Skip to main content
. 2020 Jun 30;7(8):ofaa261. doi: 10.1093/ofid/ofaa261

Table 2.

Evaluation of Biomarkers and Biomarker Profiles Using the Area Under the ROC Curve Method

CSF Plasma CSF & Plasma
EV PeV-A3 EV PeV-A3 EV PeV-A3
TNF-α 0.88 Disc2 0.866 Fractalkine 0.854 Disc1 0.952 Disc2 0.924 Disc1 1
MIP-1α 0.861 IL-1β 0.726 GM-CSF 0.774 IFN-α2 0.901 Disc1 0.912 Disc2 0.558
IFNg 0.86 MIP-1α 0.725 IL-15 0.74 IL-15 0.898
Disc1 0.85 IL-6 0.717 Disc2 0.72 MCP-1 0.898
IL-6 0.844 IFNg 0.686 IL-17A 0.718 IP -10 0.891
IL-10 0.842 TNF-α 0.674 IL-10 0.716 IL-1Ra 0.881
IL-1Ra 0.841 IL-15 0.659 IFN-α2 0.712 Fractalkine 0.874
IL-1β 0.839 GM-CSF 0.639 IL-2 0.676 IL-8 0.755
IL-12p40 0.835 IP-10 0.632 MIP-1α 0.666 IL-12p40 0.753
GM-CSF 0.826 MCP-1 0.623 IL-6 0.66 IL-10 0.728
IL-8 0.812 IL-10 0.61 IL-12p40 0.65 RANTES 0.663
Fractalkine 0.809 IL-8 0.604 Disc1 0.64 GM-CSF 0.655
IFN-α2 0.8 Disc1 0.601 MCP1 0.632 TNF-α 0.609
IL-4 0.774 RANTES 0.593 IL-8 0.612 IL-13 0.595
IL-13 0.765 IL-17A 0.548 TNF-α 0.604 IL-6 0.595
IP-10 0.749 IL-13 0.543 IL-1Ra 0.6 IL-5 0.571
Disc2 0.702 IL-12p40 0.541 IP-10 0.564 IL-4 0.568
IL-2 0.69 IL-1Ra 0.54 IL-4 0.548 MIP-1α 0.556
MCP-1 0.682 IL-5 0.531 IL-13 0.544 IL-17A 0.524
IL-15 0.679 IL-2 0.527 IL-5 0.54 IL-2 0.519
IL-17A 0.673 Fractalkine 0.525 IFNg 0.528 IL-1β 0.51
RANTES 0.649 IFN-α2 0.516 IL-1β 0.526 Disc2 0.507
IL-5 0.556 IL-4 0.516 RANTES 0.524 IFNg 0.503

Analogous to principal components in PCA, discriminant analysis computes discriminants. Both principal components and discriminant functions are eigenvectors that can be viewed as artificial variables comprised of contributions from observed variables. In a multivariate problem, data points are plotted in multidimensional space with as many axes as variables. To transform this into a simpler 2- or 3-dimensional presentation, variables are combined into eigenvectors ranked by the amount of variance they explain. In PCA, the direction of the eigenvector that explains the most variance (ie, first component) is selected so that it explains the maximum amount of variance that can be explained by 1 vector (ie, maximizing the amount of variance explained). In discriminant analysis, the eigenvector that explains the most variance (first discriminant function) is selected to maximize group separation. As these eigenvectors are linear combinations of observed variables, they may be used as a way to combine variables and test them using the AUC method. Here, we selected discriminant functions (Disc1 and Disc2) as they are likely to be superior to principal components given the way they were computed. The heat map corresponds to a range of AUC values from the lowest (dark red) to highest (dark blue).

Abbreviations: AUC, area under the curve; CSF, cerebrospinal fluid; Disc1/Disc2, first/second discriminant function; EV, enterovirus; GM-CSF, granulocyte macrophage–colony-stimulating factor; IFN, interferon; IL, interleukin; IP, interferon-γ-inducible protein; MCP, monocyte chemoattractant protein; PCA, principal component analysis; PeV, parechovirus type A3; TNF, tumor necrosis factor.