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The autophagy protein Ambra1l regulates gene expression by
supporting novel transcriptional complexes
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Ambral is considered an autophagy and trafficking protein
with roles in neurogenesis and cancer cell invasion. Here, we
report that Ambral also localizes to the nucleus of cancer cells,
where it has a novel nuclear scaffolding function that controls
gene expression. Using biochemical fractionation and proteo-
mics, we found that Ambral binds to multiple classes of proteins
in the nucleus, including nuclear pore proteins, adaptor proteins
such as FAK and Akap8, chromatin-modifying proteins, and
transcriptional regulators like Brgl and Atf2. We identified
biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itgas8,
and Itgh7, whose transcription is regulated by Ambral-scaffolded
complexes, likely by altering histone modifications and Atf2
activity. Therefore, in addition to its recognized roles in
autophagy and trafficking, Ambral scaffolds protein complexes
at chromatin, regulating transcriptional signaling in the nucleus.
This novel function for Ambral, and the specific genes impacted,
may help to explain the wider role of Ambral in cancer cell
biology.

Ambral (activating molecule in Beclin1-regulated autophagy)
is already known to be an important protein in physiology, e.g. in
the development of the central nervous system, vertebrate
embryogenesis, adult neurogenesis, and cancer cell invasion (1—-
5). However, the full range of functions of this crucial cellular
regulator is not understood. As an important autophagy
regulator, Ambral binds Beclinl and is involved in the initiation
ofautophagy thatis needed for neurogenesis (2). In the absence of
autophagy, the Ambral—Beclin1-Vps34 complexisboundtothe
dynein motor complex; when autophagy is induced, the kinase
ULK1 phosphorylates Ambral, resulting in its release from the
dynein complex (6, 7). Additionally, the function of Ambral is
negatively regulated by mTOR, which suppresses its binding to
the E3-ligase TRAF1 and the ubiquitylation of ULKI, thereby
controlling the stability and function of ULK1 (8). During
apoptosis, caspases and calpains mediate cleavage as well as
degradation of Ambral (9). Furthermore, Ambral expression is
regulated by RNF2-dependent ubiquitylation, resulting in
degradation (10). Ambral is also involved in the regulation of
mitophagy (11).

Ambral has been both positively and negatively implicated in
cancer. Thus far, it has been proposed as a tumor suppressor,
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supporting the binding of c-Myc to the phosphatase PP2A,
resulting in c-Myc degradation as well as reduced proliferation
and tumorigenesis (12). Ambral hasbeen positivelyimplicated in
cholangiocarcinoma, where overexpression is correlated with
invasion and poor survival (5). In addition, through its ability to
bind PP2A, Ambral stabilizes the transcription factor FOXO3,
triggering FOXP3-mediated transcription, and T-cell differen-
tiation and homeostasis (13).

We reported previously that in squamous cell carcinoma
(SCC) cells derived from the mutated oncogenic H-Ras-
driven DMBA/TPA model of carcinogenesis, Ambral is a
focal adhesion kinase (FAK)- and Src-binding partner,
regulating cancer cell polarization and chemotactic invasion
(4, 14). In FAK-depleted SCC cells, Ambral is involved in the
targeting of active Src to intracellular autophagic puncta,
whereas an Ambral-binding-impaired FAK mutant retains
more active FAK and Src at focal adhesions, resulting in
increased cell adhesion and invasion. We concluded that
Ambralliesattheheartofanintracellular trafficking network
in SCC cells, regulating the localization of active FAK and Src
required for cancer processes (4).

Here, weinvestigateanuclear function of Ambral and show
that it binds to FAK in the nucleus, as well as to other nuclear
adaptor proteins, nuclear pore components, histone-modify-
ing enzymes, and regulators of transcription, in some cases
regulating their recruitment to chromatin. Specifically,
Ambral forms complexes with Akap8, Brgl, and Atf2 and is
responsible for the recruitment of Akap8, Bgrl, the Mediator
complex component Cdk9, and p-Atf2 T71 to chromatin.
Both Ambral and its binding protein Akap8 regulate the
bindingoftranscriptional proteinsto chromatin, especially p-
Atf2 T71, and proteins that modulate histone modifications.
The binding of Atf2/p-Atf2 T71 to chromatin is most likely
regulated by the Ambral-interacting protein Cdk9. There-
fore, Ambral acts as a scaffold protein in the nucleus,
recruiting transcriptional regulators to chromatin. This
creates an Ambral-dependent nuclear microdomain that
regulates gene expression.

Results
Ambral localizes to the nucleus

Here, we show that Ambral locates not only at focal
adhesions and in intracellular autophagic puncta in SCC cells
but also in the nucleus (Fig. 1A4). Staining with only secondary
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Figure 1. Nuclear Ambra1 binds chromatin modifiers and transcriptional regulators. A, representativeimmunofluorescenceimages of SCCFAK-WTand —/—
cells,which were grown on glass coverslips for 24 h, fixed, and stained with anti-Ambra1, anti-Paxillin,and DAPI. Scale bars, 20 um. B, whole-celland nuclear lysates
of SCCFAK-WT and —/— cells were subjected to Western blot analysis with anti-Ambra1 and anti-FAK. Anti-GAPDH, anti-Lamin A/C, and anti-H4 served as controls
forthe purity of the nuclear extracts as well as loading controls. Cand D, interaction network analysis of nuclear Ambra1-binding proteinsin SCCFAK-WTand —/—
cells associated with the nuclear pore complex (C) and being involved in transcription (D), as determined by gene ontology enrichment analysis of biological
processes. Hits were filtered for statistically significant (p < 0.05) 2-fold enrichment over the IgG control and used to build a protein interaction network based on
direct physical interactions (gray lines). Components of various complexes involved in transcription are highlighted: SWI/SNF complex (blue nodes), cAMP-
regulated transcription factor (green nodes),and Mediator complex (light red nodes). Ambra1-interacting proteins selected for furtherinvestigation are highlighted

with a red border.
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antibodies (anti-rabbit 488 and anti-mouse 594) ruled out
unspecific false-positive nuclear staining (Fig. S1A). To
confirm Ambral was nuclear biochemically and to investigate
whether this localization depended on FAK, fractions of SCC
FAK-deficient (—/—) cells and the same cells reexpressing WT
FAK to levels similar to those of parental SCC cells (FAK-WT)
were isolated and subjected to Western blotting (Fig. 1B) (15,
16). Biochemical nuclear isolations were checked by blotting
with anti-GAPDH, anti-Lamin A/C, and anti-H4. In the
nuclear fractions of these SCC cells, we could detect Ambral
as well as FAK, with the latter being in line with our previous
reports (17, 18). The nuclear localization of Ambral was not
dependent on FAK, as nuclear Ambral was present at
indistinguishable levels in nuclear fractions from both FAK
—/— and FAK-WT SCC cells and the same cells reexpressing
WT FAK to levels similar to those of parental SCC cells (FAK-
WT) (15, 16). In more highly purified cellular fractions of SCC
FAK-WT and —/— cell lysates, extracting cytosolic (C),
perinuclear (PN), and nuclear (N) fractions (see the supporting
textand Fig. S1B), Ambral was present at comparable levels in
the cytosolic and nuclear fractions and at even higher levels in
the perinuclear fraction. Fraction purities were confirmed by
blotting respective fractions with anti-GM130, anti-PD], anti-
Lamin A/C, and anti-GAPDH (Fig. S1B). Ambral could also be
detected in the nucleus of a human SCC cell line (Fig. S1C).
Furthermore, in contrast to FAK, Ambral was also detected in
nuclear extracts from primary mouse keratinocytes (Fig. S1D)
(18).

Nuclear Ambra1 binds proteins involved in transcription

Next, we investigated the nature of protein binding partners of
Ambral in the nucleus. Highly purified nuclear extracts of SCC
FAK-WT and —/— cells were obtained by sucrose gradient
centrifugation and used for Ambral immunoprecipitations
(anti-rabbit IgG served as a negative control), and specific
nuclear binding proteins were determined by quantitative label-
free MS (see Materials and methods) (Table S1). In total, 456
Ambral-interacting proteins were identified, among which were
several proteins that form part of the nuclear pore complex
(interaction network shown in Fig. 1C; Table S2). Indeed, we had
previously observed that the nuclear pore protein Tpr was an
Ambral-interacting protein usingwhole-celllysates (4), together
implying that Ambral was associated with nuclear pore proteins
either during entry into the nucleus or as part of its nuclear
functions. Gene ontology enrichment analysis of biological
processes attributed to proteins that bind Ambral in nuclear
fractions revealed transcription, mRNA processing, histone
modification, as well as chromatin modification and remodeling
as the most highly overrepresented categories (Fig. S2A). As a
result of these analyses, we filtered all identified Ambral-binding
proteins for Ambral interactors likely to be involved in the
regulation of transcription and used these hits to build a protein
interaction network based on known direct physical interactions
(Fig. 1Dand Table S2). Amongthese were several components of
the Mediator complex, a multiprotein complex that functions
as a transcriptional coactivator for RNA polymerase II (high-
lighted in light red in Fig. 1D) (19, 20). Also present were several
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components of the SWI/SNF (SWItch/sucrose nonfermentable)
nucleosome remodeling complex that allows transcription factor
binding by opening up the chromatin structure, e.g the catalytic
subunit SMARCA4: (Brgl), which allows ATP-dependent chro-
matin remodeling (represented in blue in Fig. 1D) (21-23). Nuclear
Ambral was also found to interact with several members of the
cAMP-dependent AP-1 complex, including c-Jun, Fosl2, Atf2 (a
member of the CREB [cAMP response element binding] family of
leucine zipper proteins), and Atf7, which also binds to nuclear FAK
(represented in green in Fig. 1D) (18, 24). As cAMP-regulated
transcription factors were among nuclear Ambral-binding
proteins, we also noted that nuclear Ambral binds to Akap8 (A
kinase anchor protein 8, also known as Akap95), a scaffold that
targets PKA to cAMP-responsive elements in gene promoters that
islinked to chromatin status and retention of p90 S6K in the nucleus
(25-28). Interestingly, both Atf2 and Akap8 were also identified by
proteomics as Ambral-binding proteins using whole-cell lysates in
our previous experiments (4).

We next selected a number of proteins identified by mass
spectrometric analyses, i.e. Nup153, Akap8, Brgl, Atf2, and the
RNA polymerase II Rpb1 (all highlighted with red borders in Fig.
1, Cand D) and confirmed their binding to Ambral in the nucleus
by coimmunoprecipitation in nuclear fractions (Fig. 2, A—E; in
contrast, we show an example of a nuclear protein, PARP, that
doesnotbind Ambral in coimmunoprecipitation experimentsin
Fig. S2B). One question we had, given our previously reported
cofunctioningof Ambral and FAKin the cytoplasm, was whether
or not FAK regulates the nuclear translocation of its binding
partners, such as Ambral, which also locates to the nucleus. We
did not find any significant difference in the nuclear levels of
Ambral or its interaction with the nuclear binding partners
examined between SCC cells expressing FAK-WT compared
with FAK-deficient (—/—) cells; therefore, we conclude that FAK
does not regulate the trafficking of Ambral to the nucleus or
Ambral interactions there. Therefore, in future experiments, we
have generally only presented data from SCC cells expressing
FAK-WT.

Loss of Ambral causes reduced association of interacting
partners with chromatin

Because Ambral has predominantly been defined as a scaffold
protein involved in intracellular trafficking/autophagy thus far,
we hypothesized that Ambral also serves as a scaffold protein in
the nucleus. Using efficient siRNA pool-mediated depletion that
we have used previously (4), we found that reducing Ambral
levels only modestly altered levels of its binding proteins in the
nucleus (Brgl, Cdk9, and p-Atf2 T71) (Fig. 3, A and B). We next
isolated chromatin from SCC FAK-WT cells after Ambral
depletion and probed for FAK, Brgl, Akap8, Atf2, and its
phosphorylated (and activated) form, p-Atf2 T71 (Fig. 3, C and
D). Reduced expression of Ambral suppressed the binding of
FAK, Brgl, Akap8, and p-Atf2 (but not visibly total Atf2) to
chromatin to a greater or lesser extent. This suggests that, in
addition to Ambral-mediated chromatin recruitment, there are
likely other routes by which binding partners are recruited to
chromatin because their recruitment is reduced, but not ablated,
upon Ambral loss. In these analyses, we also included the Cdk8
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Figure 2. Nuclear Ambra1 binding to MS-identified interaction partners. Ambra1 wasimmunoprecipitated from whole-cell and nuclear lysates of SCC FAK-
WTand —/— cells usinganti-Ambra1, followed by Western blot analysis with anti-Ambra1 and anti-Nup 153 (A), anti-Akap8 (B), anti-Brg1 (C), anti-Atf2 (D), and anti-
Rpb1 (E). Anti-Lamin A/C and anti-GAPDH were used as a control for the purity of the nuclear lysates as well as a loading control.

and Cdk9 components of the Mediator complex that modulates
RNA polymerase II-mediated transcription (29-31). These were
included because they were 1) identified as binding to Ambral in
MS experiments (highlighted with a red border [for Cdk8] in Fig.
1D; Cdk9 was inferred from a single peptide identification, Fig.
S2C and Table S2) and 2) predicted to be enzymes with the
potential to phosphorylate Atf2 at residue T71 on chromatin,
which we observed in the presence of Ambral (Fig. 3; predictions
via the Biocuckoo phosphorylation prediction site for Cdk8
[score, 40.329; cutoff, 29.727] and Cdk9 [score, 7.393; cutoff,
2.931]). In keeping with other Ambral-binding proteins studied
here, we found that Cdk9, but not Cdk8, binding to chromatin was
reduced upon depletion of Ambral (Fig. 3, Cand D). Inthisregard,
Cdk9 has been reported to bind another SWI/SNF complex
component, SMARCBI1, which has also been identified as a
nuclear Ambral binding protein (32), implying there are other
components of Ambral complexes that link to chromatin
remodeling. Taken together, our data imply that Ambral forms
complexes in the nucleus with other protein scaffolds, such as the
PKA scaffold Akap8, chromatin modifiers, and transcription
factors, including Atf2.

12048 J Biol. Chem. (2020) 295(34) 12045-12057

Akapa8 also regulates the level of p-Atf2 at chromatin

Ambral binds the PKA scaffold Akap8 and is required for its
optimal binding to chromatin. Upon depletion of Akap8 by
pooled siRNA, we found that while neither Ambral nor FAK
binding to chromatin wasaffected, showingit was downstream of
FAK/Ambral, the level of p-Atf2 T71 associated with chromatin
was reduced (Fig. 4, A and B). This implies a model (Fig. 4E)
whereby Ambral is upstream of recruitment of Akap8 to
chromatin,and Akap8, in turn, isrequired for optimal chromatin
association of active p-Atf2 thatis also Ambral dependent. Total
Atf2 recruitment was not reduced by depletion of Akaps,
suggesting that a specific function of Akap8 is to recruit the
enzyme that phosphorylates Atf2 at chromatin. We noted that
the activity of Atf2 is proposed to be regulated by phosphoryla-
tion at several residues, including T71, by kinases such as ERK,
JNK, p38, and PLK3, promoting Atf2 heterodimerization and
increased transcription and histone acetyl transferase activity
(24, 33-39). However, using inhibitors of the kinases proposed
above to phosphorylate Atf2 on T71, we did not find evidence for
an obvious key role for any of these in regulating Atf2
phosphorylation at chromatin in SCC cells used here (not
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Figure 3. Loss of Ambra1 leads to reduced association of interacting
proteins with chromatin. A, SCCFAK-WT cells were transfected with siControl
andsiAmbra1 (sIGENOME pool). After 48 h, whole-cell and nuclear lysates were
analyzed by Western blotting using anti-Ambra1, anti-FAK, anti-Brg1, anti-
Akap8, anti-Cdk8, anti-Cdk9, anti-p-Atf2 T71,and anti-Atf2. Anti-Lamin A/Cand
anti-GAPDH were used as controls for the purity of the nuclear lysates as well as
loading controls. B, the graph shows relative nuclear protein levels normalized
toLaminA/C.ErrorbarsrepresentS.D.*,p<0.01;#,p <0.05.C,SCCFAK-WT cells
weretransfected with siControland siAmbra1. After48 h, whole-cell lysatesand
chromatin extracts were analyzed by Western blotting using anti-Ambra1, anti-
FAK, anti-Brg1, anti-Akap8, anti-Cdk8, anti-Cdk9, anti-p-Atf2T71,and anti-Atf2.
Anti-histone H4 served as a marker for chromatin as well as aloading control. D,
the graph shows relative chromatin protein levels normalized to histone H4.
Error bars represent S.D.*, p < 0.01; #, p < 0.05.

shown). Therefore, we examined the Mediator complex kinases
Cdk8and Cdk9, which, as mentioned previously according to the
Biocuckoo phosphorylation prediction site, potentially phos-
phorylate Atf2 at T71. Therefore, we depleted Cdk8 and Cdk9 in
SCC FAK-WT cells and prepared nuclear and chromatin
fractions to probe for p-Atf2 T71. We found that depletion of
Cdk9resulted in reduced chromatin-associated p-Atf2 T71 (Fig.
4,Cand D) thatisalso Ambraland Akap8 dependent; however,in
this case, total Atf2 recruited to chromatin was also reduced.
These findings imply that the Mediator complex component
Cdk9, which binds to Ambral in the nucleus, controls
recruitment of Atf2 to chromatin downstream of Ambral and
also Atf2 phosphorylation/activation.

Thus, Ambral and Akap8, which form a complex in the
nucleus of SCCcells, both contribute to the recruitment of active
Atf2 (p-Atf2 T71) to chromatin, likely, at least in part, via the
Mediator complex component Cdk9 downstream (see the model
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inFig.4E). Therefore, an obvious question that follows is whether
Ambral, Akap8,and Atf2 coregulate the expression of a subset of
genes.

Ambra1, Akap8, CDK9, and Atf2 coregulate a subset of genes

The data presented to this point showed that Ambral localizes
to the nucleus, associates with chromatin, and interacts with
nuclear proteinsthatregulate transcription. Both Ambral and its
binding partner, Akap8, recruit transcription factors, such as the
active form of Atf2, p-Atf2 T71, which is proposed to result in
histone modifications and altered chromatin accessibility,
leading to transcriptional changes (40). To address whether
there were genes whose transcription was coregulated by
Ambral, Akap8, and Atf2, SCC FAK-WT cells were transfected
with siControl, siAmbral, siAkap8, or siAtf2 siRNA. A subset of
genes whose expression was changed by all three protein
depletions was identified using the nCounter PanCancer Path-
ways Panel. In total, we identified 94 genes that were significantly
(p < 0.05) at least 2-fold up- or downregulated compared with
control siRNA (Fig.5,A and B,and Fig. S3,A-F). Ambral, Atf2, or
Akap8 depletion significantly altered the expression of 18 genes
from this panel (Fig. 5, A and B). To validate the gene expression
changes, we performed qRT-PCR for the coregulated genes
Angptl, Tgfb2, Tgfb3, Itga8, and Itgh7 (Fig. 5, D and E). For
Angptl, Tgfb2, Tgfb3, and Itga8, we confirmed the down-
regulation upon siRNA transfection (Fig. 5E), whereas upregula-
tion of ltgh7 was also confirmed (Fig. 5E). In addition, pathway
analysis of Ambral-, Akap8-, and Atf2-regulated genes revealed
the top enriched signaling pathway gene sets, “PI3K-Akt
signaling pathway,” “pathways in cancer,” “focal adhesion,” and
“MAPK signaling pathway,” were in common (Fig. 5C; for a full
list, see Fig. S4), strongly suggesting an overlap in the functions of
the genes regulated by Ambral, Akap8, and Atf2 complexes.

Because we found the nuclear Ambral-binding Mediator
complex protein Cdk9 to be part of the regulation of p-Atf2 at
chromatin in SCC cells (Fig. 4, C and D), we next addressed
whether Cdk9 was also implicated in the transcriptional
regulation of the above coregulated genes. Depletion of Cdk9
by siRNA resulted in gene expression changes broadly similar to
that observed upon depletion of Ambral, Akap8, or Atf2, e.g.
expression of Angptl, Tgfb2, Tgfb3, and Itga8 was reduced (Fig.
5F), whereas Itgh7 expression was increased, in qualitative
agreement with the effects of depleting Ambral, Akap8, or Atf2
(Fig.5F), suggesting that Ambral, Akap8, Atf2, and Cdk9 bind to,
and regulate, these same gene promoters.

Taken together, these results imply that Ambral, Akap8, Atf2,
and, most likely, Cdk9 are in the same chromatin complexes,
likely at the promoters of coregulated genes described above, and
potentially many more are not represented in the mouse
nCounter PanCancer Pathways Panel used here. The presence
of chromatin modifiers in the nuclear Ambral interactome,
validated in the case of Brgl (Fig. 1 and 2C), suggested the
intriguing possibility that the novel transcriptional regulatory
pathway we describe is, at least in part, regulated by chromatin
accessibility. In keeping with this, the functioning of Atf2, which
is phosphorylated at T71 downstream of Ambral and Akaps, is
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might coregulate the expression of a subset of genes.

known to promote histone acetyl transferase activity and
transcription (35, 38).

Ambra1 and Akap8 regulate histone modifications

Functional interaction network analysis of nuclear Ambral
binding partners identified by MS revealed several components
ofhistone modification complexes, including histone acetylation
complexes NSL (nonspecific lethal complex), NuA4 (nucleo-
some acetyltransferase of H4), and PCAF (p300/CBP-associated
factor), as well as the histone methylation complex MLL1/MLL
(mixed-lineage leukemia 1) (Fig. 6A). Further, gene ontology
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enrichment analysis of biological processes attributed to nuclear
Ambral interactors identified covalent chromatin and histone
modifications as well as chromatin remodeling as overrepre-
sented categories (Fig. S2). In addition, Akap8 has been reported
to bind to Dpy30, a core subunit of H3K4 histone methyltrans-
ferases (41). Therefore, we next addressed whether Ambral and
Akap8 influence histone modifications by transfecting SCC
FAK-WT and —/— cells with siControl, siAmbral (Fig. 6, Band
C), or siAkap8 (Fig. 6, D and E) siRNA and examined the histone
modifications H3K4me2, H3K4me3, and H3K27Ac by Western
blotting. Trimethylation of lysine-4 and acetylation of lysine-27
on histone 3 are generally regarded as positive indicators of
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transcriptional activation, promoting gene expression (42—
45). Depletion of Ambral or Akap8 reduced both di- and
trimethylation of H3K4 as well as acetylation of H3K27
(irrespective of whether FAK was present or not). This
indicates that both Ambral and Akap8 can influence histone
modifications, likely as a result of interacting histone-
modifying enzymes, which could result in chromatin remo-
deling and altered accessibility of transcription factors.

Discussion

Here, we describe a completely novel transcriptional signaling
pathway controlled by the scaffold protein Ambral in the
nucleus. Like Ambral, other proteinsinvolved inautophagy have
been reported in the nucleus, e.g. LC3B binds to Lamin B1,
mediating the degradation of the nuclear lamina and Beclin 1,
promotingautophagy-independent DNA damage repair (46,47).
No typical nuclear localization sequence is evident for Ambral;
hence, the mechanism of nuclear translocation is unknown;
however, as nuclear Ambral interacts with components of
nuclear pore complexes and importins (Fig. 1C), it is likely that
nuclear import of Ambral occurs via binding to these in some
way. Nuclear Ambral interacts with chromatin modifiers and
transcriptional regulators in the nucleus, including those also
identified as proteins that bind to FAK and IL33, e.g. SMARCC]1,
Ruvbll, and Ruvbl2 (17), suggesting there is a link between
Ambral and FAK functions in the nucleus as well as in the
cytoplasm (4). In this regard, we did find that the proteins
associate in the nucleus and that depletion of Ambral leads to
reduced FAK recruitment to chromatin.

The PKA scaffold Akap8, which binds to Ambral in the nucleus,
has itself previously been strongly linked to histone modifications
and chromatin changes. Indeed, by interacting with the MLL1/
MLL complex via Dpy30, Akap8 regulates histone H3K4
methyltransferase complexes and binds to the nuclear matrix,
nucleoporin component Tpr, as well as chromatin; in turn, this
contributes to chromosome condensation and transcription,
effects that are important for the mitotic checkpoint (41, 48-51).
Akap8 also binds the histone deacetylase HDAC3 and influences
mitosis (52). Therefore, existing studies had already suggested a
scaffolding function for Akap8 in assembly of chromatin
modification complexes. Akap8 dissociates from chromatin and
the nuclear matrix as a result of nuclear tyrosine phosphorylation,
and it may have arole in regulation of chromatin structural changes
(53). Finally, a recent study confirmed the scaffold function of
Akap8 in organizing nuclear microdomains, thereby controlling
local cAMP for nuclear PKA regulation (54), although it is not clear
whether this is a chromatin-associated function of Akap8.

Nuclear envelope and nuclear pore components, like
Nup153, associate with chromatin and regulate genome organi-
zation and gene expression via nuclear pore complexes, acting as
scaffold platforms to allow the assembly and recruitment of
transcription factors to the nuclear periphery (55, 56). Therefore,
Ambral might serve as a molecular scaffold that links chromatin
to the nuclear pore complex, allowing active transcription factor
binding (such as p-Atf2 T71) and resulting gene expression. The
most likely explanation for our data is that Atf2 is phosphorylated
by a kinase associated with chromatin. Therefore, we examined
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nuclear kinases interacting with Ambral, e.g. Cdk9. However, we
could not detect decreased Atf2 phosphorylation upon Cdk9
knockdown. We note that Cdk9 is also present in additional
complexes besides the Mediator complex; therefore, it is possible
that the effect of Cdk9 knockdown on the recruitment of p-Atf2 is
independent of the Mediator complex. When we looked at
potential Atf2-binding sequences in the genes that were altered
after depletion of Ambral, Akap8, and Atf2, we found that
(according to RRID:SCR_008027) Tgfb2 and Tgfb3 both have
CRE_TATA boxes that might serve as Atf2 binding sites.
Moreover, it is likely that some of the cancer-associated functions
of Ambral in SCC cells (such as cancer cell invasion) are
associated with the nuclear transcription signaling effects we
report here, e.g on TGE isoforms as well as its trafficking effects
that we reported previously (4).

Taken together, our data lead us to propose the following
model (depicted in Fig. 7). Ambral was already known to localize
to autophagosomes in the cytoplasm and to focal adhesions,
where it regulates the removal of untethered tyrosine kinases via
an autophagy mechanism (2, 4). We now show that Ambral also
interacts with nuclear pore proteins and locates to the nucleus,
where it is part of a complex network of interlinked chromatin
modifiers and transcriptional regulators, including a set of
interacting proteins whose recruitment to chromatin is influ-
enced by Ambral. This includes the PKA-scaffold Akap8, the
Mediator complex component Cdk9, and the transcription factor
Atf2 in its active form. Moreover, Ambral, Akap8, Cdk9, and Atf2
coregulate the expression of a subset of genes. Both Ambral and
Akap8 influence cellular histone modifications that could con-
tribute to their transcriptional effects. Therefore, we have
uncovered a completely novel function for the autophagy and
trafficking protein Ambral, which acts as a nuclear scaffold to
recruit other scaffold proteins, chromatin modifiers, and transcrip-
tional regulators to elicit gene expression changes via Atf2. A
similar scaffolding mechanism creating nuclear transcription
signaling hubs has been described for FAK, controlling Cc/5, 1133,
Tgfb2, and Igfbp3 transcription, as well as for mAKAPS, which
creates nuclear signalosomes and binds the transcriptional
regulators NFAT, MEF2, and HIF1« (18, 57, 58).

Materials and methods
Antibodies

Antibodies used were anti-Paxillin and anti-GM130 antibodies
(BD Transduction Laboratories, New Jersey, USA), anti-Akap8and
anti-Nup153 (Abcam, Cambridge, UK), anti-FAK, anti-PDI, anti-
p-Atf2 T71, anti-Atf2, anti-Brgl, anti-Rpb1, anti-Cdk8, anti-Cdk9,
anti-histone H4, anti-H3K4me2, anti-H3K4me3, anti-H3K27Ac,
anti-histone H3, anti-Lamin A/C, and anti-GAPDH (Cell Signaling
Technologies, Danvers, MA, USA), as well as anti-Ambral
antibody (Millipore, Billerica, MA, USA). Anti-rabbit or -mouse
peroxidase-conjugated secondary antibodies were purchased from
Cell Signaling Technologies.

Cell culture

FAK-deficient SCC cell lines were generated as described
previously (16). SCC cells were maintained in Glasgow MEM
containing 10% FCS, 2 mm L-glutamine, nonessential amino acids,
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Figure 7. Model depicting Ambra1-dependent transcriptional regulation.
In mouse SCC cells, Ambra1 is already known to localize to autophagosomes and
focal adhesions, where it binds FAK and Src and regulates the removal of
untethered kinases via autophagy. Ambra1 can also interact with nuclear pore
componentsandis translocated into the nucleus most likely via nuclear poresand
importins. Nuclear Ambra1 is part of a network consisting of chromatin modifiers
and transcriptional regulators, some of which are recruited to chromatin in an
Ambra1-mediated manner, including the PKA scaffold Akap8, Cdk9, and active
Atf2 (p-Atf2 T71). Further, Ambral, Akap8, Cdk9, and Atf2 coregulate the
expression of a subset of genes, like Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7. Both
Ambral and Akap8 influence cellular histone modifications, which could
contribute to their transcriptional effects. Overall, the autophagy protein Ambra1
also acts as a nuclear platform to recruit key scaffolds, chromatin modifiers, and
transcriptional regulators to elicit gene expression changes via Atf2.

sodium pyruvate, and MEM vitamins at 37 °C, 5% CO,. SCC FAK-
WT cells were maintained in 1 mg/ml hygromycin B.

SiRNA

FAK-WT or FAK —/— SCC cells were transiently transfected
using HiPerFect (Qiagen, Manchester, UK) according to
manufacturer’s protocol, with a final concentration of 80 or 100
nMm siRNA, respectively (Table S3). Cells were analyzed at 48 h
posttransfection.

Whole-cell lysates

Cells were washed twice in ice-cold PBS and then lysed in
radioimmune precipitation assay buffer (50 mm Tris-HCI, pH
8.0, 150 mm NacCl, 1% Triton X-100, 0.1% SDS, and 0.5%
sodium deoxycholate), supplemented with PhosSTOP and
cOmplete Ultra phosphatase and protease inhibitor cocktails

(Roche, Welwyn Garden City, UK), and cleared by centrifuga-
tion.

Nuclear fractionation

Cells were washed twice inice-cold PBS and then lysed in DET
buffer (150 mm NaCl, 25 mm Hepes, pH 7.5, 1 mMm B-mercap-
toethanol, 0.2 mm CaCl,, 0.5 mm MgCl,, 0.5% NP-40)
supplemented with PhosSTOP and cOmplete Ultra phosphatase
and protease inhibitor cocktails. Lysates were incubated on ice
for 10 min and centrifuged. The resulting pellets were washed
twice in DET buffer, resuspended in radioimmune precipitation
assay buffer, and cleared by centrifugation.

For MS, nuclear lysates were prepared using a Nuclei PURE
Prep isolation kit (Sigma, Gillingham, UK).

Chromatin isolation

The protocol was adapted from McAndrew et al. (59). All
buffers were supplemented with PhosSTOP and cOmplete Ultra
phosphatase and protease inhibitor cocktails. Briefly, cells were
washed twice in ice-cold PBS, lysed in extraction buffer (10 mm
Hepes, pH 7.9, 10 mm KCl, 1.5 mm MgCl,, 0.34 M sucrose, 10%
glycerol, 0.2% NP-40), and centrifuged for 5 min at 6500 X g.
Nuclear pellets were washed in extraction buffer without NP-40
and centrifuged for 5 minat6500 X g. Pellets were resuspended in
low-saltbuffer (10mmHepes, pH7.9,3mMEDTA,0.2mMEGTA)
and incubated for 30 min at 4 °C with rotation before centrifuga-
tion for 5 min at 6500 X g. Pellets were resuspended in high-salt
buffer (50 mm Tris-HCI, pH 8.0, 2.5 M NaCl, 0.05% NP-40) and
incubated for 30 min at 4°C with rotation. Supernatants
containing chromatin fractions were cleared by centrifugation.
Proteins were precipitated by adding TCA to a final volume of
10% and incubating on ice for 15 min. Precipitated proteins were
pelleted by centrifugation, washed twice with ice-cold acetone,
and then resuspended in 2X sample buffer prior to analysis by
Western blotting.

Immunoprecipitation

Protein concentration was calculated using a BCA protein
assay kit (Thermo Fisher Scientific, Loughborough, UK). For
analysis by Western blotting, 1 mg lysates was incubated with 2
pg of unconjugated antibodies at 4 °C overnight with agitation.
Unconjugated antibody samples were incubated with 10 ul of
Protein A agarose for 1 hat4 °C.Beads were washed three timesin
lysis buffer and once in 0.6 M LiCl, resuspended in 20 ul 2X
sample buffer (130 mm Tris, pH 6.8, 20% glycerol, 5% SDS, 8%
B-mercaptoethanol, bromphenol blue), and heated for 5 min at
95°C. Samples were then subjected to SDS-PAGE analysis as
described elsewhere (4).

Figure 6. Ambra1 or Akap8 depletion decreases histone modifications. A, functional interaction network analysis of nuclear Ambra1 binding partners
identified by MS were filtered for statistically significant (p < 0.05) 2-fold enrichment over IgG control. Components of histone modification complexes were used
to build a protein interaction network based on direct physical interaction (gray lines). These complexes include histone acetylation complexes (NSL, nonspecific
lethal; NuA4, nucleosome acetyltransferase of H4; PCAF, p300/CBP-associated factor) and a histone methylation complex (MLL1/MLL, mixed-lineage leukemia 1)
(allhighlighted by light blue background).B—E, SCC FAK-WT and —/— cells were transfected with siControland siAmbra1 (Band C) or siControl and siAkap8 (Dand E)
(SIGENOME pool). After 48 h, whole-cell lysates were subjected to Western blot analysis using anti-Ambra1, anti-Akap8, anti-di-H3K4me, anti-tri-H3K4me, and anti-
H3K27Ac. Anti-GAPDH and anti-histone H3 served as loading controls. Cand £, the graphs show relative histone modification levels normalized to histone H3 or
protein levels normalized to GAPDH upon Ambra1 (C) or Akap8 (E) knockdown. Error bars represent S.D. ¥, p < 0.01; #, p < 0.05.
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For MS, Ambral was immunoprecipitated from 2 mg
nuclear lysates of SCC FAK-WT and —/— cells (samples in
triplicates) using a KingFisher Duo liquid handling station
(Thermo Fisher Scientific). Nuclear lysates were incubated
with 2 ug of antibody and 5 ul Protein G Mag-Sepharose (GE
Healthcare) for 2 h at 4°C. Beads were washed twice in lysis
buffer and three times in TBS and then processed by
proteolytic digestion.

Proteolytic digestion

For MS, immunoprecipitated proteins were digested using 5
pg/ml trypsin in 2 M urea, 50 mm Tris-HCI, pH 7.5, as reported
previously (60). Digestion was performed for 30 min at 27°C.
After the initial digestion, the beads were removed using a
KingFisher Duo, and the supernatants were left to continue to
digest at 37 °C for 8 h. After digestion, samples were incubated
with 50 mg/ml iodoacetamide for 30 min in the dark. Samples
were treated with 1 wl TFA tostop the digestionand then desalted
using C; g StageTips. Briefly, the tips were prepared by placing a
smalldisc of 3M Empore solid-phase extraction material (Sigma-
Aldrich) in an ordinary 200-ul-capacity pipette tip, preparing a
single tip for each sample. Tips were activated with 80%
acetonitrile, 0.1% TFA buffer and washed with 0.1% TFA.
Samples (100 pl) were added to each column and washed twice
with 0.1% TFA. Liquid was passed through the pipette tip
manually with the aid of a syringe or with a light centrifugation
step. Peptides were then eluted using 80% acetonitrile, 0.1% TFA.
Samples were evaporated in a SpeedVac vacuum concentrator
(Thermo Fisher Scientific), resuspended in 12 ul 0.1% TFA
buffer, and analyzed by MS.

Mass spectrometric data acquisition

Tryptic peptides were analyzed on a Q Exactive Plus Hybrid
Quadrupole-Orbitrap mass spectrometer connected to an
UltiMate Ultra3000 chromatography system (both from Thermo
Fisher Scientific) incorporating an autosampler. Peptides (5 ul) for
each sample wereloaded onahomemade column (250-mm length,
75-um inside diameter) packed with 1.8 um UChrom Cig
(nanoLCMS Solutions) and separated by an increasing acetonitrile
gradient, using a 40-min reverse-phase gradient (from 3%-32%
acetonitrile) at a flow rate of 250 nl/min. The mass spectrometer
was operated in positive ion mode with a capillary temperature of
220 °C, with a potential of 2000 V applied to the column. Data were
acquired with the mass spectrometer operating in automatic data-
dependent switching mode, selecting the 12 mostintense ions prior
to tandem mass spectrometric analysis. All spectra were acquired
with 1 microscan and without lockmass.

Mass spectrometric data analysis

Label-free quantitative analysis of mass spectrometric data
was performed using MaxQuant (version 1.5.7.4). All the
experimental conditions (Ambral and IgG control immunopre-
cipitations from SCC FAK-WT and —/— cells) were analyzed in
biological triplicate. Each raw data file was considered separate in
the experimental design; the replicates of each experimental
condition were grouped for the subsequent statistical analysis.
Raw data files were searched against the mouse UniProtKB

SASBMB

database (version 2017_05; 86,453 entries) and a common
contaminants database using the Andromeda search engine
(packaged with MaxQuant, version 1.5.7.4). A mass accuracy of
4.5 ppm was applied, and a false discovery rate of 1%, applying a
target-decoy search strategy using MaxQuant, was set at both the
peptide and protein levels. Enzyme specificity was set as C terminal
to arginine and lysine, except when followed by proline, and a
maximum of two missed cleavages were allowed in the database
search. Cysteine carbamidomethylation was specified as a fixed
modification; methionine oxidation and acetylation of protein N
termini were specified as variable modifications. Minimum peptide
length was seven amino acids, and at least one peptide ratio was
required for label-free quantification. Peptide identifications in one
or more sample runs not identified in other samples were matched
and transferred between runs (0.7-min time window). Proteins
matching to the reversed or common contaminants databases were
omitted, and ribosomal proteins were omitted as putative
contaminants. Missing values were replaced by a constant (1),
and significant protein interactors were determined based on
average ratio (fold change over IgG control) and Student’s ¢ fest.
Interaction network analysis was performed using Cytoscape.

Immunofluorescence microscopy and image analysis

Cells were fixed, stained, and imaged as described in
Schoenherr et al. (4).

gRT-PCR

RNA from cells wasisolated using the RNeasy mini kit (Qiagen,
Manchester, UK). 500 ngtotal RNA wasreversetranscribed using
the SuperScript first-strand cDNA synthesis kit (Life Technol-
ogy, Paisley, UK). For the PCR amplification in a StepOne Plus
real-time PCR system (Life Technology, Paisley, UK), 25 ng
cDNA was used in a total reaction mix of 20 ul containing 10 ul
Sensi Fast SYBR Green Hi-Rox (Bioline, London, UK) as well as
400 nm forward and reverse primers (Table S4). Gapdh was used
to control for differences in cDNA input. Relative expression was
calculated according to the AAC quantification method. Each
sample within an experiment was analyzed in triplicate, and the
experiment was carried out three times.

nCounter gene expression analysis

SCC FAK-WT cells were transfected with siControl,
siAmbral, siAkap8, and siAtf2 siRNA. RNA from cells was
isolated 48 h posttransfection using the RNeasy mini kit
(Qiagen, Manchester, UK) and diluted to 20 ng/ul. Samples
(in triplicates) were subjected to gene expression analysis
using the mouse nCounter PanCancer Pathways panel (Nano-
string, Amersham Biosciences, UK). Analysis was performed using
nSolver analysis software (Nanostring). The cutoff point of
statistically significant relative changes (siRNA/siControl, p <
0.05) was set to 2-fold.

Statistical tests

For all experiments shown, n = 3-5. Error bars for the graphs
show S.D. Student’s ¢ test was carried out to calculate the
statistical significance.
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Data availability

The MS-based proteomics data have been deposited to the
ProteomeXchange Consortiumvia the PRIDE partner repository
with the data set identifier PXD018745.
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