Skip to main content
. 2020 Aug 14;9(2):47. doi: 10.1167/tvst.9.2.47

Table 2.

Summary of AUC of the ROCs of the 3 Machine Learning Classifiers Under 3 Sampling Strategies

Method Without Oversampling Retinal Oversampling Borderline-SMOTE Oversampling
AUC AUC AUC
LDA 0.863 ± 0.015 0.958 ± 0.003 0.885 ± 0.011
SVM 0.859 ± 0.019 0.967 ± 0.008 0.975 ± 0.003
RF 0.880 ± 0.019 0.981 ± 0.006 0.986 ± 0.007

The area under the receiver operating characteristic curve (AUC of the ROC) is shown ± standard deviation for each of the 3 classifiers: linear discriminant analysis (LDA), support vector machine (SVM) and random forest (RF) without and with 2 oversampling methods, retinal oversampling and borderline-SMOTE oversampling. The corresponding curves are shown in Figure 4.