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Patterns of transmission of drug-resistant tuberculosis (TB) remain poorly understood, despite over half a
million incident cases worldwide in 2017. Modeling TB transmission networks can provide insight into drivers
of transmission, but incomplete sampling of TB cases can pose challenges for inference from individual
epidemiologic and molecular data. We assessed the effect of missing cases on a transmission network inferred
from Mycobacterium tuberculosis sequencing data on extensively drug-resistant TB cases in KwaZulu-Natal,
South Africa, diagnosed in 2011–2014. We tested scenarios in which cases were missing at random, missing
differentially by clinical characteristics, or missing differentially by transmission (i.e., cases with many links
were under- or oversampled). Under the assumption that cases were missing randomly, the mean number of
transmissions per case in the complete network needed to be larger than 20, far higher than expected, to
reproduce the observed network. Instead, the most likely scenario involved undersampling of high-transmitting
cases, and models provided evidence for super-spreading. To our knowledge, this is the first analysis to have
assessed support for different mechanisms of missingness in a TB transmission study, but our results are subject
to the distributional assumptions of the network models we used. Transmission studies should consider the
potential biases introduced by incomplete sampling and identify host, pathogen, or environmental factors driving
super-spreading.

bias analysis; drug-resistant tuberculosis; missing data; network modeling; tuberculosis; tuberculosis
transmission; whole genome sequencing

Abbreviations: ERGM, exponential random graph model; SNP, single nucleotide polymorphism; TB, tuberculosis; TRAX Study,
Transmission Study of XDR TB; XDR, extensively drug-resistant.

Tuberculosis (TB) is the leading infectious cause of death
worldwide (1). The ongoing transmission of extensively
drug-resistant (XDR) TB, which is resistant to both first- and
second-line antibiotics, is a severe threat to public health.
South Africa has among the highest rates of TB and human
immunodeficiency virus infection globally, and KwaZulu-
Natal Province has the highest XDR TB incidence in South
Africa (3 per 100,000 population) (2–5). In South Africa and
elsewhere, the majority of drug-resistant TB cases are due
to transmission of already-resistant strains, rather than inad-
equate treatment (6, 7). This underscores the importance of
locating where and between whom TB transmission occurs

to develop interventions targeting key transmission locations
and at-risk groups (8).

Identifying transmission events is a challenge given the
airborne transmission route of TB and the dramatic vari-
ability in the duration of latent TB infection. However, bac-
terial whole genome sequencing allows for high-resolution
characterization of Mycobacterium tuberculosis sequences
at the level of individual base pairs. Cases with similar
M. tuberculosis sequences are likely to be linked through
recent transmission; collectively, such links can be used to
infer networks of transmission events (9). Previous studies
have inferred transmission events using social-contact or
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molecular data, but a key limitation of these studies in
high-incidence settings is that it is virtually impossible to
identify all TB cases. Half of TB cases are estimated to
be undiagnosed (10–12). Among diagnosed cases, epidemi-
ologic or sequencing information may be missing, either
because a clinical sample could not be collected or because
a case died prior to diagnosis or study enrollment—a par-
ticular concern with XDR TB, given its low survival rate
(though survival continues to improve) (13, 14). Thus, a
major challenge of characterizing TB transmission networks
is inferring a complete, or at least representative, set of trans-
mission links from incomplete data. If an empirical network
constructed from incomplete data poorly resembles the true
transmission network, inferences about transmission may be
biased.

A modeling approach to the problem of missing net-
work data could provide insight into what the structure of
the complete transmission network, had it been measured,
would have looked like. Missing network data are differ-
ent from missing data in traditional epidemiologic studies,
because the dependence among cases in a network violates
the assumption that data are independent and identically
distributed. Even if cases are missing at random, inference
from a partially sampled transmission network could be
biased. However, we can still make inferences about the
complete network if certain conditions are met (15). Most
importantly, sampled cases must not differ systematically
from unsampled cases with respect to their transmission
potential (15). This may occur if, for example, undiagnosed
cases have longer infectious periods and therefore contribute
disproportionately to transmission as compared with diag-
nosed cases who receive prompt treatment. Failing to sample
these highly connected cases could have a pronounced effect
on network structure and, as a result, bias conclusions made
from the empirical network (16).

We may be able to mitigate bias if we can quantify it,
by identifying characteristics of cases that are undersampled
and using this information to infer the structure of the
true network. For example, TB cases without detectable
mycobacteria in sputum (“smear-negative”) are both less
infectious and more difficult to diagnose than smear-positive
cases, leading to a scenario in which diagnosed cases may
be responsible for more transmission than undiagnosed and
unsampled cases (17). Conversely, transmission studies may
tend to capture cases among people who present promptly to
a health-care provider upon experiencing symptoms, result-
ing in shorter infectious periods among cases enrolled in the
study than among unsampled cases. Cases diagnosed late
in their disease course may be less likely to participate in
a transmission study, either because they are very ill by the
time they are diagnosed or because they have generally lower
engagement with the health-care system. Understanding the
effects of biased sampling is a first step in evaluating the
robustness of empirical transmission networks of TB cases
in different settings. Lastly, understanding the structure of
complete networks can permit testing of hypotheses about
drivers of TB transmission. Super-spreading, defined by the
existence of cases that cause a disproportionate number of
secondary infections, is increasingly being recognized as
an important phenomenon shaping transmission dynamics

but is difficult to measure empirically (18, 19). Detecting
signatures of this phenomenon in transmission networks will
improve our understanding of its role in TB epidemiology.

In this analysis, we used data from the Transmission
Study of XDR TB (TRAX Study), which enrolled culture-
confirmed XDR TB cases diagnosed from 2011 to 2014 in
KwaZulu-Natal Province, South Africa. We constructed an
empirical transmission network based on M. tuberculosis
sequence data and used network models to infer “com-
plete” transmission networks based on different assumptions
about how data were missing from the empirical network.
We tested models including a “super-spreading” factor to
understand its impact on network structure. Our goal was
to identify the typology of missingness most consistent with
the empirical network in order to assess the extent to which
our transmission study reflected true XDR TB transmission
patterns.

METHODS

Study design and procedures

The TRAX Study investigators identified 1,027 XDR TB
cases through the single referral laboratory that conducts
drug-susceptibility testing for all public health-care facilities
in KwaZulu-Natal Province and selected a convenience
sample of 404 cases (6, 20). All participants provided written
informed consent; for deceased or severely ill participants,
consent was obtained from next-of-kin. We interviewed par-
ticipants and performed medical record review to collect
demographic and clinical information. The diagnostic XDR
TB isolate was obtained for all enrolled participants. Raw
paired-end sequencing reads were generated on the Illumina
MiSeq platform (Illumina, Inc., San Diego, California) and
aligned to the H37Rv reference genome (NC_000962.3).
Single nucleotide polymorphisms (SNPs) were detected
using standard pairwise resequencing techniques (Samtools,
version 0.1.19) against the reference (21). A total of 344
cases had M. tuberculosis sequences that passed all quality
filters (see Web Appendix 1 and Web Figure 1, available at
https://academic.oup.com/aje). Sequencing data are avail-
able in the National Center for Biotechnology Information’s
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra;
BioProject: PRJNA476470).

Constructing the empirical network using
M. tuberculosis sequence data

We defined a genomic link as a pair of XDR TB cases
with 5 or fewer SNP differences between their M. tubercu-
losis sequences (9). We constructed genomic transmission
networks of TRAX cases, in which each node in the network
represents a case and each edge represents a transmission
event. The degree of each node is the number of edges per
case (or the sum of the source and forward transmission
links); the degree distribution represents the edge count
across all nodes in the network. We considered this empirical
genomic network a subset of the cases and links in the true,
complete transmission network that includes all XDR TB
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cases and transmission events in KwaZulu-Natal during the
study period.

Exponential random graph models

Conventional statistical models assume that the charac-
teristics of each individual are independent from others’—
an assumption that is not met in disease transmission net-
works. In a transmission network, the unit of interest is a
transmission link, comprising 2 cases whose attributes may
be correlated. Exponential random graph models (ERGMs)
are a tool for statistically modeling the propensity of links
to form between nodes (cases) in a network, accounting for
correlation among attributes of cases. We used ERGMs to
express the probability that a transmission link will occur
between 2 cases as a function of their demographic and
clinical characteristics (Web Appendix 2).

We used infectiousness estimates from the literature to
define target statistics for the degree of a case based on
their attributes (e.g., smear-negative cases had, on average,
25% fewer edges than smear-positive cases) (12, 22). If
there was limited information in the literature for a given
attribute, we used data from TRAX to define target statis-
tics. We specified models under each missing-data scenario.
Since the mean degree (number of links per case) in the
complete network was unknown, we tested each scenario
across a range of mean degrees (Web Appendices 2–5, Web
Tables 1–7).

To model complete transmission networks, we estimated
the total number of diagnosed and undiagnosed XDR TB
cases in KwaZulu-Natal during the study period (2011–
2014). We used data from the South African Tuberculosis
Drug Resistance Survey to estimate the number of diag-
nosed XDR TB cases and active case-finding studies to
estimate the number of additional, undiagnosed cases (23).
We assumed a complete transmission network size of 2,000
cases for our primary analyses (Web Appendix 6).

From each scenario, we simulated 1,000 complete trans-
missionnetworks (Figure 1).ERGMswereconstructed using
the ergm R package (24, 25). The software code is available
at https://github.com/kbratnelson/tb-ergms.

Missing-data scenarios

We modeled 4 different scenarios in which information
was missing from the empirical network (Table 1). First,
we assumed that cases were missing at random (scenario
1). Second, we assumed systematic oversampling of cases
involved in either many transmission events (“high trans-
mitters”) or few transmission events (“low transmitters”)
(scenario 2). Third, we hypothesized that cases were sam-
pled differentially on the basis of smear status (scenario
3). Smear-negative cases are more difficult to diagnose and
may therefore be underrepresented in empirical transmission
networks (22). The final scenario modeled an unmeasured
factor strongly related to the likelihood of transmission
(scenario 4). We modeled this factor in a subset of cases
(varying its prevalence from 10% to 40%) with varying
strengths (the number of links among cases with this factor

ranges from 10–40 times the network mean degree). This
tested the hypothesis that an unmeasured characteristic in
a minority of cases, representing super-spreading, could
explain the structure of the empirical transmission network
(Web Appendix 7).

Sampling modeled networks and statistical analysis

From each modeled, complete network, we sampled a
similar number of cases (n = 350) as in our empirical net-
work (Web Appendix 8). We aimed to determine which sce-
nario produced sampled networks that most closely matched
the degree distribution of the empirical network. To com-
pare the empirical network with the modeled and sampled
networks, we compared locations of the quantiles (10%,
25%, 50%, 100%) of the degree distribution (median and
interquartile range) and assessed 2-sided P values from a
modified Kolmogorov-Smirnov test calculated using boot-
strapping techniques (26–28).

Additional sensitivity analyses

Because there is considerable uncertainty about the
genomic threshold that should be used to define a direct
TB transmission event, we assessed the effect of using a
more stringent SNP threshold (3 SNPs). We also tested the
sensitivity of our results to assumptions about the size of the
complete transmission network (Web Appendix 6).

RESULTS

The empirical genomic network comprised 344 TRAX
cases with 1,084 genomic links, or edges. Each case had an
average of 6.3 links (the overall network mean degree), and
182 (53%) cases in the network had at least 1 link. The 25th
percentile of the degree distribution was located at 0, the 50th
percentile (median) at 1, and the 75th percentile at 7 (Web
Table 8). The most highly linked case had a degree of 62; 62
(18%) cases had 10 or more links.

The hypothesis that cases were randomly sampled from
the complete network was inconsistent with the empiri-
cal TRAX network (Figure 2, parts A and D; scenario 1).
Models implemented under this scenario with a high mean
degree could reproduce the median of the empirical degree
distribution (for mean degree 20, the median was 2; Table 2).
However, a mean degree greater than 20 in the complete
network was required to reproduce the highly connected
cases in our transmission study (Table 2; Web Figure 2). P
values suggested that none of these models were consistent
with the empirical network.

Scenarios oversampling high- or low-transmitting cases
(scenario 2) significantly changed the structure of mod-
eled networks but did not produce networks fully consis-
tent with the empirical network. If high transmitters were
oversampled, the degree distributions of modeled networks
were shifted to the right relative to the empirical network
(Figure 2, parts B and E; Web Figure 3). The 25th percentile

Am J Epidemiol. 2020;189(7):735–745

https://github.com/kbratnelson/tb-ergms


738 Nelson et al.

Figure 1. Modeling approach for assessment of the effect of missing cases on a transmission network inferred from Mycobacterium
tuberculosis sequencing data on extensively drug-resistant tuberculosis, KwaZulu-Natal, South Africa, 2011–2014.HIV, human immunodeficiency
virus.

(range, 1–9), median (range, 2–14), and 75th percentile
(range, 3–18) were close to those of the empirical network
(0, 1, and 7, respectively). However, the maximum degree
in modeled networks (range, 9–32) could not reproduce the
highly connected cases in the empirical network (degree:
62), and all modeled networks under this scenario were
statistically different from the empirical network (Table 2).
When we assumed that low transmitters were oversampled,
the degree distribution was shifted left relative to the empiri-
cal network (Figure 2 parts C and F), but the overall shape of
the degree distribution was similar to the empirical network,
with its median and mode at 0 (Table 2).

Sampling cases differentially by smear status (scenario 3)
yielded few changes in the degree distributions of modeled

networks (Table 3; Figure 3, parts A and C). Results from
these models were similar to those from scenario 1.

In the scenario including a latent factor representing
super-spreading that increased transmission risk 40-fold in
10% of cases (scenario 4), we could not reproduce the full
empirical degree distribution, in which the 75th percentile
was higher (degree: 7) than the modeled networks (range, 0–
2); all P values suggested that the degree distributions of the
modeled and empirical networks were dissimilar (Figure 3,
parts B and D). However, we could reproduce the target
statistics for the maximum of the degree distribution (range
(7–62) vs. empirical maximum (62)) (Table 3).

When we assumed smaller complete transmission networks
(n = 1,500), modeled networks more closely resembled
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Table 1. Hypothetical Scenarios for Assessment of the Effect of Missing Cases on a Transmission Network Inferred From Mycobacterium
tuberculosis Sequencing Data on Extensively Drug-Resistant Tuberculosis, KwaZulu-Natal, South Africa, 2011–2014

Scenario Changes to Complete Transmission Network Model or Sampling Procedures

1. Cases missing at random No changes to model terms.

2. Cases missing by transmission No changes to model terms. Sample from complete network nonrandomly using degree to define
sampling weights.

I. Highly connected cases (“high transmitters”) more likely to be sampled: sampling weighted by
degree

II. Poorly connected cases (“low transmitters”) more likely to be sampled: sampling weighted by
inverse degree

3. Cases missing by smear status No changes to model terms. Increase proportion of smear-positive cases in complete network
relative to sampled network.

4. Latent, unmeasured
(super-spreading) factor

Add model term corresponding to unmeasured factor strongly related to transmission in a minority of
cases. Vary strength and prevalence of factor.

I. Unmeasured factor that increases transmission by a factor of 10 (prevalence: 10%)

II. Unmeasured factor that increases transmission by a factor of 20 (prevalence: 10%)

III. Unmeasured factor that increases transmission by a factor of 40 (prevalence: 10%)

the empirical network, with a higher median degree (range,
0–3) and more highly linked cases (75th percentile: 1–8;
maximum: 5–23) than in our primary analysis (Web Figure
4 and Web Table 9). Thus, the empirical network was more
consistent with assumptions of fewer XDR TB cases, rather
than more, in the complete network.

We assessed the robustness of our results to the SNP
threshold used to define a genomic link. Since a threshold of
3 SNPs requires cases’ TB strains to be more closely related
to define an edge, the empirical degree distribution is shifted
to the left relative to that of the network defined by a 5-SNP
threshold (Web Table 10 and Web Figure 5). Under random
sampling, the model with a mean degree of 20 (maximum
degree: 21) could reproduce the maximum of the empir-
ical 3-SNP network (maximum: 22), but not the median
(2 in the modeled network, 0 in the empirical network)
(Table 2).

When we accounted for a “super-spreading” factor (sce-
nario 4), modeled networks could indeed reproduce a degree
distribution similar to that of the 3-SNP empirical network.
At a mean degree of 8, the modeled network closely matched
the empirical network, with the median at 0 (empirical
network: 0), the 75th percentile at 1 (empirical network:
1), and the maximum at 30 (empirical network: 22). How-
ever, the degree distributions were still statistically different
(Table 3).

DISCUSSION

In this study, we explored whether partial and nonrandom
sampling of TB transmission events may bias inferences
we aim to make from transmission networks constructed
using incomplete molecular and epidemiologic data. The
methodological framework outlined in this study sheds light
on the key assumptions required to make inferences from
incomplete sampling of TB cases. On the basis of our

models, missingness in our transmission study was unlikely
to be random; rather, we more likely oversampled low-
transmitting cases. Although super-spreading behavior may
partially account for the structure of the empirical transmis-
sion network, it could not completely explain the transmis-
sion heterogeneity we observed. Our results advise caution
when interpreting transmission networks measured from
incomplete data in TB-endemic settings without a clear
understanding of the sampling frame and factors potentially
contributing to bias.

The fact that none of our models fully explained the
empirical network is unsatisfying but itself informative. It
suggests that factors traditionally thought to be among the
most important determinants of transmission risk, including
the key clinical and demographic characteristics included
in our models, do not explain the structure of transmission
networks measured in real-world settings and heterogeneity
in the number of transmission links attributed to cases.
However, our models suggested several potential factors
contributing to this mismatch. First, we found that the sce-
nario in which cases were missing completely at random
from our transmission study was unlikely based on our
models, and that this finding was robust to our choice of SNP
threshold to define transmission. Instead, we found that low-
transmitting cases were more likely to be sampled than high-
transmitting cases. This may be due to preferential inclusion
of symptomatic TB cases who present promptly to health-
care providers: While these patients rapidly become nonin-
fectious after initiating treatment, cases with mild symptoms
may be infectious but relatively healthy and able to maintain
their daily routines for an extended period of time, possi-
bly resulting in many transmission events. Indeed, there is
mounting epidemiologic and immunological evidence for
a period of “subclinical” TB infection; understanding the
potential for transmission at this stage of infection may be
critical for explaining TB transmission heterogeneity (29–
35). This explanation is also consistent with our finding
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Figure 2. Degree distributions of empirical (≤5 single nucleotide polymorphisms (SNPs)) and modeled, sampled networks under scenario 1
(random sampling (panels A and D)) and scenario 2 (oversampling of high (panels B and E) and low (panels C and F) transmitters) as compared
with an empirical network of extensively drug-resistant (XDR) tuberculosis (TB) cases, KwaZulu-Natal, South Africa, 2011–2014. In panels A–
C, the gray bars show the distribution of the number of links per case, or the degree distribution, of the empirical network (≤5 SNPs) from
the Transmission Study of XDR TB (TRAX Study). Each colored line shows the median degree distribution across 1,000 modeled, sampled
networks for the corresponding model. Line color indicates the mean degree, or the average number of transmissions per case, assumed in
the complete, modeled network. Panels D–F show the range of the degree distributions of the modeled, sampled networks for 1 model (mean
degree = 10). The gray dots show the degree distribution of the empirical network (≤5 SNPs) from the TRAX Study and are equivalent to the
distribution shown by the gray bars in panel A. Colored box plots show the median, interquartile range, minimum, and maximum frequencies for
each degree in the distribution across 1,000 modeled, sampled networks. See Web Figure 3 for more detail on panel C.
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Table 2. Target Statistics (Median (Interquartile Range)) for Modeled, Sampled Networksa Under Scenarios 1 and 2 As Compared With an
Empirical Network of Extensively Drug-Resistant Tuberculosis Cases, KwaZulu-Natal, South Africa, 2011–2014

Degree and Percentile of Degree Distribution

P ValuebType of Sampling
and Mean Degree

10th Percentilec 25th Percentile Median 75th Percentile Maximum

Target statistics for empirical
network

5-SNP threshold 0 0 1 7 62

3-SNP thresholdd 0 0 0 1 21

Random sampling (scenario 1)

2 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–1) 4 (4–5) 0 (0–0)

5 0 (0–0) 0 (0–0) 0 (0–0) 1.(1–0) 7 (6–8) 0 (0–0)

10 0 (0–0) 0 (0,0) 1 (1–1) 3 (3–3) 11 (10–12) 0 (0–0)

20 0 (0–0) 0 (0–0) 2 (2–3) 6 (6–6) 21 (19–22) 0 (0–0.00001)

Oversampling of high transmitters
(scenario 2)

2 0 (0–0) 1 (1–1) 2 (2–2) 3 (3–3) 9 (8–9) 0 (0–0)

5 1 (1–1) 2 (2–2) 4 (3–4) 6 (5–6) 13 (12–15) 0 (0–0)

10 2 (1–2) 4 (4–4) 7 (7–7) 10 (9–10) 20 (19–21) 0 (0–0)

20 4 (4–4) 9 (8–9) 14 (13–14) 18 (18–19) 32 (30–33) 0 (0–0)

Oversampling of low transmitters
(scenario 2)

2 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–1) 0 (0–0)

5 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–1) 0 (0–0)

10 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 1 (0–0) 0 (0–0)

20 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 2 (1–2) 0 (0–0)

Abbreviation: SNP, single nucleotide polymorphism.
a 1,000 networks were simulated from each model; each modeled network was sampled once.
b P values from a Kolmogorov-Smirnov test with a 2-sided alternative hypothesis, calculated using 1,000 bootstrap samples. P values shown

as 0 were less than 2.2e−16.
c Median of the 10th percentile of the degree distribution from 1,000 modeled, sampled networks.
d Note that target statistics for both the 5-SNP and 3-SNP empirical networks are shown. These are independent of the results from the

modeled networks under scenarios 1 and 2, which are shown in the body of the table.

that super-spreading may partially explain the network we
observed, if a subclinical disease state accounts for more
transmission than previously appreciated. Alternatively, or
in addition to the potential role of subclinical disease, impor-
tant sociobehavioral factors may also drive the transmis-
sion heterogeneity that we were unable to explain in our
study. For example, the common practice in South Africa of
traveling to urban centers for seasonal employment, which
could lead to both higher contact rates and a lower likelihood
of diagnosis due to lower engagement with the health-care
system, could be driving XDR TB transmission in KwaZulu-
Natal (36–41).

Our results were sensitive to factors about which there is
substantial uncertainty in TB, including key natural history
features and the SNP threshold defining a direct transmission
event. Our primary models varied the mean degree in the
complete network from 2 to 20. This range was selected after
considering previous estimates of the effective reproduction
number (Rf) of TB, which is not well-characterized (42).

Interestingly, the models most consistent with the empir-
ical network had a mean degree of 10 and above, which
is substantially higher than previous estimates of Rf. This
suggests either that Rf is truly higher in this setting because
of a particularly high risk of XDR TB or, more likely, that
our definition of a transmission event—5 SNPs—was too
lenient (9). When we examined networks defined using a 3-
SNP threshold, the empirical network was consistent with a
wider range of models than the network based on a 5-SNP
threshold. This result emphasizes the challenges of relying
on pairwise genomic distances to define transmission events:
Conclusions regarding transmission can be different based
on the threshold being used.

Lastly, our results were sensitive to assumptions about
the total number of XDR TB cases comprising the complete
network. Underdiagnosis of TB is a persistent challenge in
low-resource settings and is even more difficult for XDR
TB, which requires culture-based drug susceptibility testing.
In our primary analysis, we assumed that approximately
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Table 3. Target Statistics (Median (Interquartile Range)) for Modeled, Sampled Networksa Under Scenarios 3 and 4 As Compared With an
Empirical Network of Extensively Drug-Resistant Tuberculosis Cases, KwaZulu-Natal, South Africa, 2011–2014

Degree and Percentile of Degree Distribution
Type of Sampling
and Mean Degree

10th Percentilec 25th Percentile Median 75th Percentile Maximum

P Valueb

Target statistics for empirical network

5-SNP threshold 0 0 1 7 62

3-SNP threshold 0 0 0 1 22

Cases sampled preferentially by
smear status (scenario 3)d

50/50 smear−/+ (empirical
network: 30/70 smear−/+)

2 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–1) 4 (4–5) 0 (0–0)

5 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–2) 7 (7–8) 0 (0–0)

10 0 (0–0) 0 (0–0) 1 (1–1) 3 (3–3) 11 (10–12) 0 (0–0)

20 0 (0–0) 1 (1–1) 3 (2–3) 6 (6–6) 18 (17–19) 0 (0–0)

70/30 smear−/+ (empirical
network: 30/70 smear−/+)

2 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–1) 4 (4–5) 0 (0–0)

5 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–1) 7 (6–7) 0 (0–0)

10 0 (0–0) 0 (0–0) 1 (1–1) 2 (2–3) 11 (10–12) 0 (0–0)

20 0 (0–0) 0 (0–1) 2 (2–2) 5 (5–5) 19 (18–21) 0 (0–0)

Unmeasured factor (scenario 4)
(40×, P = 0.10)

2 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 7 (6–8) 0 (0–0)

5 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–1) 14 (12–15) 0 (0–0)

8 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–1) 30 (28–32) 0 (0–0)

10 0 (0–0) 0 (0–0) 0 (0–0) 1 (1–1) 36 (34–38) 0 (0–0)

20 0 (0–0) 0 (0–0) 0 (0–0) 2 (2–3) 62 (60–63) 0 (0–0.002)

Abbreviations: SNP, single nucleotide polymorphism; TB, tuberculosis; TRAX Study, Transmission Study of XDR TB; XDR, extensively drug-
resistant.

a 1,000 networks were simulated from each model; each modeled network was sampled once.
b P values from a Kolmogorov-Smirnov test with a 2-sided alternative hypothesis, calculated using 1,000 bootstrap samples. P values shown

as 0 were less than 2.2e-16.
c Median of the 10th percentile of the degree distribution from 1,000 modeled, sampled networks.
d Smear distribution among TRAX cases (in empirical network): 32% smear-negative, 68% smear-positive.

half of all XDR TB cases are diagnosed. We found that
larger complete networks were less likely to match the
empirical network, suggesting it is unlikely that we greatly
underestimated the number of XDR TB cases in KwaZulu-
Natal. However, the results from this sensitivity analysis
underscore the broader challenge of understanding the true
magnitude of TB disease burden in low-resource settings and
using this information to accurately model population-level
transmission dynamics.

Limitations

We did not distinguish the direction of transmission in
modeled or empirical networks to avoid fitting of our models
with uncertain parameter data, but this prevented us from

being able to distinguish between individual attributes that
increased the risk of transmission and those that increased
risk of acquisition of infection and progression to TB dis-
ease. More sophisticated probabilistic methods to define
genomic transmission links between cases that account for
directionality are warranted in future analyses (43). Second,
ERGMs utilize mixed Poisson distributions (conditional on
nodal attributes and other network features) to model the
number of edges per node, but there is evidence that this
distribution may fail to capture fundamental properties of TB
transmission or the phenomenon of super-spreading (18).
Although our results could be attributed to the failure of
these distributional assumptions to hold, ERGMs are pow-
erful tools precisely because they are formulated with this
constraint, as it allows for investigation of the fundamental
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Figure 3. Degree distributions of empirical (≤5 single nucleotide polymorphisms (SNPs)) and modeled, sampled networks under scenario 3
(sampling biased by smear status (panels A and C)) and scenario 4 (inclusion of an unmeasured “super-spreading” factor (panels B and D)) as
compared with an empirical network of extensively drug-resistant (XDR) tuberculosis (TB) cases, KwaZulu-Natal, South Africa, 2011–2014. For
all results shown, the models assumed an average mean degree in the complete network of 10. In scenario 4, unmeasured (“super-spreading”)
factors are shown at a range of strengths (×10 indicates that super-spreaders are responsible for 10 times more secondary cases than other
cases). We assumed that this unmeasured factor had a population prevalence of 0.10. In panels A and B, bars show the distribution of the
number of links per case, or the degree distribution, of the empirical network (≤5 SNPs) from the Transmission Study of XDR TB (TRAX Study).
Each line shows the median degree distribution across 1,000 modeled, sampled networks for the corresponding model. Line type indicates
the distribution of smear status (scenario 3) or the strength and prevalence of the unmeasured factor (scenario 4) assumed in the complete,
modeled network. Panels C and D show the range of the degree distributions of the modeled, sampled networks for an individual model. Dots
show the degree distribution of the empirical network (≤5 SNPs) from the TRAX Study and are equivalent to the distribution shown by the gray
bars in panel A. Box plots show the median, interquartile range, minimum, and maximum frequencies for each degree in the distribution across
1,000 modeled, sampled networks.

processes driving transmission network formation. How-
ever, our findings on “super-spreading” should be inter-
preted in light of these limitations.

Conclusions

While a clearer understanding of transmission is criti-
cal in settings with a high burden of disease, sparse data
pose serious challenges for interpretation of transmission
studies. Our analysis suggests that super-spreading behavior

and biased sampling may partially explain the observed
network. However, we also found that none of our network
models could fully explain the observed network, which
should motivate further inquiry into what is missing from
our current understanding of TB transmission in order to
better target interventions aiming to interrupt TB spread in
endemic settings. Our conclusions are likely to be general-
izable to transmission studies of drug-susceptible TB, but
we note that this study of XDR TB may have been espe-
cially susceptible to biases resulting from underdiagnosis
and survival, given the complexity of diagnostics and poor
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survival from XDR TB. Future research should focus on
identifying host, pathogen, or environmental factors con-
tributing to super-spreading. Transmission studies in high-
incidence settings should aim to understand the impact of
incomplete and potentially biased sampling and identify
key assumptions about missingness on which inferences are
based. These efforts will allow more accurate mapping of TB
transmission patterns in endemic settings, where the need to
design interventions tailored to local epidemics is greatest.
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