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Background: Electronic decision support systems could reduce the use of inappropriate or ineffective empirical
antibiotics. We assessed the accuracy of an open-source machine-learning algorithm trained in predicting anti-
biotic resistance for three Gram-negative bacterial species isolated from patients’ blood and urine within 48 h of
hospital admission.

Methods: This retrospective, observational study used routine clinical information collected between January
2010 and October 2016 in Birmingham, UK. Patients from whose blood or urine cultures Escherichia
coli, Klebsiella pneumoniae or Pseudomonas aeruginosa was isolated were identified. Their demographic, micro-
biology and prescribing data were used to train an open-source machine-learning algorithm—XGBoost—in
predicting resistance to co-amoxiclav and piperacillin/tazobactam. Multivariate analysis was performed to iden-
tify predictors of resistance and create a point-scoring tool. The performance of both methods was compared
with that of the original prescribers.

Results: There were 15695 admissions. The AUC of the receiver operating characteristic curve for the
point-scoring tools ranged from 0.61 to 0.67, and performed no better than medical staff in the selection of
appropriate antibiotics. The machine-learning system performed statistically but marginally better (AUC 0.70)
and could have reduced the use of unnecessary broad-spectrum antibiotics by as much as 40% among those
given co-amoxiclav, piperacillin/tazobactam or carbapenems. A validation study is required.

Conclusions: Machine-learning algorithms have the potential to help clinicians predict antimicrobial resistance
in patients found to have a Gram-negative infection of blood or urine. Prospective studies are required to assess
performance in an unselected patient cohort, understand the acceptability of such systems to clinicians and
patients, and assess the impact on patient outcome.

Introduction

When treating patients for infection, the physician must balance
the survival benefit that may result from the prompt initiation of
effective antibiotic therapy against the risk of adverse side effects,
complications, potential for the development of resistance and the
increased costs that may follow the use of unnecessary broad-
spectrum agents.1 The modern health system has access to enor-
mous amounts of information about each patient. Recent studies
have demonstrated the ability of open-source machine-learning
algorithms to use such data in the prediction of antibiotic resist-
ance in different clinical settings.2,3

In this proof-of-concept study, we assessed the accuracy of the
XGBoost machine-learning algorithm trained in predicting antibiot-
ic resistance for Escherichia coli, Klebsiella pneumoniae and
Pseudomonas aeruginosa isolated from blood and urine cultures
obtained from patients within the first 48 h of admission.4 In add-
ition, we identified those factors most strongly associated with
antimicrobial resistance (AMR) and developed a simple point-
scoring (SPS) tool such as might be used by a clinician when assess-
ing a patient for the risk of resistant Gram-negative infection. We
compared the performance of this scoring tool and the XGBoost
system with the antibiotic choices made by medical staff in the
same patients.
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Methods
This was a retrospective study using information collected as part of routine
care from three hospitals between January 2010 and October 2016.
Representing 1500 beds, they served an ethnically diverse population of
1.2 million people in Birmingham and Solihull, UK. The organization’s micro-
biology laboratory served the majority of local primary care providers.
All patients from whose blood or urine cultures E. coli, K. pneumoniae or
P. aeruginosa was isolated within 48 h of admission were identified.
Hospital demographic, microbiology and electronic-prescribing databases
were then searched for information concerning these patients, including
admission and discharge dates, diagnostic coding, primary care provider,
antibiotics administered during prior admissions dating from January 2010
and all recorded instances of the three organisms of interest including anti-
biotic susceptibilities. The primary care provider’s antibiotic-prescribing
behaviour, represented by the total number of prescribed antibiotic items
per 1000 registered patients (2016–17), was obtained from the PHE web-
site. Datasets were pseudo-anonymized with a unique study number.

Ethics approvals and study registrations
Ethics approval was provided by the NHS Health Research Authority
(reference 17/WM/0406). All clinical data were anonymized before sharing
with academic partners.

Training of the gradient-boosted decision tree (GBDT)
algorithm
A random allocation of 80% of the data (‘training data’) was used to train
an XGBoost GBDT in the prediction of resistance of the microbiological
isolates to each of co-amoxiclav and piperacillin/tazobactam. The remain-
ing 20% was used to assess the GBDT performance (‘test data’). This equa-
ted to 3064 testing and 12255 training cases for co-amoxiclav, and 2166
testing and 8663 training cases for piperacillin/tazobactam. Further details
regarding GBDT training are provided in the supplementary data (Table S1
and Figure S1, available as Supplementary data at JAC Online).

Development of an SPS tool for the prediction of
resistance
Multivariate analysis was performed on the dataset to identify significant
predictors of resistance to co-amoxiclav and piperacillin/tazobactam
(Table S2). A naive Bayes classification methodology was then used to
generate scores for each variable. The five variables that in combination
produced the most accurate predictions [as measured by the AUC for the
receiver operating characteristic (ROC) curve] were identified, and an SPS
tool was created (Table 1).

Assessing performance
To allow comparison of the two systems with medical staff, patients in the
dataset who had received co-amoxiclav, piperacillin/tazobactam or a
carbapenem as initial therapy in the first 72 h were identified. Prescribed
agents from this period were then compared with the antibiotic susceptibil-
ity results. A prescribing decision was classified as ‘correct’ if the organism
was susceptible to the agent chosen and was the narrowest effective agent
of the three (co-amoxiclav, piperacillin/tazobactam or a carbapenem), with
co-amoxiclav considered narrowest and carbapenems broadest.5 An anti-
biotic decision was classified as ‘under’ if the organism was resistant to
the prescribed agent and ‘over’ if the organism was susceptible to the
prescribed agent but a narrower-spectrum agent would have been suitable.
At the time of data collection carbapenems were the institutional agent of
choice for those with penicillin allergy and so all patients with recorded
penicillin allergy were excluded from this analysis.

The number of patients falling into each of the three categories as a
result of medical staff prescribing in the first 72 h was compared with the
predictions of the SPS and the GBDT applied to each individual patient in
the test dataset.

Results

The total dataset represented 15695 patient admissions and anti-
biotic initiations and 9352 individual patients. The median age was
69 years. There were 15580 individual isolates of the three organ-
isms of interest and the average number of isolates per patient
over the time period studied was 1.55. Of the 15208 E. coli isolates,
26.3% were resistant to co-amoxiclav and 11.8% were resistant
to piperacillin/tazobactam. This compared with 9.3% and 8.8%,
respectively, of the 194 K. pneumoniae isolates. Of the 178
P. aeruginosa isolates, 9.4% were resistant to piperacillin/tazobac-
tam and 12.0% were resistant to meropenem. Of the 15364 co-

Table 1. The point-scoring tools

Yes No

A. Prediction of co-amoxiclav resistance (incorporating

electronic-prescribing data)

previous co-amoxiclav prescription !3 #1

comorbidity: other inflammatory condition of skin;

chronic ulcer of skin; other skin disorders

!1 #1

previous co-amoxiclav susceptibility #2 0

comorbidity: septicaemia, shock !3 0

previous co-amoxiclav resistance !7 #1

B. Prediction of piperacillin/tazobactam resistance

(incorporating electronic-prescribing data)

sample type: blood #2 0

previous co-amoxiclav susceptibility –1 0

previous co-amoxiclav resistance !4 –1

comorbidity: diabetes mellitus without complication !2 –1

previous piperacillin/tazobactam resistance !7 –1

C. Prediction of co-amoxiclav resistance (excluding

electronic-prescribing data)

comorbidity: mental retardation, senility and organic

mental disorders

!2 0

consultant specialty: general medicine !1 –1

previous co-amoxiclav susceptibility –2 0

comorbidity: septicaemia, shock !3 0

previous co-amoxiclav resistance !7 –1

D. Prediction of piperacillin/tazobactam resistance

(excluding electronic-prescribing data)

comorbidity: COPD and bronchiectasis !2 0

comorbidity: skin and subcutaneous tissue infections !3 0

previous co-amoxiclav resistance !5 –1

number of comorbidities >5 !1 –1

previous piperacillin/tazobactam resistance !8 –1

The presence of a factor adds the value indicated in the ‘Yes’ column to
the patient’s score, the absence the addition of the value in the ‘No’ col-
umn. If the resulting total reaches a pre-determined threshold, the pa-
tient is considered at risk of resistance to that antibiotic. In this study,
the threshold was set at a point producing a level of ‘under’ or ’over’-pre-
scribing similar to that of medical staff.
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amoxiclav and 10829 piperacillin/tazobactam resistance tests
used in training, 2638 and 2698, respectively, were blood cultures
and the remainder urine. The most important factor for predicting
co-amoxiclav and piperacillin/tazobactam resistance was the
presence of a similar previous culture result. Other important posi-
tive predictors for resistance included a diagnosis of diabetes or
cancer (for piperacillin/tazobactam resistance) or a diagnosis of
sepsis (for co-amoxiclav resistance).

Performance of the tools

The AUC of the ROC for the SPS tool ranged from 0.61 to 0.67 (Figure
S2), with the GBDT performing marginally better with an AUC of
0.70 for both piperacillin/tazobactam and co-amoxiclav (P < 0.001).
GBDT performance was best for urine cultures, with an AUC of 0.71
for co-amoxiclav and 0.70 for piperacillin/tazobactam compared
with 0.66 and 0.67, respectively, for blood cultures (P < 0.001).

There were 3160 admissions where patients were initially pre-
scribed co-amoxiclav, piperacillin/tazobactam or a carbapenem.
Medical staff under-prescribed agents later shown to be ineffective
on 20.3% (95% CI 19.1%–21.5%) of occasions, chose correctly on
56.0% (95% CI 54.5%–57.5%) and over-prescribed unnecessary
broad-spectrum agents on 23.7% (95% CI 22.4%–25.0%).
Figure 1(a) illustrates the level of over-prescribing (false positives)
from the tools when adjusted to produce a similar level of under-
prescribing (false negatives, 20.3%) to that of medical staff. The
SPS tool increased over-prescribing compared with medical staff.
In contrast the GBDT would have decreased over-prescribing from
23.7% to 13.4%, a 41.4% reduction (P < 0.001), recommending
appropriate antibiotics for 66.5% of admissions while maintaining
under-prescribing at 20.3%. This would have reduced carbapenem
prescribing by 64.6% at the expense of a 16.0% and 7.1%
increased use for piperacillin/tazobactam and co-amoxiclav, re-
spectively (Figure S3). For GBDT carbapenem and piperacillin/tazo-
bactam use, 17.2% and 37.2%, respectively, would be considered

appropriate (‘correct’) compared with 12.2% and 15.1%, respect-
ively, for medical staff prescribing. Adjusting the tools to produce a
similar level of over-prescribing (false positives) to that of medical
staff (23.7%)—as might be the case if the aim was primarily reduc-
ing the number of patients given insufficiently broad empirical
treatment on admission—resulted in under-prescribing rates of
12.4% for the GBDT and 19.1% for the SPS tool (Figure 1b).

Discussion

The combination of longitudinal clinical data and machine-
learning systems has tremendous potential for improving the anti-
biotic management of those with infection. Open-source methods
can be readily applied to locally held data creating algorithms suit-
able for each institution and population.6–8 Our proof-of-concept
study demonstrates that a trained open-source machine-learning
algorithm can predict antibiotic resistance among patients admit-
ted to hospital and found to have a Gram-negative infection in
blood or urine. Accuracy was greater than that of medical staff
and a simpler five-factor risk assessment tool failed to achieve this
improvement.

The hospital organization in which this study was conducted
has observed increasing use of broad-spectrum antibiotic agents
despite static rates of resistance to co-amoxiclav (E. Moran, E.
Robinson, C. Green, M. Keeling and B. Collyer, unpublished data).
There is a clear role for a point-of-care decision support system
that would direct prescribers to a real-time individualized treat-
ment recommendation based upon provisional diagnosis and pa-
tient risk factors.

This study has a number of limitations. Training the algorithm
necessitated selecting patients with infection known to be caused
by one of three Gram-negative organisms. Whilst evidence from
those with septic shock suggests that culture-negative and
culture-positive patients have similar outcomes, performance is
likely to vary in unselected cohorts.9 We assessed the performance
of each system against ‘real-life’ prescribing decisions made
by medical staff for the 20% of the cohort given co-amoxiclav,
piperacillin/tazobactam or a carbapenem. The remaining 80% of
patients were managed with different agents or combination
treatment. Ultimately performance would need to be assessed
prospectively with well-defined endpoints among patients with
unconfirmed infection receiving a larger number of empirical
choices.10 It is also important to understand the impact on
patients of under- and over-prescribing decisions. Host and dis-
ease factors may be the primary determinants of morbidity and
mortality in some cohorts and it should not be assumed that ini-
tial empirical under-prescribing inevitably leads to an avoidable
adverse outcome.11

In conclusion, this study indicates that the use of machine
learning could lead to a reduction in the inappropriate use of
broad-spectrum antibiotic agents within the hospital setting.
Improving antibiotic stewardship in this way may lead to reduced
costs, complications and improved clinical outcomes.
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Figure 1. Proportion of patients prescribed antibiotic agents to which
their isolate was resistant (‘under’-prescribed), was appropriate (‘cor-
rect’) or given unnecessary broad-spectrum agents (‘over’-prescribed) by
medical staff compared with the predictions of the SPS and GBDT algo-
rithms. Tool performance was adjusted such that there was no addition-
al (a) under-prescribing or (b) over-prescribing compared with medical
staff. Error bars are 95% Wald CIs. This figure appears in colour in the
online version of JAC and black and white in the print version of JAC.
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