta was further shown to inhibit Ang
II-mediated atherosclerosis [65]. However, it is not clear
until now if PPAR beta/delta activation can be considered
as an ACE inhibitor-mimicking approach as it is for
example the case for PPAR gamma activators [66].
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Furthermore, the relevance of this hypothetical PPAR
beta/delta feature might be limited for tumor angiogenesis
where vascular smooth muscle hypertrophy and athero-
sclerosis do not contribute to the major pathology.

Besides inducing angiogenesis, it has been demonstrated
that PPAR beta/delta directly acts on early EPC through acti-
vation of the AKT pathway and induces an enhanced vascu-
logenesis [67]. Similarly, the PPAR beta/delta-mediated
provasculogenic effects are also observed on late EPC [68].
He et al. showed that PPAR beta/delta activation with
GW501516 induced EPC proliferation and tube formation,
whereas EPC treated with an inhibitor of cyclooxygenase
(COX) or PGI2 synthase, or with PPAR beta/delta-specific
siRNA also displayed an opposite effect [68]. Furthermore,
it has been demonstrated that PPAR beta/delta induces
angiogenesis and skeletal muscle regeneration through
matrix metalloproteinase- (MMP-) 9-mediated insulin-like
growth factor-1 paracrine networks upon EPC activation
[69]. Han et al. also observed that PPAR beta/delta activation
promoted a rapid wound healing with enhanced angiogene-
sis in a mouse model with skin punch wound [69]. Overall,
in addition to EC, PPAR beta/delta is also a key regulator of
EPC, or even may act as an initiator of activation of EPC to
further induce vasculogenesis.

6. PPAR Beta/Delta and Tumor Angiogenesis
Linked to Tumor Microenvironment

PPAR beta/delta expression is often upregulated and pro-
motes cancer progression in many major human cancers
such as colon, lung, breast, and gastric cancers [70–73],
which suggests a crucial role of PPAR beta/delta in cancer
cells even though there exist some conflicting studies indicat-
ing that the functional role of PPAR beta/delta in tumorigen-
esis or carcinogenesis still remains highly controversial [74–
77] and dependent on specific tumor or cancer cell types.
Thus, here we discuss the promotion of PPAR beta/delta in
tumor progression through facilitating tumor angiogenesis.

PPAR beta/delta has been suggested as a critical “hub
node” transcriptional factor which governs a tumor “angio-
genic switch” [13, 78–80]. In the transcriptional network
analysis, it was reported that tumor growth and tumor angio-
genesis were markedly inhibited in PPAR beta/delta-null
mice in comparison with wild-type mice [13]. Moreover,
the elevated PPAR beta/delta expression level was also con-
sidered to be highly correlated to pathologically advanced
tumor stage and increased cancer risk for recurrence and dis-
tant metastasis in patients with pancreatic cancer [13], indi-
cating the crucial association of PPAR beta/delta with
tumor angiogenesis, progression, and cancer invasiveness.

PPAR beta/delta may indirectly facilitate tumor angio-
genesis and progression through its function on the tumor
microenvironment (TME) where tumor angiogenesis is fos-
tered. Moreover, a tumor also releases some extracellular sig-
nals to closely communicate and constantly collaborate with
TME to facilitate tumor angiogenesis, in order to further
enable tumor growth and progression. For instance, it was
shown that colon cancer cells with PPAR beta/delta knockout
failed to stimulate EC vascularization in response to hypoxic

stress, whereas wild-type cells exposed to hypoxia were able
to induce angiogenesis [81, 82], suggesting that PPAR beta/-
delta is required for the promotion of angiogenesis in hyp-
oxic stress-mediated TME. Moreover, in the TME, tumor-
infiltrating myeloid cells are considered as the most impor-
tant cells for fostering tumor angiogenesis among the multi-
ple different kinds of stromal cells [82]. Besides stimulating
tumor angiogenesis, tumor myeloid cells also support tumor
growth by suppressing tumor immunity and promoting
tumor metastasis to distinct sites [83]. Interestingly, it has
been demonstrated that PPAR beta/delta activation in
tumor-infiltrating myeloid cells stimulates cancer cell inva-
sion and facilitates tumor angiogenesis via an Interleukin
10- (IL10-) dependent manner [84]. Moreover, impaired
tumor growth and angiogenesis were observed in PPAR
beta/delta KO BMT mice due to PPAR beta/delta deficiency
in tumor myeloid cells [84], suggesting that PPAR beta/delta
plays a key role in tumor angiogenesis and progression in
tumor myeloid cells of TME.

Furthermore, the endoplasmic reticulum (ER), an essen-
tial organelle involved in many cellular functions, is impli-
cated in TME. In cancer, stressors like hypoxia, nutrient
deprivation, and acidosis disrupt ER function and lead to
accumulation of unfolded proteins in ER, a condition known
as ER stress. Cells adapt to ER stress by activating an inte-
grated signal transduction pathway called the unfolded pro-
tein response (UPR). UPR represents a survival response by
the cells to restore ER homeostasis and has both survival
and cell death effects. The mechanisms that determine cell
fate during ER stress are not well understood. For instance,
short exposure to ER stress initially increases AKT signaling,
but long-term ER stress suppresses AKT signaling [85].
PPAR beta/delta activation has been shown to reduce endo-
plasmic reticulum (ER) stress-associated inflammation in
skeletal muscle through an AMPK-dependent mechanism
[86] and to reduce inflammation in response to chronic ER
stress in cardiac cells [87]. Furthermore, it has been nicely
shown that PPAR beta/delta can repress RAS-oncogene-
induced ER stress to promote senescence in tumors [88] This
is mediated through the decrease of p-AKT activity promot-
ing cellular senescence through upregulation of p53 and p27
expression [89]. It would be interesting to investigate the
direct effects of PPAR beta/delta on senescence of tumor
endothelial cells in an in vivo setting. We recently showed
that senescent endothelial cells are indispensable for a
healthy lifespan and that removal of senescent endothelium
disrupts vascular function leading to diminished vessel den-
sities and fibrotic lesions [90]. If PPAR beta/delta mediates
senescence of tumor endothelium thereby protecting vessel
integrity, this might explain the enhanced tumor growth
and vascularization upon PPAR beta/delta activation
observed by us and others [13, 16, 77].

Most recently, Zuo et al. demonstrated that PPAR
beta/delta in cancer cells regulates tumor angiogenesis
in vivo and in vitro by promoting the secretion of proan-
giogenic factors including VEGF and Interleukin 8 (IL8)
[18]. Most importantly, in our recent works, it has been
shown that conditional inducible vascular endothelium-
specific PPAR beta/delta overexpression in vivo leads to
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enhanced tumor angiogenesis, tumor growth, and metasta-
sis formation, further indicating a vascular EC-specific
PPAR beta/delta action mechanism in tumor progression,
independent of some controversial observations of PPAR
beta/delta in specific tumor or cancer cell types [16]. Wag-
ner et al. also firstly reported the mouse model in which
rapid induction of cardiac angiogenesis and cardiac hyper-
trophy were observed [91, 92].

6.1. Crosstalk between PPAR Beta/Delta and Signal
Molecules. PPAR beta/delta activation or overexpression
may upregulate the expression of its various downstream sig-
nal molecules involved in tumor angiogenesis including
proangiogenic factors (such as VEGF, PDGF, and FGF),
proinvasive matrix-degrading enzymes (such as MMP9),
proinflammatory mediators (such as COX2), and cytokines
and chemokines (such as IL1 and CXCL8), even some of
which have been further identified as PPAR beta/delta direct
target genes. Besides a leading role of PPAR beta/delta among
the signal molecules, PPAR beta/delta may function in TME
linked to diverse kinds of cells through direct or indirect
modulation of its downstream molecules.

6.1.1. Interplay between PPAR Beta/Delta and Inflammatory
Angiogenesis. Inflammatory angiogenesis is a crucial process
in tumor progression. For instance, the proinflammatory
mediator cyclooxygenase-2 (COX2) is considered as a key
regulator of angiogenesis and tumor growth through multi-
ple downstream proangiogenic mechanisms such as produc-
tion of VEGF and induction of MMPs. Moreover, selective
inhibition of COX2 has also been shown to suppress angio-
genesis in vivo and in vitro [93]. It is well known that VEGFA
plays a critical role in both angiogenesis and vasculogenesis
[94], and it leads the directional migration of tip cells and
stalk cell proliferation in microtubule branches [95, 96]. It
has also been demonstrated that MMP9 triggers the “angio-
genic switch” during carcinogenesis and enhances the avail-
ability of VEGF to its receptors [97]. Furthermore, it has
been reported that inflammatory cell MMP9 initiates the
onset of tumor neovascularization during which there exists
functional links between VEGF and MMPs including
MMP9 [98]. LEPTIN is shown to mediate angiogenesis
in vivo and in vitro through induction of EC proliferation
and expression of MMP2 and MMP9 [99], and to further
promote EC differentiation and directional migration
through enhancement of COX2 activity [100]. LEPTIN could
also induce angiogenesis via transactivation of VEGFR in
ECs [101]. Additionally, besides inducing angiogenesis,
PPAR beta/delta also functions in chronic inflammation-
facilitating tumorigenesis through induction of COX2 and
its product prostaglandin E2 (PGE2) in vivo [102, 103].
Interestingly, COX2, VEGF, MMP9, and LEPTIN have been
identified as PPAR beta/delta target genes via a direct tran-
scriptional activation mechanism in hepatocellular carci-
noma cells [104], colorectal cancer cells [105, 106], EPCs
[67, 69], and liposarcoma cells [107], respectively.

In TME, tumor-infiltrating inflammatory cells also help
to induce and sustain tumor angiogenesis, and further to
facilitate tissue invasion and tumor metastatic spread by

releasing some signal molecules such as proinvasive MMP9
and inflammatory chemokines [108–110]. Chemotaxis is also
a crucial process for inducing angiogenesis in tumors, either
directly by attracting ECs towards tumor cells to form new
vessels, or indirectly by mediating immune inflammatory
cells to infiltrate, eventually promoting tumor angiogenesis
[111]. Chemotaxis of tumor cells and stromal cells in TME
is also required for tumor dissemination during tumor pro-
gression and metastasis [110, 111].

CXC chemokines such as CXCL8 (encoding IL8) and
CXCL5 are also involved in COX2-associated angiogenesis
to contribute to non-small-cell lung cancer progression
[111, 112]. It is further shown that IL8 directly regulates
angiogenesis via recruitment of neutrophils [112], which
further drives VEGF activation [113]. Moreover, IL8-
responding neutrophils are considered as the major source
of angiogenesis-inducing MMP9 [98, 114]. Chemokine C-
C motif ligand 2 (CCL2), in addition to the promotion
of angiogenesis [115, 116], also enhances tumor metastasis
[117]. Furthermore, myeloid monocytic cells such as
myeloid-derived suppressor cells (MDSCs), tumor-
associated macrophages (TAMs), and dendritic cells are
recruited to the tumor site mainly by CCL2 and produce
many proangiogenic factors such as VEGF, CXCL8,
platelet-derived growth factor (PDGF), and transforming
growth factor beta (TGF beta) [118–120]. In fact, both
TGF beta and hypoxia are potent inducers of VEGF
expression in tumor cells and collaborate with TME to
provide the foundation of tumor angiogenesis and cancer
cell invasion [121]. Importantly, IL8 has been reported as
a key target gene of PPAR beta/delta to promote angio-
genesis in vivo and in vitro [18], and CCL2 expression is
also significantly upregulated upon vascular PPAR beta/-
delta overexpression in vivo [16].

COX2 also mediates IL1 beta-induced angiogenesis
in vitro and in vivo [122, 123]. IL1 beta supports neovascu-
larization through the regulation of the expression of VEGF
and its receptor VEGFR2 (FLK1/KDR) on ECs [124]. IL1 acts
as an upstream proinflammatory mediator that initiates and
disseminates the inflammatory state by inducing a local
interactive network and increasing adhesion molecule
expression on ECs and leukocytes, which facilitates tumor-
associated angiogenesis [125]. In TME, inflammatory IL1
beta recruits myeloid cells from bone marrow and activates
them to produce proangiogenic factors such as VEGF; VEGF
further activates ECs and myeloid cells, promoting tumor
invasiveness and fostering tumor angiogenesis [125]. In addi-
tion, IL6 also stimulates angiogenesis and vasculogenesis
[126, 127]. However, Gopinathan et al. observed an IL6-
induced newly forming vascular structure with defective
pericyte (PC) coverage ex vivo [128], thus facilitating cancer
cell infiltration and tumor metastasis through vascular leak-
age. Interestingly, IL1 and IL6 expression levels are signifi-
cantly upregulated in the PPAR beta/delta overexpression
mouse model reported recently [16].

In summary, PPAR beta/delta seems to act as a key leader
in inflammatory mediator-driven tumor angiogenesis linked
to TME in which many proinflammatory mediators, chemo-
kines, and proangiogenic factors closely communicate with
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each other, and also associate with tumor-infiltrating mye-
loid cells such as neutrophils, TAMs, and MDSCs.

6.1.2. Other Key PPAR Beta/Delta-Mediated Proangiogenic
Factors. It has been demonstrated that Wilms’ tumor suppres-
sor WT1 is a major regulator of tumor neovascularization and
tumor progression [129]. E26 avian leukemia oncogene 1
(ETS1) also plays a key role in regulating vascular develop-
ment and haemopoiesis, particularly in angiogenesis [130].
In addition, ETS1 promotes cancer cell invasion through
upregulation of MMPs [131]. Consistent with this, silencing
of ETS1 in highly invasive breast cancer cells also reduces
the expression of MMP9 and MMP1 [132].

ETS1 also acts as a key regulator of MMPs such as
MMP1, MMP3, and MMP9 in human cancer-associated
fibroblasts (CAFs) [133, 134]. CAFs support tumor growth
by secreting growth factors such as VEGF, FGF, PDGF, and
chemokines to stimulate angiogenesis and thereby promote
cancer cell invasion and metastasis formation [135, 136].
CAFs, as metastatic tumor stroma, are a crucial component
in tumor progression through the remodeling of the ECM
structure, thus helping a tumor to acquire an aggressive phe-
notype [136, 137]. PPAR beta/delta in CAFs also exhibits a
protumorigenic effect. It was reported that ablation of PPAR
beta/delta in CAFs attenuated tumor growth by altering the
redox balance in TME [138], suggesting that PPAR beta/delta
in CAFs is also an important player in tumor development.
ETS1 induces the expression of VEGF, VEGFR1, and
VEGFR2 in ECs [139–141]. In turn, VEGF is also a major
inducer of ETS1 in ECs through the activation of either the
PI3K/AKT pathway or the MEK/ERK/1/2 signal cascade
[142, 143]. WT1 is also reported to regulate tumor angiogen-
esis via direct transactivation of ETS1 [144].

SRY-related HMG-box 18 (SOX18) has also been
reported previously to induce angiogenesis during tissue
repair and wound healing [145] and cancer progression
[146]. And most recently, it was further shown that specific
EC-derived endovascular progenitors initiated a vasculo-
genic process and differentiated into more mature endothe-
lial phenotypes within the core of the growing tumors
through reactivation of SOX18 [147]. Interestingly, these
important proangiogenic molecules including WT1, ETS1,
and SOX18 are also significantly upregulated in the vascular
PPAR beta/delta overexpression model in vivo [16]. And,
WT1 is also identified as a target gene of PPAR beta/delta
in melanoma cells [148].

6.1.3. PPAR Beta/Delta May Facilitate Cancer Progression at
Diverse Cellular Levels in TME. PPAR beta/delta activation
is shown to induce colonic cancer stem cell (CSC) expansion
and to promote the liver metastasis of colorectal cancer
in vivo via direct transactivation of the Nanog gene [149].
NANOG as a key transcriptional factor governs the self-
renewal and pluripotency of stem cells [150], and cancer cells
expressing NANOG also often exhibit stem cell properties
[151]. Protooncogene c-KIT/CD117 is known as the mast/-
stem cell factor receptor and receptor tyrosine kinase, and
its activation in CSCs may regulate the stemness to control
tumor progression and drug resistance to tyrosine kinase

inhibitors. Moreover, c-KIT has been identified as a potential
marker of the cancer stem-like cells [152]. In addition, c-KIT
not only functions on ECs [153, 154] but also belongs to the
tumor angiogenesis-promoting molecule [155–158]. Studies
also suggested that activation of c-KIT enhances the expres-
sion of VEGF that can be suppressed by imatinib, an inhibi-
tor of c-KIT in gastrointestinal stromal tumor cells, which
thereby has an impact on tumor angiogenesis [159, 160]. c-
KIT is also involved in pathological ocular neovasculariza-
tion [161] and is regulated transcriptionally by WT1 [129]
and PPAR beta/delta [16].

PDGFB and its receptor PDGFR beta, also known as
angiogenic factors, are suggested to enhance angiogenesis
and vasculogenesis via their function in ECs [162–164] and
EPCs [165], and to regulate vascular permeability and vessel
maturation through recruitment of pericytes (PCs) [166,
167] and smooth muscle cells (SMCs) [168] in newly forming
vessels. Moreover, PDGFB and PDGFR beta also interact
with other proangiogenic factors such as FGF2 [169, 170],
VEGFA, and its receptor VEGFR2 [163]. Furthermore,
PDGFB and PDGFR beta may also affect cancer growth
and progression by directly acting on TME. Besides the
crosstalk with CAFs [171–173], PDGFR beta in stromal
fibroblasts may mediate PDGFB-induced TAM recruitment
[174], thus implicating a role of PDGFR beta in tumor
stroma to facilitate tumor progression. Most recently, it was
further shown that specific targeting of PDGFR beta kinase
activity in TME inhibited cancer growth and vascularization
in cancers with high PDGFB expression such as LLC [175].
Therefore, this indicates the diverse role of PDGFB and
PDGFR beta in facilitating tumor angiogenesis and progres-
sion at different cellular levels in TME. PDGFR beta is dem-
onstrated as a target of telomeric repeat binding factor 2
(TRF2) that is further activated transcriptionally by WT1
[176]. PDGFB and PDGFR beta have further been identified
as critical targets of PPAR beta/delta via a direct transactiva-
tion mechanism in vivo [16].

In conclusion, a variety of key signal molecules involved
in tumor angiogenesis and tumor progression and metastasis
have either been identified as PPAR beta/delta direct targets
or largely upregulated in the vascular PPAR beta/delta over-
expression model in vivo reported recently [16]. Thus, PPAR
beta/delta activation seems to give rise to a highly angiogenic
phenotype, and even plays a “hallmark” role in promoting
tumor angiogenesis and progression. Interestingly, it appears
that there could also exist a widely interactive network
between the downstream protumor-angiogenic molecules
as described above. Therefore, the crosstalk network is estab-
lished between PPAR beta/delta and the various signal mole-
cules, and also between those molecules (Figure 1(a)).

Moreover, in addition to cancer cells, PPAR beta/delta
may also produce pleiotropic effects in TME by modulating
downstream key molecules to act on ECs, EPCs, PCs, SMCs,
CSCs, CAFs, and tumor-infiltrating inflammatory cells, indi-
rectly facilitating tumor angiogenesis and further promoting
cancer development (Figure 1(b)).

6.2. Other PPAR Beta/Delta Target Genes. PPAR beta/delta
regulates the transcription of target genes via a direct
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Figure 1: The “hallmark” role of PPAR beta/delta in tumor angiogenesis and progression. (a) Interplay between PPAR beta/delta and
downstream key signal molecules. In the signal network of proangiogenic molecules, COX2 promotes the secretion of VEGF and MMPs
including MMP9; COX2 infiltration also mediates IL1 beta-induced angiogenesis, which further activates VEGF; COX2 also contributes to
cancer progression through the enhancement of the angiogenic chemokine CXCL8 (IL8) expression. IL8 drives VEGF activation and
induces MMP9 expression. LEPTIN induces MMP9 expression, enhances COX2 activity, or transactivates VEGFR to facilitate
angiogenesis. WT1 transactivates ETS1, TRF2, and c-KIT. ETS1 further upregulates the MMP9, VEGF, and VEGFR expression. In turn,
VEGF is also a major inducer of ETS1. TRF2 transactivates PDGFR beta, and c-KIT may affect angiogenesis through the promotion of
VEGF production. There exists a crosstalk between VEGF and MMP9 and between VEGF, VEGFR, and PDGFB and PDGFR beta. Oval
shape: they represent those molecules that have been identified as direct target genes of PPAR beta/delta; rectangle shape: they represent
those molecules that are significantly upregulated upon PPAR beta/delta overexpression. (b) Function of PPAR beta/delta at diverse
cellular levels in TME. In TME, multiple distinct cells communicate and collaborate to enable tumor growth and progression. These cells
include cancer cells, CSCs, ECs, EPCs, PCs, SMCs, CAFs, and tumor-infiltrating inflammatory cells. PPAR beta/delta can directly function
on ECs and EPCs, or directly take action on them by regulating downstream signal molecules such as VEGF, MMP9, PDGFB, PDGFR
beta, and SOX18. PDGFB and PDGFR beta regulate vascular permeability and maturation through the recruitment of PCs and SMCs. c-
KIT also functions on ECs, c-KIT, and NANOG and may regulate the stemness to control cancer progression. ETS1 regulates MMP9
expression in CAFs; the crosstalk between CAFs and PDGFR beta also exists. PPAR beta/delta may act on tumor-infiltrating myeloid cells
through the modulation of the IL10, IL8, CCL2, and PDGFR beta expression. As mentioned above, PPAR beta/delta stimulates cancer cell
invasion and facilitates tumor angiogenesis in an IL10-dependent manner in tumor-infiltrating myeloid cells. IL8 can directly regulate
angiogenesis via the recruitment of neutrophils. CCL2 is also a major regulator of recruitment of the myeloid monocytic cells such as
MDSCs, TAMs, and dendritic cells. Also, PDGFR beta in stromal fibroblasts may mediate PDGFB-induced TAM recruitment. Among
these molecules, SOX18, IL10, CCL2, and ETS1 are overexpressed upon PPAR beta/delta activation, and the others have been reported as
direct targets of PPAR beta/delta.
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PPRE-dependent transactivation mechanism. The peroxi-
some proliferator response element (PPRE) comprises a
direct repeat (DR) of AGGTCA separated by one nucleotide
(DR1) as AGGTCA (N) AGGTCA [177]. But currently, it
was shown that only PPAR alpha binds to this sequence;
whether ligand activation has an impact on PPARs binding
to DNA response elements is still controversial [4]. A variety
of genes have been identified as direct targets of PPAR beta/-
delta and are known to be involved in various cellular biolog-
ical processes such as fatty acid oxidation, cell survival,
inflammation, angiogenesis, cancer cell metabolism, and
tumor progression. Direct target genes of PPAR beta/delta
identified to date already include Calcineurin A, COX2,
VEGF, MMP9, LEPTIN, IL8, WT1, NANOG, c-KIT,
PDGFB, PDGFRB, ANGPTL4, PDK4, FABP4, CDKN1C,
SRC, EDG2, FOXO1, GLUT1, and SLC1-A5 (Table 1).

As mentioned above, most of these PPAR beta/delta tar-
get genes have been suggested to be involved in tumor angio-
genesis and progression. ANGPTL4 is a well-known target
gene of PPAR beta/delta [183, 184], and it promotes angio-
genesis [178, 179], cancer cell invasion [180], and tumor pro-
gression and metastasis [181, 182]. Pyruvate dehydrogenase
kinase 4 (PDK4) may promote cancer progression by regulat-

ing epithelial-mesenchymal transition (EMT) [185, 186] and
cancer cell metabolism [186–188]. Fatty acid binding protein
4 (FABP4) may affect cell proliferation and apoptosis by reg-
ulating glucose and lipid metabolism [190, 191]. Both PDK4
and FABP4 are the established targets of PPAR beta/delta
respectively [189, 192].

Cyclin-dependent kinase inhibitor 1C (CDKN1C) gene,
which encodes the cell cycle inhibitor p57KIP2, has been sug-
gested to be involved in the regulation of several cancer hall-
marks such as inducing angiogenesis, and it has been tested
as a prognostic factor for various cancers [17, 193], as well
as a target of PPAR beta/delta [17]. Oncogene SRC has been
reported to be a direct PPAR beta/delta target, and its tyro-
sine kinase activity triggers the EGFR/ERK1/2 signal cascade,
which promotes the development of ultraviolet radiation-
induced skin cancer [194]. Endothelial differentiation gene
2 (EDG2) is also transactivated directly by PPAR beta/delta
in late EPCs and leads to enhanced vasculogenesis [195].
Forkhead box protein O1 (FOXO1) is required for EC prolif-
eration and vascular growth [196, 198], and directly regulates
VEGFA expression during wound healing [197]. In addition
to the physiological angiogenesis, FOXO1 is suggested to be
involved in developmental and pathological angiogenesis

Table 1: List of target genes of PPAR beta/delta.

PPAR beta/delta
target genes

Cellular biological function
References

(for target genes)

Calcineurin A
Induction of cardiac vascularization, cardiac growth, and skeletal

muscle remodeling [47, 48]
[15]

COX2
An inflammatory angiogenic mediator and a key regulator of tumor

angiogenesis [93, 122, 123]
[104]

VEGF A key regulator of vasculogenesis and angiogenesis [74, 75, 76] [105, 106]

MMP9
A proinvasive matrix-degrading enzyme and a key regulator of tumor

angiogenesis and metastasis [77, 78]
[69]

LEPTIN Regulation of endothelial cell behavior and angiogenesis [79, 80, 81] [107]

IL8
A key angiogenic chemokine, a proinflammatory mediator, and a key
regulator of tumor angiogenesis and progression [98, 111, 112, 114]

[18]

WT1 An important regulator of tumor angiogenesis and progression [129] [148]

NANOG Regulation of self-renewal of cancer stem cells or cancer stem-like cells [149–151] [149]

c-KIT
A potential marker of cancer stem-like cells [152]; promotion of tumor
angiogenesis [155–158] and pathological ocular neovascularization [161]

[16]

PDGFB
A key regulator of angiogenesis and vasculogenesis [162–165] and vascular

permeability and maturation [166–168]
[16]

PDGFR beta
A key regulator of angiogenesis and vasculogenesis [162–165], vascular

permeability and maturation [166–168], and tumor progression [174, 175]
[16]

ANGPTL4 Promotion of angiogenesis, tumor progression, and metastasis [178–182] [183, 184]

PDK4 Regulation of EMT and cell metabolism, and cancer progression [185–188] [189]

FABP4 Regulation of glucose and lipid metabolism; cell proliferation and apoptosis [190, 191] [192]

CDKN1C
A prognostic factor for many types of cancer; regulation of angiogenesis and

cancer hallmarks [193]
[17, 46]

SRC Promotion of angiogenesis, cancer invasion, and tumor progression [194] [194]

EDG2 Enhancement of endothelial cell differentiation and vasculogenesis [195] [195]

FOXO1 Involvement of physiological, pathological, and developmental angiogenesis [196–198] [199]

GLUT1 Promotion of cancer cell metabolism and tumor growth [200, 201] [202]

SLC1-A5 Promotion of cancer cell metabolism and tumor progression [203, 204] [202]
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[198], which is also activated transcriptionally by PPAR
beta/delta [199].

Finally, glucose transporter 1 (GLUT1/SLC2A1), as a
member of the GLUT family, is widely expressed in many
types of cancer cells and plays a key role in glucose uptake
for cancer cell metabolism to enable tumor cell growth and
proliferation [200, 201]. Neutral amino acid transporter B
(SLC1-A5) is an important glutamine transporter in the reg-
ulation of essential amino acid influx [203]; and importantly,
depletion of SLC1-A5 is demonstrated to abolish tumor pro-
gression [204]. Both GLUT1 and SLC1-A5 have been sug-
gested to facilitate tumor progression and are transactivated
directly by PPAR beta/delta [202].

For further information, PPARbeta/delta-related signal-
ing pathways are covered by KEGG (Kyoto Encyclopedia of
Genes and Genomes) (PATHWAY: map 03320), by the
REACTOME pathway database (R-HSA-446176), and by
the Protein-Protein Interaction Networks Functional Enrich-
ment Analysis in STRING functional protein association net-
work database (https://string-db.org/cgi/network.pl?taskId=
OUdxEiHw19dW).

7. Conclusion

PPAR alpha and PPAR gamma seem to have an antiangio-
genic role, but there are still conflicting observations. Unlike
them, PPAR beta/delta exerts proangiogenic effects. Espe-
cially, there exists an intensive crosstalk between PPAR
beta/delta and various signal molecules including the identi-
fied target genes, and also between those molecules. PPAR
beta/delta plays a leading role in the network of interplay
by directly and indirectly modulating the downstream proin-
flammatory or protumorigenic angiogenic molecules which
further act on multiple different cell types in TME, thus indi-
cating a potent “hallmark” role of PPAR beta/delta in tumor
angiogenesis, cancer progression, and metastasis.
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