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The cell envelope of Gram-negative bacteria is a multilayered
structure essential for bacterial viability; the peptidoglycan cell
wall provides shape and osmotic protection to the cell, and the
outer membrane serves as a permeability barrier against nox-
ious compounds in the external environment. Assembling the
envelope properly and maintaining its integrity are matters of
life and death for bacteria. Our understanding of the mecha-
nisms of envelope assembly and maintenance has increased tre-
mendously over the past two decades. Here, we review the
major achievements made during this time, giving central stage
to the amino acid cysteine, one of the least abundant amino acid
residues in proteins, whose unique chemical and physical prop-
erties often critically support biological processes. First, we
review how cysteines contribute to envelope homeostasis by
forming stabilizing disulfides in crucial bacterial assembly fac-
tors (LptD, BamA, and FtsN) and stress sensors (RcsF and
NlpE). Second, we highlight the emerging role of enzymes that
use cysteine residues to catalyze reactions that are necessary for
proper envelope assembly, and we also explain how these
enzymes are protected from oxidative inactivation. Finally, we
suggest future areas of investigation, including a discussion of
how cysteine residues could contribute to envelope homeostasis
by functioning as redox switches. By highlighting the redox
pathways that are active in the envelope of Escherichia coli, we
provide a timely overview of the assembly of a cellular compart-
ment that is the hallmark of Gram-negative bacteria.

The cell envelope of Gram-negative bacteria is a complex
macromolecular structure that consists of an inner membrane
surrounding the cytoplasm and an outer membrane that sepa-
rates the cell from the environment. While the inner mem-
brane is a classic phospholipid bilayer, the outer membrane is
asymmetric, with phospholipids in the inner leaflet and lipo-
polysaccharides in the outer leaflet (1). The twomembranes are
separated by the periplasm, a viscous compartment that repre-
sents 10–20% of the total cell volume (2) and contains a thin
layer of peptidoglycan. The peptidoglycan, also referred to as
the cell wall, is a polymer made of repeating units of a disaccha-
ride (GlcNAc-N-acetylmuramic acid) cross-linked by short
peptides (3, 4). In enterobacteria, the outer membrane and the
peptidoglycan are covalently attached by protein tethers (5, 6).
In the model bacterium Escherichia coli, approximately one-

third of cellular proteins are destined for the cell envelope (7).
Soluble proteins are present in the periplasm, where they
engage in a variety of functions, including peptidoglycan as-
sembly, protein folding, and nutrient import. Integral mem-
brane proteins are present in both membranes. While inner
membrane proteins cross the lipid bilayer via hydrophobic
a-helices, proteins inserted in the outermembrane contain am-
phipathic b-strands that are arranged in a linear antiparallel
b-sheet; this b-sheet folds into a barrel by establishing hydro-
gen bonds between the first and last b-strands (1, 8). Some of
these so-called b-barrels function as passive diffusion channels,
allowing small hydrophilic molecules to enter the cell, when
others, connected to energy sources in the inner membrane,
actively import specific compounds (9). Other important enve-
lope proteins are the lipoproteins, globular proteins anchored
to a membrane by a lipid moiety. Although some lipoproteins
remain in the inner membrane, most of them are targeted to
the outermembrane (10, 11).
Each envelope layer is essential for viability; the outer mem-

brane serves as a permeability barrier against toxic compounds
present in the surroundings (8), the peptidoglycan provides
shape and osmotic protection to the cell (3), and the inner
membrane delimits the cytoplasm and hosts many vital cellular
processes, including respiratory systems. The crucial impor-
tance of the envelope is nicely illustrated by the fact that several
antibiotics (3) and antibacterial toxins (12) target the mecha-
nisms of peptidoglycan assembly while others, such as colistin
(a last resort antibiotic), destabilize the outer membrane. Assem-
bling the envelope properly is challenging, in part because the
complex machineries involved in the biogenesis of its different
layers need to coordinate and to adapt their activities to the
growth rate. In addition, most of the envelope building blocks
necessary for synthesis, being produced in the cytoplasm or in
the inner membrane, need to be transported to their final desti-
nation in an assembly-competent state and correctly integrated
in the construction despite the lack of an obvious energy source
(there is no ATP in the periplasm (13)). In the case of envelope
proteins, the large majority of which enter the periplasm in an
unfolded state that is prone to aggregation (14), correct folding
often involves the formation of one ormore disulfide bonds.
The understanding of the mechanisms of envelope assembly

and maintenance has increased tremendously during the past
two decades. For instance, the machineries involved in the bio-
genesis of the outer membrane have been identified and their
characterization has been initiated. Further, elegant mechanisms*For correspondence: Jean-François Collet, jfcollet@uclouvain.be.

11984 J. Biol. Chem. (2020) 295(34) 11984–11994

© 2020 Collet et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

REVIEWS

https://orcid.org/0000-0001-8069-7036
https://orcid.org/0000-0001-8069-7036
https://orcid.org/0000-0002-5548-4239
https://orcid.org/0000-0002-5548-4239
https://orcid.org/0000-0003-0392-1350
https://orcid.org/0000-0003-0392-1350
https://orcid.org/0000-0002-5564-1644
https://orcid.org/0000-0002-5564-1644
mailto:jfcollet@uclouvain.be
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.REV120.011201&domain=pdf&date_stamp=2020-6-2


used by cells to monitor the integrity of their envelopes have
started to be elucidated. These major achievements are reviewed
here; however, they are discussed from an unusual perspective.
Indeed, we have chosen to give central stage to the amino acid
cysteine, one of the least abundant amino acid residues in pro-
teins, whose unique chemical and physical properties make it of-
ten critical in biological processes. Putting cysteine residues
under the spotlight brings to the surface often overlooked con-
nections between essential cellular processes; it also highlights
the important role played by redox-dependent mechanisms in
cell envelope homeostasis. In the envelope, cysteine residues have
two major functions that are reviewed here. First, they are
involved in the formation of disulfide bonds that give envelope
proteins further stability. Second, through their ability to function
as nucleophiles in enzymatic reactions, cysteine residues are cen-
tral to the activity of enzymes that are required for proper enve-
lope assembly. Using nucleophilic cysteines comes with a price,
however; because cysteines are highly vulnerable to oxidizing
molecules that target bacteria during infection, cysteine-based
enzymes are susceptible to irreversible inactivation and therefore
need specific protection mechanisms. This is true both in the
cytoplasm and in the periplasm. However, the reducing equiva-
lents used by rescuing systems often originate from the cytoplas-
mic pool of NADPH (15). As a result, the protection of cysteine-
based enzymes functioning in the envelope offers an additional
challenge, as it involves transporting electrons across the inner
membrane. Here, after briefly introducing the pathways of disul-
fide formation, we discuss the importance of cysteine residues in
the folding of three essential assembly factors (FtsN, LptD, and
BamA) and two proteins that cells use tomonitor envelope integ-
rity (RcsF and NlpE). Next, we focus on enzymes that utilize cys-
teine side chains as part of their catalytic machinery, and we
address how these proteins aremaintained as active in the oxidiz-
ing environment of the periplasm.

How disulfides are formed in the periplasm: a brief
overview

The formation of a disulfide bond between two cysteine resi-
dues stabilizes a protein structure, mainly by decreasing the
conformational entropy of the denatured state. This stabilizing
effect can be up to ;4 kcal/mol per disulfide formed (16, 17).
Disulfide bond formation is vital for the stability of many
secreted proteins, both in bacteria and in eukaryotes. Proteins
that are secreted to extracytoplasmic compartments such as
the cell envelope or to the extracellular milieu benefit from sta-
bilizing disulfides to remain folded in environments that lack
ATP-dependent chaperones and often are rich in proteases and
destabilizing compounds. Although disulfide bonds can form
spontaneously in the presence of molecular oxygen, the process
is rather slow and needs to be catalyzed in vivo. The first cata-
lyst of disulfide bond formation identified in bacteria was E. coli
DsbA (for Disulfide bond), a small (23-kDa) soluble periplasmic
protein with a thioredoxin (Trx) fold. The biochemical charac-
terization of DsbA established this protein as a highly oxidizing
oxidoreductase (redox potential of 2119 mV) (18) with a
CXXC catalytic motif, mostly found oxidized in vivo. The oxi-
dizing power of DsbA comes from the fact that reduction of the

CXXC motif increases the stability of DsbA, thereby favoring
the transfer of its catalytic disulfide to newly synthesized pro-
teins entering the periplasm (19). The search for a protein capa-
ble of reoxidizing inactive DsbA led to the discovery of a small
(20-kDa) inner membrane protein, DsbB (20) (Fig. 1 and Table
1). DsbB has two pairs of essential cysteine residues that medi-
ate the transfer of electrons from DsbA to the electron trans-
port chain and ultimately to molecular oxygen (21). Under an-
aerobic conditions, electrons flow from DsbB to anaerobic
electron acceptors, such as nitrate and fumarate (21).
DsbA catalyzes disulfide bond formation as cysteines in its

substrates enter the periplasm. Therefore, when disulfides need
to be formed between cysteine residues that are nonconsecutive
in the substrate sequence, DsbA often catalyzes the formation
of nonnative disulfides, causing protein misfolding, aggregation,
and/or degradation. DsbC, a V-shaped dimeric (47-kDa) oxi-
doreductase of the Trx family, was identified as a disulfide isom-
erase that corrects the errors of DsbA (22) (Fig. 1). DsbC harbors
a CXXC catalytic motif, which, in contrast to DsbA, is found
reduced in the periplasm (23), and displays an extended cleft
whose inner surface is patched with uncharged and hydropho-
bic residues (24). These two features allow DsbC to recognize
misfolded substrates; first, the N-terminal cysteine of the DsbC
active site attacks a nonnative disulfide in the substrate, which
results in the formation of an unstable mixed-disulfide complex.
Next, the mixed disulfide is resolved either by the attack of
another cysteine from the misfolded protein or by the C-termi-
nal cysteine of DsbC itself. In the first case, DsbC acts as an
isomerase that catalyzes the reshuffling of the disulfide in the
substrate. In the second case, DsbC functions as a reductase,
giving DsbA another chance to oxidize the substrate protein. Ei-
ther way, the active site of DsbC needs to be kept reduced and
active, which is the function of DsbD (Fig. 1 and Table 1) (23,
25), a 59-kDa protein with three domains; two domains, DsbDa
and DsbDg, are located in the periplasm, and the third domain,
DsbDb, is embedded in the inner membrane. DsbD uniquely
transfers electrons across the membrane, from the cytoplasmic
Trx system and NADPH (26) to DsbC (23, 25), via a cascade of
thiol-disulfide exchange reactions (27, 28). The actual mecha-
nism by which DsbD transfers electrons between cytoplasmic
and periplasmic oxidoreductases is not fully understood but
likely involves major conformational changes within DsbDb, as
suggested by structural studies with CcdA, a DsbDb homolog
(29, 30).

Three essential assembly factors have disulfide-bonded
cysteines in their native conformations

There is strong bias against cysteine residues in envelope
proteins; in a bacterium like E. coli, only;40% of envelope pro-
teins have cysteines, compared with;85% of cytoplasmic pro-
teins (31). Remarkably, about 70% of cysteine-containing enve-
lope proteins have even numbers of cysteines, which has been
shown to be a marker of disulfide bond formation (31). In cells
lacking DsbA, these proteins do not fold properly and are
subjected to proteolysis (32), which impairs cellular processes.
For instance, cells lacking DsbA are nonmotile because FlgI, a
flagellum component and a DsbA substrate, is not properly
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oxidized (33). In the same line, deleting dsbA decreases viru-
lence in pathogenic strains of E. coli and other Gram-negative
bacteria due to the misfolding of virulence factors involved in
adhesion, secretion, and toxicity (34). For instance, in Pseudo-
monas aeruginosa, cells lacking DsbA fail to fold the protease
LasB (35), the pilus component PilA (36), and other proteins
important for pathogenicity (37). Thus, the proteins involved in
disulfide formation are attractive targets for the design of
innovative antivirulence strategies (38). Note, however, that
the degree of protein misfolding observed in the absence of
DsbA varies from protein to protein; while some can barely
be detected in cells lacking dsbA (39), others, like the b-barrel
OmpA, appear to be stable (40).
Strikingly, of the ;40 essential proteins belonging to the

machineries that assemble the peptidoglycan and the outer
membrane, only 3 contain cysteine residues in their sequences
(or in their periplasmic segments, in the case of inner mem-
brane proteins). In all 3 cases, these cysteines are involved in di-
sulfide formation. This remarkably small number of cysteine
groups in the components of the assembly complexes suggests
a negative selection for cysteine residues (31), potentially to
protect thesemachineries from oxidative inactivation.

One of the assembly proteins with two cysteines is the inner
membrane protein FtsN (Fig. 1 and Table 1), an essential con-
stituent of the large protein complex that mediates cell division
(41). Although the exact function of FtsN remains elusive, this
protein likely regulates peptidoglycan synthesis during cytoki-
nesis (septation) (42). The two cysteines of FtsN have been
shown to form a disulfide in the large (;30-kDa) periplasmic
SPOR (sporulation-related repeat) domain of the protein (41), a
region that is important for binding to denuded peptidoglycan
(glycan strands lacking the stem peptides that normally cross-
link the glycan polymers) (43). Mutation of the two cysteines of
the SPOR domain decreases intracellular FtsN levels and causes
cells to grow as filaments, a phenotype indicative of an impaired
cell division process. Thus, the disulfide bond of the SPOR do-
main of FtsN stabilizes the structure of this protein and is im-
portant for function (41).
A second essential assembly protein with cysteine residues is

LptD (Fig. 1 and Table 1), one of the components of the Lpt
(Lipopolysaccharide transport) system that transports lipopoly-
saccharide molecules across the cell envelope (44). The biosyn-
thesis of lipopolysaccharide, a glycolipid made of three distinct
moieties (the lipid A anchor, the core oligosaccharides, and the

Figure 1. Proteins that are essential for envelope assembly contain disulfide bonds in their native conformation. Formation of these disulfides is
required for two of them, FtsN, an inner membrane protein involved in peptidoglycan synthesis during cell division, and LptD, an outer membrane b-barrel
that inserts lipopolysaccharide molecules in the outer leaflet of the outer membrane. Essential disulfides are in red. In contrast, disulfide formation is not
required, at least under the tested conditions, for the folding of BamA, the core component of the machinery that introduces b-barrel proteins into the outer
membrane. Disulfide bond formation in envelope proteins is catalyzed by DsbA, which is recycled by transferring the electrons received from the substrate to
the inner membrane protein DsbB. DsbB then shuttles electrons to the electron transport chain and ultimately to molecular oxygen or anaerobic acceptors.
Several envelope proteins, like LptD, contain disulfides between cysteines that are not consecutive in the sequence. In this case, their folding also involves
DsbC, a protein disulfide isomerase that corrects the errors of DsbA. DsbC is kept reduced by the inner membrane protein DsbD, which receives reducing
equivalents from the cytoplasmic Trx system at the expense of NADPH. The Trx system consists of Trx and Trx reductase (Trx Red). The black arrows show the
electron flow.
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O-antigen, a sugar polymer of variable composition (45)), takes
place in the cytoplasm and in the inner membrane; lipopolysac-
charidemolecules are then extracted from the inner membrane
by the LptB2FGC ABC transporter, transferred to the periplas-
mic protein LptA, and finally delivered to the outer membrane
translocon, made of the large b-barrel LptD and the lipoprotein
LptE. Together, the Lpt proteins form a membrane-to-mem-
brane bridge for the unidirectional transport of lipopolysaccha-
rides (46); ATP hydrolysis by LptB2FGC powers the entire pro-
cess (47).
LptD contains four cysteine residues that form two noncon-

secutive disulfides (Cys1-Cys3 and Cys2-Cys4) connecting the
C-terminal b-barrel, in which LptE forms a plug (48, 49), to an
N-terminal domain present in the periplasm (50, 51) (Fig. 2).
Formation of at least one of these disulfides is required for
function (50). The folding pathway of LptD is particularly com-
plex; following translocation of the nascent protein into the

periplasm, a first disulfide is introduced by DsbA between the
first and second cysteines. Subsequent rearrangement of this
disulfide into a Cys2-Cys4 bridge involves LptE (50, 51) and the
protein disulfide isomerase DsbC (52). Formation of the second
disulfide by DsbA can then occur. Given the essential function
of LptD, one would expect DdsbA cells not to be viable. It is
indeed the case, but only under anaerobic conditions in which
LptD accumulates in a reduced, inactive form (53). In the pres-
ence of oxygen, however, DdsbA cells grow like WT cells, pre-
sumably because oxygen-dependent background oxidation,
catalyzed by low-molecular-weight thiol-oxidizing compounds
present in the periplasm, is sufficient for survival.
The third assembly protein with two cysteines forming a di-

sulfide is the outer membrane protein BamA, the core compo-
nent of the b-barrel assembly machinery (BAM) that assembles
b-barrel proteins in the outer membrane (Fig. 1 and Table 1).
b-Barrel precursors are synthesized in the cytoplasm with an
N-terminal signal peptide that targets them to the Sec translo-
con for transport across the inner membrane. Note that it was
recently shown that the mature domains of the proteins des-
tined for secretion contain multiple, degenerate, interchange-
able hydrophobic stretches that also play a role in targeting to
the translocase machinery (54). Upon emerging from the trans-
locon on the periplasmic side of the inner membrane, the signal
peptide is cleaved off and unfolded b-barrels interact with peri-
plasmic chaperones for transport across the periplasm and
delivery to BAM (14, 55).
BamA is made of a 16-stranded C-terminal b-barrel embed-

ded in the membrane and a large N-terminal periplasmic
extension consisting of five POTRA (polypeptide transport-
associated) domains (56) (Fig. 3). Structures of BAM have
shown that BamA can adopt two conformations, namely, an
outward-open conformation (57–59) in which the b-barrel do-
main opens between the first and last b-strands, opening a lat-
eral gate to the membrane, and an inward-open conformation
(59, 60) in which the lateral gate is closed while a periplasmic
entry pore to the barrel lumen is open. In addition to BamA,
BAM includes four accessory lipoproteins (BamB, BamC,
BamD, and BamE) (61). All components are required for effi-
cient b-barrel assembly, but only BamA and BamD are essential
(56, 62). The disulfide bond of BamA is present in an extracellu-
lar loop (loop 6 in Fig. 3) of the b-barrel domain (63). Although
this loop contains the most highly conserved segment of BamA
and has been shown to be important for b-barrel assembly (64,
65), the two cysteine residues are not well conserved among
BamA homologs (Iorga B. I., unpublished results), calling into
question their functional importance. Accordingly, their muta-
tion has no impact on BAM function (66). Despite important
structural and functional insights, crucial questions remain
unresolved regarding themechanism of BAM (56, 67–69).
Finally, DsbA was shown to catalyze the formation of disul-

fides in several BAM substrates (39). For instance, CirA, the
outer membrane colicin 1 receptor protein, and FhuA, a b-bar-
rel that functions as a ferrichrome iron receptor, contain one
and two disulfide bonds, respectively. When and where these
disulfides are formed (before or after BAM folding) remain to
be established.

Table 1
Key actors in cysteine-mediated envelope homeostasis in E. coli

Enzyme Function

Envelope oxidoreductases
Disulfide bond formation
DsbA Catalyzes disulfide bond formation in the

periplasm
DsbB Inner membrane protein that recycles DsbA

Disulfide bond isomerization
DsbC Catalyzes disulfide bond isomerization in the

periplasm
DsbD Inner membrane protein that recycles DsbC

Cysteine protection
DsbG Rescues periplasmic single cysteine residues

from oxidative damage
DsbD Inner membrane protein that recycles DsbG

Essential envelope assembly
factors with structural
disulfide bonds

LptD Outer membrane protein that inserts lipo-
polysaccharide molecules into the mem-
brane; two nonconsecutive disulfides;
formation of at least one disulfide is
essential

BamA Outer membrane protein that inserts b-bar-
rel proteins into the outer membrane; one
nonessential disulfide bond

FtsN Inner membrane protein with a large peri-
plasmic domain regulating peptidoglycan
synthesis; one essential disulfide bond in
the periplasmic domain.

Disulfide-containing stress
sensors monitoring
envelope integrity

RcsF Outer membrane lipoprotein monitoring the
integrity of the peptidoglycan and of the
outer membrane; two nonconsecutive
disulfides required for folding; induces the
Rcs phosphorelay pathway under stress

NlpE Outer membrane lipoprotein monitoring lip-
oprotein trafficking to the outer mem-
brane; two consecutive disulfides required
for folding; induces the Cpx system when
lipoprotein transport is perturbed

Envelope assembly enzymes
with a catalytic cysteine
residue

LdtA, LdtB, and LdtC L,D-Transpeptidases catalyzing the attach-
ment of the Braun lipoprotein Lpp to the
peptidoglycan

LdtD and LdtE L,D-Transpeptidases catalyzing the formation
of 3-3 cross-links between twomeso-dia-
minopimelic acid residues of adjacent
stem peptides
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Disulfide bond formation is required for the folding of
two important envelope stress sensors

Bacteria evolve in always-changing environments in which
they can be exposed to molecules or conditions that alter enve-
lope integrity. Given the vital importance of this compartment,
bacteria rely on stress sensor proteins to detect perturbations
in their envelope and to respond in a fast and adequate manner
to inflicted damage. In E. coli, two major envelope stress sen-
sors, the outer membrane lipoproteins RcsF and NlpE (Fig. 4
and Table 1), both contain disulfide-linked cysteine residues in
their native conformations.
RcsF is a small (11-kDa) surface-exposed lipoprotein that

monitors the integrity of the outer part of the envelope, i.e. the
outer membrane and the peptidoglycan, in enterobacteria (70).
In particular, RcsF detects alterations caused by exposure to
polymyxin B (71), a cationic antimicrobial peptide that disrupts
the lipopolysaccharide leaflet, or to mecillinam (72), a b-lactam
that interferes with peptidoglycan synthesis by inhibiting the
essential transpeptidase penicillin-binding protein 2 (PBP2). As
a result, RcsF triggers a complex signaling cascade known as
the Rcs phosphorelay pathway, which tries to contain the
inflicted damage by modulating the expression of dozens of
genes, including those producing capsular oligosaccharides
(70). It is remarkable that the folding of RcsF, a protein
required to sense most Rcs-inducing cues, critically depends
on two nonconsecutive disulfide bonds (Fig. 4); in cells

impaired in disulfide formation (DdsbA or DdsbB) or disulfide
isomerization (DdsbC or DdsbD), RcsF does not fold (40, 73)
and is degraded by periplasmic proteases. Interestingly, one
of the two RcsF disulfides connects two adjacent antiparallel
b-strands (73), which is rarely seen in proteins (74). This un-
usual feature led to the proposal that this disulfide might
function as a redox switch controlling the ability of the pro-
tein to detect stress (73). However, no evidence supporting
this hypothesis has been reported so far. Instead, although
the exact mechanism by which RcsF monitors envelope integ-
rity is still a matter of debate (75–77), it is clear that the ability
of RcsF to sense stress is linked to the unusual presence of
this protein on the cell surface (the general view is that E. coli
outer membrane lipoproteins face the periplasm). Interest-
ingly, the export of RcsF to the surface is mediated by BAM
via the assembly of complexes between RcsF and abundant
b-barrel proteins, such as OmpC and OmpF (Fig. 4). The
structure of a BamA-RcsF complex, which forms as an inter-
mediate in the assembly of the complexes between RcsF and
its b-barrel partners, was solved recently. In this complex,
RcsF is lodged deep inside the lumen of the BamA barrel,

Figure 2. Structure of E. coli LptD. A, cartoon representation of E. coli LptD
(the N-terminal periplasmic domain is in cyan and the C-terminal b-barrel is
in green) in complex with the lipoprotein LptE (dark blue). B, the two noncon-
secutive disulfide bonds (represented as sticks) of LptD link the N-terminal
domain to the C-terminal domain. Formation of at least one of them is
required for folding and activity. This is a homology model generated using
MODELLER v9.22 (108) and the PDB structures 4RHB (partial E. coli LptD (resi-
dues 230–784) in complex with LptE) and 4Q35 (full-length Shigella flexneri
LptD in complex with LptE) (49) as templates.

Figure 3. Structure of E. coli BamA. A, cartoon representation of E. coli
BamA from PDB structure 5D0O (59). The transmembrane b-barrel domain of
BamA is colored green and the five periplasmic domains POTRA1, POTRA2,
POTRA3, POTRA4, and POTRA5 in blue, cyan, red, yellow, and magenta,
respectively. B, the disulfide bond present in extracellular loop 6 of BamA
(represented as sticks) is dispensable for folding and activity.
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which is observed in the inward-open conformation (78).
Introduction of artificial disulfides again proved useful in
revealing that RcsF does not bind to BamA when it is locked
in the outward-open conformation (78).
A second envelope stress sensor with disulfide-bonded cys-

teines in its native conformation is the outermembrane lipopro-
tein NlpE (Fig. 4), which activates the Cpx stress response when
lipoprotein trafficking to the outer membrane is perturbed (79,
80). In this case, NlpE accumulates in the inner membrane,
where it can physically interact with the inner membrane sensor
histidine kinase CpxA, triggering Cpx (79, 80). As a result, CpxA
autophosphorylates and transfers its phosphoryl group to the
cytoplasmic response regulator CpxR, which then binds DNA
to regulate the expression of a large set of genes (81, 82).
NlpE consists of two distinct structural domains, namely, an

N-terminal domain, which interacts with CpxA (80) and is ho-
mologous to the lipocalin Blc, a bacterial lipoprotein that binds
hydrophobic ligands, and a C-terminal domain, which adopts
an oligonucleotide/oligosaccharide-binding fold (83). Each do-
main of NlpE contains a disulfide bond that is introduced by
DsbA (80) (Fig. 4). Interestingly, failure to form the C-terminal
disulfide causes NlpE to induce Cpx (80), thus suggesting that
the C-terminal disulfide functions as amolecular sensor for redox
perturbations. Because dsbA is a Cpx regulon member, this sens-
ing would establish a neat feedback loop. The molecular mecha-
nism of this redox-regulated Cpx induction remains to be deter-

mined, however. It is noteworthy that, whereas RcsF occupies a
critical position in Rcs, NlpE is not central for Cpx function.
Indeed, most Cpx-inducing cues, such as accumulation of mis-
folded proteins in the periplasm, inner membrane stress, and cell
wall perturbations (81, 82), are NlpE independent.

The activity of a family of enzymes important for
envelope integrity depends on a single reduced cysteine
residue

In E. coli, most envelope proteins either do not have any cyste-
ine residues or have cysteine residues that are involved in disul-
fides. In the previous paragraphs, we discussed the importance
of forming correct disulfide bonds in proteins that are required
for envelope biogenesis and protection. In the following, we
focus instead on the important role played by cysteine residues
that are part of catalytic machineries and therefore need to
remain reduced in the envelope. In fact, only a small group of
enzymes use cysteine-based chemistry in the E. coli envelope,
and these enzymes all belong to the L,D-transpeptidase family.
E. coli expresses six L,D-transpeptidases, but other bacteria,

such as Bdellovibrio bacteriovorus, express more than 20 (84).
Three of the E. coli L,D-transpeptidases, i.e. LdtA, LdtB, and LdtC,
attach the C-terminal lysine residue of the outer membrane lipo-
protein Lpp, the numerically most abundant protein in E. coli
(also known as the Braun lipoprotein), to a diaminopimelic acid

Figure 4. RcsF and NlpE, two outer membrane lipoproteins that monitor the integrity of the E. coli cell envelope, contain disulfide bonds in their
native conformations. RcsF detects damage in the peptidoglycan and in the outer membrane. Upon stress, it activates the Rcs system by interacting with
the inner membrane protein IgaA (109). NlpE detects perturbations in the transport of lipoproteins to the outer membrane; it accumulates in the inner mem-
brane where it interacts with CpxA, activating the Cpx system. Disulfide bond formation in NlpE and RcsF is catalyzed by the DsbA-DsbB system (see the
legend to Fig. 1). RcsF contains disulfides between cysteines that are not consecutive in the sequence; its folding involves the DsbC-DsbD isomerization sys-
tem (see the legend to Fig. 1). The black arrows show the electron flow. The plain red arrows indicate proteins that directly interact under stress. The dotted
arrows indicate processes that occur under stress.
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residue in the peptide stems of the peptidoglycan (6, 85) (Fig. 5
and Table 1). This reaction, which provides the only covalent
connection between the outer membrane and the peptidoglycan,
is required for envelope stiffness (86) and stress sensing (87). Fur-
thermore, in cells lacking LdtA, LdtB, and LdtC, the architecture
of the envelope is compromised; the intermembrane distance is
modified (88), which impairs Rcs functioning and the ability to
detect and to respond to envelope defects (87). The other L,D-
transpeptidases expressed by E. coli have a different function.
LdtD and LdtE catalyze the formation of 3-3 cross-links between
twomeso-diaminopimelic acid residues of adjacent stem peptides
during peptidoglycan synthesis (89, 90) (Fig. 5 and Table 1), while
the enzymatic activity of LdtF (YafK) remains unknown. In E.
coli, there are only 2–10% 3-3 cross-links, with the majority of
cross-links being between D-Ala and meso-diaminopimelic acid
residues (4-3 cross-links) (91). Formation of 3-3 cross-links
increases, however, when cells enter stationary phase and when
the transport of lipopolysaccharides to the outer membrane is
impaired (90, 91).
The functional importance of L,D-transpeptidases in the as-

sembly of the envelope is beginning to be fully appreciated, not
only in E. coli but also in a large number of bacteria, including
mycobacteria, where they play a major role in peptidoglycan as-
sembly by catalyzing abundant 3-3 cross-links (92). These
enzymes have an Achilles’ heel, however; their activity involves
a catalytic cysteine residue that needs to be kept reduced (93)

(Fig. 5), which is challenging, given that cysteine residues are
particularly sensitive to oxidation because of the electron-rich
sulfur atom in their side chain (15). When exposed to oxidants
produced by phagocytic cells (94), the thiol side chains of cyste-
ine residues are indeed oxidized to sulfenic acids (-SOH), which
are highly reactive and can be irreversibly oxidized to sulfinic
acids (-SO2H) and sulfonic acids (-SO3H) (15). These latter two
modifications are often detrimental for protein function and
inactivate L,D-transpeptidases. Accordingly, it was recently
shown that exposure of E. coli to copper, a redox-active metal
that is able to catalyze cysteine oxidation in the presence of oxy-
gen (95), inhibits L,D-transpeptidases, compromising Lpp attach-
ment and 3-3 cross-link formation (96). Protecting the thiol func-
tional group of L,D-transpeptidases from oxidation is the function
of DsbG (93) (Fig. 5 and Table 1), a periplasmic dimeric oxidore-
ductase with a Trx-like domain and a CXXC catalytic motif. As
in DsbC, this CXXC motif is maintained as reduced by electrons
provided by DsbD (97) (Fig. 5). Thus, intracellular metabolism
(DsbD is recycled at the expense of NADPH) provides the reduc-
ing equivalents to keep cysteine-based envelope enzymes func-
tional, thusmaintaining envelope integrity.

Conclusions and perspectives

Since the discovery of DsbA in 1991, an impressive body of
research has revealed the critical role played by cysteine

Figure 5. A family of L,D-transpeptidases catalyze reactions that are crucial for envelope assembly using a catalytic cysteine residue. Three L,D-trans-
peptidases (LdtA, LdtB, and LdtC) catalyze the covalent attachment of the Braun lipoprotein Lpp, the numerically most abundant protein in E. coli, to the pepti-
doglycan. Two other L,D-transpeptidases (LdtD and LdtE) catalyze the formation of 3-3 cross-links between twomeso-diaminopimelic acid residues of adjacent
stem peptides of the peptidoglycan. The catalytic cysteine residue of L,D-transpeptidases is prone to oxidation to a sulfenic acid (-SOH) when exposed to reac-
tive oxygen species (ROS). Sulfenic acids can be further oxidized to sulfinic and sulfonic acids (not shown), two irreversible modifications. L,D-Transpeptidases
are maintained as reduced and active in the periplasm by DsbG. Electrons are delivered to DsbG by the inner membrane protein DsbD. Electrons are delivered
to DsbD as explained in the legend to Fig. 1. The black arrows show the electron flow.
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residues in the biogenesis and maintenance of the bacterial cell
envelope. In the previous sections, we discussed the importance
of disulfide bond formation for the folding and stability of enve-
lope proteins, including crucial assembly factors and stress sen-
sors, and we highlighted the functional relevance of enzymes
that use cysteine-based chemistry to build the cell envelope
properly. It is likely that additional examples of envelope as-
sembly factors with cysteine residues important for folding
and/or activity will be identified in the future, in E. coli or in
other Gram-negative bacteria. In addition, future research will
probably identify novel antioxidant factors protecting envelope
proteins from oxidation, an area that has been less well ex-
plored than that of oxidative protein folding.
As we reach the end of this review, we would like to suggest

the hypothesis that cysteine residues may play an additional
role in the envelope by serving as regulatory switches control-
ling processes necessary for envelope homeostasis. Given their
ability to undergo reversible redox modifications, cysteine resi-
dues indeed often act as powerful molecular switches allowing
organisms to adapt to changes in the environment, as has been
extensively described for the bacterial cytoplasm and for higher
organisms (98, 99). To our knowledge, no such example has
been described so far for themechanisms that participate in en-
velope biogenesis. However, several envelope proteins display
features that hint at potential redox regulation. For instance, as
discussed above, the uncommon presence of a disulfide bond
between two adjacent b-strands in RcsF (73) is intriguing and
suggests that a layer of redox regulation remains to be discov-
ered for this protein. In addition, both the stress sensor NlpE
and PBP1a (an enzyme required for peptidoglycan synthesis)
have a disulfide bond between two cysteine residues that are
found in a CXXC motif. The fact that CXXC motifs can func-
tion as redox switches (74) suggests that these two proteins also
may undergo redox regulation. Note that, in the case of NlpE,
the redox state of the CXXC motif does not affect Cpx activa-
tion (79). Another intriguing case is the abundant outer mem-
brane protein OmpA, which is important for envelope integ-
rity. OmpA is composed of an N-terminal 8-stranded b-barrel
and a C-terminal periplasmic domain binding to the peptido-
glycan (100, 101). Although this two-domain conformation is
well established, some studies have proposed that OmpA can
also fold into a 16-stranded b-barrel with a large central pore
(102, 103). Interestingly, a disulfide bond present in the C-ter-
minal domain might function as a redox switch controlling the
OmpA conformation, as suggested by work in Salmonella
enterica serovar Typhymurium (104). Finally, a third envelope
protein that could potentially be redox regulated is PBP5, a D,D-
carboxypeptidase that cleaves the terminal D-alanine from the
pentapeptide side chains in peptidoglycan (3). This enzyme has
a single cysteine residing close to the active site but without
being involved in catalysis (105). In an old study, however, it
was shown that cysteine-modifying reagents inhibit PBP5
(106), strongly suggesting that PBP5 (as well as PBP6a and
PBP6b, two E. coli paralogs in which the cysteine residue is con-
served (3)) might be subject to redox regulation. The recent de-
velopment of specific probes designed to monitor the redox
state of cysteine residues (107) will facilitate further exploration
of the versatile function and crucial roles of the amino acid cys-

teine in the bacterial cell envelope. In the same line, the fact
that the cell envelope is an environment in which disulfides
can be formed will prove very useful in studying the mecha-
nism of crucial assembly and surveillance processes. Indeed,
in addition to their native roles, disulfides can be artificially
introduced into proteins to affect their structures, allowing in-
ference of their function. In the case of BamA, for instance,
using artificial disulfides has led to major mechanistic insights
by demonstrating the importance of BamA cycling between an
outward-open conformation and an inward-open conformation
(57–59).
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