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Abstract
Spurred by better understanding of disease biology, improvements in molecular 
diagnostics, and the development of targeted therapies, the treatment of acute 
myeloid leukemia (AML) has undergone significant evolution in recent years. 
Arguably, the most exciting shift has come from the success of treatment with the 
B-cell lymphoma-2 inhibitor venetoclax. When given in combination with a 
hypomethylating agent or low dose cytarabine, venetoclax demonstrates high 
response rates, some of which are durable. In spite of this, relapses after 
venetoclax treatment are common, and much interest exists in elucidating the 
mechanisms of resistance to the drug. Alterations in leukemic stem cell 
metabolism have been identified as a possible escape route, and clinical trials 
focusing on targeting metabolism in AML are ongoing. This review article 
highlights current research regarding venetoclax treatment and resistance in AML 
with a focus on cellular metabolism.
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Core tip: The B-cell lymphoma-2 inhibitor venetoclax has drastically changed the 
treatment paradigm for acute myeloid leukemia; however, much is unknown about 
mechanisms of relapse after treatment with this agent. Alterations in cellular metabolism 
have been identified as a potential resistance mechanism and may be able to be targeted 
with novel treatments.
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INTRODUCTION
Acute myeloid leukemia (AML) is a heterogeneous group of aggressive hematologic 
malignancies characterized by the uncontrolled proliferation of genetically altered 
immature myeloid cells. Accumulated clonal leukemic stem cells (LSC) are inherently 
nonfunctional and arrested in differentiation causing rapid bone marrow failure and, 
if untreated, eventual death[1].

An estimated 21500 patients are diagnosed with AML yearly in the United States[2]. 
Despite advances in molecular prognostication and therapeutic targeting, AML 
remains a significant cause of morbidity and mortality. The current 5-year survival 
rate remains < 30%[3]. Patients above age 65 and those with poor performance status, 
pre-existing comorbidities, or biologically aggressive disease have especially poor 
prognoses, as do patients who relapse after hematopoietic stem cell transplant[4].

Since the first publication by Yates et al[5] in 1973, the standard therapeutic approach 
for treating AML has relied upon intensive induction chemotherapy with the 7 + 3 
protocol, a cytarabine and anthracycline based regimen. Individuals who were unable 
to tolerate intensive chemotherapy had few options[5]. It has only been in the last 
decade that a myriad of new drugs have changed this paradigm and gained approval 
for the treatment of AML.

Despite improvements in the success of up-front AML therapy, treatment for 
relapsed disease remains a significant challenge. Relapse occurs due to the emergence 
of chemotherapy resistant leukemic stem cells[6]. Over the past decade, much has been 
learned about the complexity of the metabolic and molecular transformations that 
LSCs undergo. Interestingly, some of the same metabolic dysregulations are seen in 
other malignancies including colon, breast, and prostate cancer[7]. Whole-genome 
mapping and targeted sequencing of serial samples of leukemia cells from individual 
patients has led to the discovery of distinct metabolic aberrations that play a role in 
relapse and, in some cases, are targets for drug development[8].

Novel therapies such as venetoclax, a specific B-cell lymphoma-2 (Bcl-2) inhibitor, 
have triggered a paradigm shift in the approach to AML and reinvigorated discussions 
about the link between metabolism and cancer. Though the majority of patients 
respond to venetoclax-based treatment, the depth and duration of response remain 
inadequate[9]. Thus, understanding the metabolic rewiring that allows treatment 
resistance to develop is crucial. This review summarizes Bcl-2 inhibition in AML with 
a focus on mechanisms of resistance to venetoclax, in particular those related to 
leukemic cell metabolism.

LEUKEMIC STEM CELL METABOLISM
During evolution from normal hematopoietic progenitors to LSCs, cells undergo 
significant alterations in metabolic pathways including glycolysis, amino acid 
metabolism, and fatty acid metabolism. Similar to normal progenitors, primitive LSCs 
retain the ability to self-renew and remain in the G0 phase, allowing them to escape 
eradication by cytotoxic chemotherapy, which targets actively dividing blasts[10].

Glucose metabolism
Leukemogenic cells exist in a stressful hypoxic microenvironment and, in response, 
upregulate certain energy producing conduits to meet proliferative demand. Enhanced 
glycolysis plays a prime role in LSC proliferation. Increased glucose flux is directed by 
activated oncogenes, particularly expression of BCR-ABL and MLL-AF9, along with 
overexpression of hypoxia inducible factor 1[11]. These genes upregulate glucose 
transporter 1 receptor expression, thereby promoting glucose entry and subsequent 
phosphorylation by hexokinase. Increased levels of hypoxia inducible factor 1, 
hexokinase, and genes upregulate glucose transporter 1 are described in patients with 
relapsed AML with poor response to chemotherapy[12]. In vivo studies of aggressive 
leukemia cells have demonstrated a correlation between high glycolysis flux and 
decreased levels of autophagy, an evolutionary intracellular degradation process that 
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is bypassed by LSCs[13].
Historically, it has been thought that malignant cells preferentially use cytoplasmic 

anaerobic glycolysis as a major carbon source (the so-called Warburg effect) over 
mitochondrial oxidative phosphorylation (OX-PHOS)[14]. However, metabolomic 
studies have shown that mitochondrial OX-PHOS may be upregulated in LSCs as an 
adaptive mechanism[15]. Excess oxidative stress has been described in various 
hematologic malignancies as a critical factor in initiation and progression of disease. 
There is growing evidence showing that AML LSCs generate increased levels of 
reactive oxygen species (ROS) primarily driven by mitochondrial NADPH oxidase and 
other pro-oxidant mechanisms. Sallmyr et al[16] suggest that acquired genetic changes in 
myeloid malignancies lead to DNA damage and defective repair by directly increasing 
ROS production. Certain genetic abnormalities in AML such as RAS, IDH1/IDH2 and 
fms-like tyrosine kinase 3 (FLT3)/ITD mutations can directly disturb ROS metabolism 
causing an eventual shift to amplified ROS production[16].

Interestingly, the majority of LSCs preferentially maintain a low ROS state due to 
their quiescent nature. These low ROS LSCs were isolated ex vivo and subject to gene 
expression studies using RNA sequencing methods. Remarkably, they displayed a 
uniform overexpression of the Bcl-2 protein without upregulation of other anti-
apoptotic members[17,18].

Glutamine metabolism
The non-essential acid glutamine can be metabolized by glutaminases to glutamate 
and then α-ketoglutarate, which can go on to fuel the tricarboxylic acid cycle in the 
mitochondria[19]. To sustain high proliferative advantage, LSCs may adapt a metabolic 
preference for glutamine to drive biomass. This so-called glutamine addiction has been 
demonstrated in multiple studies and represents a potential target for anti-leukemic 
therapy[20-23].

A number of oncogenes and pathways work to potentiate glutamine addiction in 
AML, including FLT3. In fact, metabolomic studies reveal that FLT3 inhibited LSCs are 
impaired in their glycolytic function and fittingly switch to utilize glutamine as 
primary fuel. Therefore, this metabolic dependency on glutamine metabolism poses a 
potential therapeutic vulnerability when targeted with FLT3 inhibition[24]. Concurrent 
reduction of glutamine and Bcl-2 inhibition are being studied to compromise 
mitochondrial energy production and induce apoptosis, respectively[23].

The mammalian target of rapamycin 1 (mTORC1) signaling pathway is involved in 
numerous cellular processes including metabolism, cell growth, and apoptosis. 
Moreover, it has been shown to play an integral role in LSC development and 
proliferation[25-27]. Glutamine availability is a rate-limiting step for mTORC1; therefore, 
removal of glutamine accordingly inhibits mTORC1 signaling and may be another 
metabolic mechanism for the treatment of AML[28].

B-CELL LYMPHOMA-2 MEDIATED MITOCHONDRIAL APOPTOSIS
Control of cellular proliferation and apoptosis is deregulated in cancer cells. 
Mitochondria play an intrinsic role in programmed cell death through release of 
soluble proteins from the intermembrane space, a process called mitochondrial outer 
membrane permeabilization (MOMP). A group of over 20 specialized proteins, known 
as the Bcl-2 family, are the prime mediators of this process[29] (Figure 1).

Apoptosis is tightly regulated by an intricate balance between pro-apoptotic Bax-
like proteins (e.g., BAX, BAK and BAD) and anti-apoptotic Bcl-2 like proteins (e.g., Bcl-
2, Bcl-XL, Bcl-W and MCL-1) which are predominantly localized in the mitochondria. 
Bcl-2 prevents apoptosis by inactivating BAX and BAK. Bcl-XL blocks apoptosis by 
rendering mitochondrial pores impermeable thus inhibiting cytochrome C release. 
BAX and BAK proteins promote apoptosis by simply opposing Bcl-2 and forming 
oligomeric pores essential in MOMP[30].

Each of these apoptotic proteins are structurally distinguished by four groups of 
Bcl-2 homology (BH) domain (1-4). Functionally these BH domains, specifically the 
“BH3-only proteins” (e.g., BID, BIM, BAD, PUMA, NOXA and BIK/NBK), sense 
cellular stress, activate pro-death signals, and coordinate the activity of other Bcl-2 
proteins[31]. The binding of apoptotic proteins is highly selective: BAD binds 
exclusively to Bcl-2, Bcl-XL, and Bcl-W, NOXA to MCL-1 and A1, and BIM can bind to 
all anti-apoptotic members[32]. Upstream of the intrinsic Bcl-2 pathway, PUMA serves 
as a critical mediator of cell death via p53-dependent and independent activation of 
BAX, BAK and dismissing inhibition of Bcl-2 family proteins. Most BH3-only proteins 
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Figure 1  Diagram of the intrinsic apoptotic pathway. When a cell stress or damage signal is received, pro-apoptotic proteins inhibit the anti-apoptotic 
proteins leading to the subsequent release of effector proteins, BAX and BAK. This induces mitochondrial outer membrane permealization and allows for the release 
of cytochrome C. Cytochrome C binds to Apoptotic protease activating factor 1, which leads to the formation of the apoptosome, release of caspases, and ultimately, 
cell death. Venetoclax inhibits B-cell lymphoma-2. Bcl-2: B-cell lymphoma-2; MOMP: Mitochondrial outer membrane permealization; APAF1: Apoptotic protease 
activating factor 1.

exist in an ambiguous conformation and at relatively low levels. Chemotherapeutic 
agents induce activation of BH3 only proteins to overcome the anti-apoptotic 
threshold resulting in cell death[33].

In response to cellular derangement, BH3-only proteins concurrently inhibit anti-
apoptotic members and activate pro-apoptotic members, BAX and BAK. 
Intracytoplasmic signaling leads to transformation of BAX into homo-oligomers and 
translocation of the proteins into the mitochondrial membrane forming pores to 
induce MOMP. As a result, voltage dependent anion channels are unlocked facilitating 
release of cytochrome C into cytosol, binding to apoptotic protease-activating factor 1, 
apoptosome formation, caspase activation, DNA fragmentation, and ultimately cell 
death[30].

Mitochondrial response to pro-apoptotic members, a process known as “priming”, 
has been studied as a measure of sensitivity to chemotherapy. Artificial priming of 
myeloblast mitochondria with BH3-only proteins (BIM or BAD BH3-peptide) 
supported the hypothesis that Bcl-2 inhibition may be a powerful strategy in targeting 
AML cells. Analysis of poorly primed, chemo-refractory AML cells showed increased 
sensitivity to BAD BH3-peptide mediated killing with potential for BH3 mimetic 
benefit even in low-primed AML[34]. Knowing the level and specificity of priming prior 
to treatment may help in predicting the synergistic action of chemotherapeutic agents 
and Bcl-2 inhibitors. This functional approach to predicting mitochondrial response to 
BH3 peptides, termed BH3 profiling, could distinguish alterations between AML 
myeloblasts and HSCs. Certain BH3 peptides used for profiling inhibit selective Bcl-2 
family proteins (e.g., BAD BH3 peptide indicates dependence on Bcl-2, Bcl-XL, or Bcl-
w)[35]. MOMP induced by targeting such peptides hints at specific dependence on 
certain anti-apoptotic proteins through which they inhibit cell death[36].

Human LSCs were first discovered to modify expression of death receptors (e.g., 
FAS and TRAIL receptors) to evade apoptosis. LSCs with very immature phenotype of 
CD34+/CD38- were able to confer both chemotherapy resistance and decreased 
capacity to induce Fas-induced apoptosis[37]. Prominently, alteration of the Bcl-2 
mediated pro-survival pathway and variant expression of effector proteins (BAX and 
BAK) are potent methods employed by LSCs to inactivate death signals. Bcl-2 is 
normally expressed in early myeloid progenitors but downregulated during myeloid 
differentiation. However, transgenic studies have shown that overexpression of Bcl-2 
protects LSCs from various apoptosis-inducing stimuli[38]. Bcl-2 overexpression leads to 
increased LSC numbers in the bone marrow and enhanced colony formation in vitro 
and in vivo[39]. Remarkably, the bone marrow stromal microenvironment may facilitate 
this mechanism. Leukemic blasts thrive by exhibiting a higher degree of Bcl-2 when 
co-cultured with stromal cells. It is therefore possible that eliminating Bcl-2 protein 
function can eradicate early LSCs[40].
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TARGETING B-CELL LYMPHOMA-2 IN ACUTE MYELOID LEUKEMIA
In 2005, ABT-737, a high-affinity small molecule Bcl-2/Bcl-XL/Bcl-W inhibitor, 
demonstrated single agent mechanistic killing of lymphoma and various solid tumor 
cell lines. Later studies demonstrated effective killing of primitive CD34+/CD38- 
populations with independent and synergistic action of conventional 
chemotherapeutics. Remarkably, this disruption was specific to LSCs without 
apparent damage to normal HSCs[41]. Certain LSCs with increased MCL-1 and 
phosphorylated Bcl-2 were unaltered by ABT-737, proposing a potential co-target to 
bypass resistance in AML[42].

Progenitor blasts and chemo-resistant LSCs are heterogenous and possess a certain 
degree of metabolic plasticity. As discussed, LSCs adapt to rely on OX-PHOS as their 
predominant source of carbon as suggested by high mitochondrial mass and increased 
oxygen consumption[43]. Chemically blocking Bcl-2 causes prompt and severe 
impairment of OX-PHOS with the potential to cut off a major power source for 
LSCs[17].

Bcl-2 dependence has been described as a hallmark of multiple hematologic 
malignancies including AML. This led to the study of venetoclax (ABT-199), an oral 
Bcl-2 inhibitor, as a single agent and in combination with hypomethylating agents for 
the treatment of AML. Venetoclax is highly specific for Bcl-2 but also inhibits several 
other members of the Bcl family, including Bcl-W[17,44]. Strong preclinical data was 
evidenced by a median IC50 of approximately 10 nmol/L, and mitochondrial 
apoptosis occurring within 2 h of exposure[45].

Venetoclax monotherapy was first studied in high-risk relapsed/refractory AML 
patients and was found to have an underwhelming overall response rate of 19%[46]. 
Given these results, the success of the combination of venetoclax with a 
hypomethylating agent (HMA) (either 7 d of azacitidine or 5 d of decitabine) or low-
dose cytarabine in newly diagnosed, elderly AML patients was somewhat unexpected. 
Studies have demonstrated 50%-70% response rates for combination therapy in this 
high-risk population[47,48]. In addition, in the HMA + venetoclax study, median overall 
survival was increased by 17.5 mo (double that of an HMA alone)[47]. These pivotal 
results led, in November 2018, to the FDA approval of the combination of venetoclax 
plus an HMA or low dose cytarabine combo for adults > 75 years who are not 
candidates for intensive induction chemotherapy[44]. Patients with mutations in FLT3, 
IDH1/2, or mutations in the nucleophosmin gene were noted to have the most 
favorable responses[47].

Interim results from a Phase II study of ten-day decitabine plus venetoclax were 
recently presented and build upon the results of these initial studies. In this 
heterogeneous cohort of patients, those with newly diagnosed de novo AML had a 
CR/CRi rate of 95%. Furthermore, 80% of these patients became MRD negative and 
90% were alive at 6 mo[49].

Unfortunately, retrospective results for venetoclax combination therapy in the 
relapsed/refractory setting have not been as promising, however, prospective studies 
are ongoing. Overall response rates in these patients, some of whom have been heavily 
pre-treated, range from 21%-64%[50,51]. Patients with secondary AML and those whose 
AML harbors a TP53 mutation have the poorest responses[52]. Identifying the reasons 
for the disparity between response rates in newly diagnosed and relapsed disease has 
been the focus of much investigation, and has centered on a discussion of leukemic cell 
metabolism.

MECHANISMS OF VENETOCLAX RESISTANCE
There is increasing interest in understanding the mechanisms underlying venetoclax 
resistance. Genomic and protein analyses of expanding clones of LSCs after venetoclax 
treatment have identified a variety of potential adaptive mechanisms, including 
alterations in leukemic cell metabolism.

Initial hypotheses about resistance mechanisms focused on alterations in BH3-
family protein expression. Reductions in Bcl-2 expression have been shown to promote 
primary and acquired resistance to venetoclax by alternate pathway activation and 
upregulated expression of other anti-apoptotic proteins such as MCL-1 and Bcl-xL[53]. 
A study of AML cell lines in vitro showed a definite and inverse correlation with the 
ratios of Bcl-2/MCL-1 transcripts and venetoclax sensitivity suggesting the importance 
of MCL-1 effect on sensitivity[54]. Similarly, Niu et al[55] demonstrated that Bcl-2/MCL-1 
transcript ratio may represent a potential biomarker in predicting response[55]. As such, 
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methodical targeting of MCL-1 during venetoclax therapy may delay the acquisition of 
venetoclax resistance[56]. However, MCL-1 upregulation is only part of the venetoclax 
resistance story.

To try and better understand the basis of resistance, Chen et al[57] performed a 
genome-wide CRISPR/Cas9 loss of function screen in venetoclax-sensitive and 
venetoclax resistant clones (VRCs). The analysis demonstrated that specific genes 
involved in mitochondrial physiology, namely CLPB with HAX1, contribute to 
development of VRCs. CLPB, also known as chaperonine, is a protein-coding gene 
thought to maintain mitochondrial integrity by preventing the release of cytochrome C 
following death stimulus. Loss of CLPB impairs mitochondrial structure thereby 
triggering defective OXPHOS and glycolysis. CLPB was notably upregulated in VRCs 
suggesting a potential dependency and an amenable target. Correspondingly, analysis 
of CLPB-deficient AML cells showed that they were more sensitive to venetoclax 
treatment[57].

Similarly, Sharon et al[58], performed a genome-wide CRISPR knockout screen to look 
for potential genes that could be inactivated to reestablish venetoclax sensitivity[58]. 
Interestingly, a glycine-to-valine mutation at amino acid position 101 was not 
identified in the Bcl-2 gene of VRCs. This mutation was previously proposed as an 
acquired venetoclax resistance mechanism in chronic lymphocytic leukemia[59]. Instead, 
multiple genes-DAP3, MRPL54, MRPL17, and RBFA- encoding key parts of the 
mitochondrial translation apparatus were identified. LSCs exposed to the bacterial 
mitochondrial ribosome inhibitors tedizolid and doxycycline, both alone and in 
combination with venetoclax, showed a depleted CD34+ fraction with combination 
therapy, but not with venetoclax alone, suggesting that pharmacologic inhibition of 
mitochondrial translation may overcome resistance[58].

Findings of a study by Pollyea et al[60] demonstrated that deeper and more durable 
responses to treatment with venetoclax and azacitadine were due to effective 
eradication of OXPHOS dependence. Direct in vitro measurement of ETC complex II 
activity and SDHA glutathionylation in primary AML cells upon venetoclax and 
azacitidine exposure confirmed decreased glutathione levels and correlating reduction 
in ETC activity[60]. However, Jones et al[61] showed that OXPHOS levels in the LSCs of 
patients with relapsed AML are not reduced after HMA and venetoclax exposure 
suggesting that altered metabolism is an escape route for LSCs[61]. Further evaluation 
of these LSCs identified an increased reliance on fatty acid metabolism, which may be 
targetable.

OVERCOMING RESISTANCE WITH VENETOCLAX COMBOS
Clinically, combining venetoclax with one or more other agents may be the key to 
overcoming resistance; many studies of this kind are underway[62]. A comprehensive 
list of is found in Table 1.

VENETOCLAX + METABOLIC INHIBITION
Exploiting dependency on OXPHOS concurrently with Bcl-2 inhibition is a potential 
therapeutic strategy. Preclinical combination of OPB-111077, an OXPHOS inhibitor, 
with decitabine synergistically hindered the proliferation LSCs with a tolerable side 
effect profile. Triplet therapy with OPB-111077 + HMA and venetoclax in AML cells 
increased apoptosis rates to a greater degree than exposure to single agent OPB-111077 
or venetoclax[63]. A Phase I study of the triplet is ongoing.

The OXPHOS inhibitor IACS-010759 is another small molecule with promising in 
vivo and in vitro activity in LSCs in AML cell lines. This agent binds and inhibits 
complex I of the electron transport chain (NADH ubiquinone oxidoreductase) and is 
being studied in a phase I study of patients with relapsed/refractory AML. Safety is 
yet to be established with dose escalation, but mechanistically this is a sensible 
combination strategy with venetoclax[64].

Metformin, a biguanide used in diabetes management, has shown potential for anti-
leukemic activity by directly targeting electron transport chain complex I activity and 
inhibition of constitutive mTOR activation. This in turn induces AMPK-independent 
apoptosis. Promising combination strategies with chemotherapy or other targeted 
therapies have been described with all-trans retinoic acid, ABT-737 (Bcl-2 inhibitor) 
and sorafenib in acute promyelocytic leukemia, T-cell acute lymphoblastic leukemia, 
and FLT3-ITD positive AML[65]. Given its mechanism of action, the combination of 
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Table 1 Clinical trials investigating venetoclax combination therapy

ClinicalTrials.gov 
identifier Treatment combination Phase Population

NCT03709758 Venetoclax + daunorubicin + cytarabine Ib Untreated

NCT03214562 Venetoclax + fludarabine, cytarabine, filgrastim, idarubicin Ib/II Untreated Relapsed/refractory

NCT03471260 Venetoclax + ivosidenib ± azacitidine I/II Relapsed/refractory

NCT02993523 Venetoclax + placebo or azacitidine III Untreated

NCT03069352 Venetoclax + placebo or low dose cytarabine III Untreated

NCT03466294 Venetoclax + azacitidine II Untreated-elderly

NCT03404193 Venetoclax + decitabine 10 d II Untreated

NCT03586609 Venetoclax + low dose cytarabine+ cladribine +  azacitidine II Untreated

NCT03236857 Venetoclax ± chemotherapy (various) I Relapsed/refractory malignancies (including 
AML)

NCT03455504 Venetoclax + fludarabine + cytarabine + idarubicin II Untreated

NCT03629171 Venetoclax + liposomal daunorubicin -cytarabine II Untreated Relapsed/refractory

NCT03862157 Venetoclax + azacitidine + pevonedistat I/II Untreated

NCT03390296 Venetoclax + azacitidine + avelumab I/II Untreated

NCT03390296 Venetoclax + azacitidine  +  gemtuzumab ozogamicin + anti-OX40 
antibody

I/II Relapsed/refractory

NCT03867682 Venetoclax + lintuzumab-Ac225 I/II Relapsed/refractory

NCT03932318 Venetoclax + azacitidine +  lintuzumab-Ac225 I/II Relapsed/refractory

NCT03672695 Venetoclax + S64315 I Relapsed/refractory

NCT03797261 Venetoclax + AMG-176 Ib Relapsed/refractory

NCT03063944 Venetoclax + decitabine + OPB-111077 Ib/II Relapsed/refractory

NCT03484520 Venetoclax + dinaciclib Ib Relapsed/refractory

NCT03441555 Venetoclax + alvocidib Ib Relapsed/refractory

NCT02670044 Venetoclax + cobimetinib; Venetoclax + idasanutlin I/II Relapsed/refractory

NCT03940352 Venetoclax + HDM201 I Relapsed/refractory

NCT03874052 Venetoclax + ruxolitinib I Relapsed/refractory

NCT03471260 Venetoclax + ivosidenib Ib/II Relapsed/refractory

NCT04092179 Venetoclax + enasidenib Ib/II Relapsed/refractory

NCT03735875 Venetoclax + quizartinib Ib/II Relapsed/refractory

NCT03625505 Venetoclax + gilteritinib I Relapsed/refractory

AML: Acute myeloid leukemia.

metformin with venetoclax may be effective.
Finally, as discussed earlier, CLPB targeting can compromise mitochondrial matrix 

adding to Bcl-2 inhibition. Interestingly, a bacterial CLPB inhibitor has been developed 
and proposed as an antimicrobial agent with possible use in this setting[57].

VENETOCLAX+ DAUNORUBICIN/CYTARABINE
In vitro studies conducted in AML cell lines and patient-derived AML samples have 
shown that venetoclax in combination with daunorubicin or cytarabine reduced MCL-
1 protein levels resulting in increased DNA damage[66]. Preclinical synergy translated 
to the clinical setting in an open label, multicenter trial study with 82 patients in which 
CR rate was 54% with a median OS of 10.1 mo. Lower response rates were observed 
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for patients with prior hypomethylating agents[67]. Investigations for Venetoclax with 
daunorubicin/cytarabine (7 + 3) and consolidation therapy are currently underway.

VENETOCLAX + MCL1 INHIBITOR/ CYCLIN-DEPENDENT KINASE 9 
INHIBITION
MCL-1 inhibitors are under development to target VRCs. Direct MCL-1 inhibition with 
S63845 and A-1210477 plus venetoclax leads to synergistic cell killing of VRCs in vivo 
and in vitro. Additionally, several studies demonstrate preclinical synergy of A-
1210477 and venetoclax where successful neutralization of MCL-1-dependent AML 
cells have been demonstrated[68]. Dual inhibition of Bcl-2 and MCL-1 (with S55746 and 
S63845, respectively) has also shown strong activity against LSCs with relative sparing 
of normal progenitors. Researchers observed prolonged survival of xenograft models 
of AML with this combination[69].

More recent studies suggest synergy between venetoclax and inhibitors of Cyclin-
dependent kinase 9 (CDK9), a transcriptional regulator of MCL-1, via indirect targeting 
of MCL-1. Drivers of LSC survival like MCL-1 and MYC have very short half-lives 
making them expeditious targets to CDK9 inhibition. Alvocidib, aka flavopiridol, was 
the first of the CDK9 agents tested in combination with conventional chemotherapy[70]. 
A newer agent voruciclib that inhibits CDK9, 4, and 6 kinase diminishes transcription 
of MCL-1 downstream with better toxicity profile in comparison[71].

VENETOCLAX + MITOGEN ACTIVATED PROTEIN KINASE INHIBITION
Based on preclinical data, mitogen activated protein kinase pathway inhibitors such as 
cobimetinib (also a MEK1/2 inhibitor) have been studied with concomitant targeting 
of Bcl-2 in relapsed or refractory AML. Padua et al[72] demonstrated disruption of the 
RAS/Bcl-2 complex in AML patient derived samples suggesting potential efficacy of 
the combination[72]. Likewise, Han et al[73] studied co-targeting of Bcl-2 and mitogen 
activated protein kinase in Bcl-2 protein enriched leukemic cells and synergistic killing 
was appreciated with over 60% growth inhibition in AML samples, including VRCs[73]. 
Preliminary phase 1B clinical trial results, however, revealed increased gastrointestinal 
toxicity, mainly diarrhea, associated with cobimetinib[74]. Newer MAP kinase inhibitors 
with better safety profiles are currently under development.

VENETOCLAX + PHOSPHATIDYLINOSITOL-3 KINASE/ MAMMALIAN 
TARGET OF RAPAMYCIN 1 INHIBITION
Dual Bcl-2 and phosphatidylinositol-3-kinase (PI3K/AKT) inhibition may help 
overcome both acquired and intrinsic venetoclax resistance requiring and is being 
evaluated in AML[75]. Co-administration of venetoclax and apitolisib (GDC-
0980:PI3K/mTOR inhibitor) or taselisib (GDC-0032: p110β-sparing PI3K inhibitor) 
induced profound cytochrome C release and apoptosis in various AML cell lines. 
AKT/mTOR inactivation and MCL-1 downregulation were also noted, with BAX and 
BAK mediated apoptosis of a CD34+/38-/123+ population while sparing the normal 
HSCs.

VENETOCLAX + MOUSE DOUBLE MINUTE 2 ANTAGONIST
Small molecule mouse double minute 2 homolog (MDM2) antagonists reactivate the 
tumor suppressor function of wildtype-p53 leading to downstream stimulation of pro-
apoptotic BAX and NOXA. Further apoptotic pathways are promoted, like PUMA and 
BAD, to stabilize and degrade MCL-1. Studies with a combination of Nutlin-3a, a first-
generation MDM2 inhibitor, and ABT-737, a Bcl-2 inhibitor, published a decade ago 
displayed durable induction of mitochondrial apoptosis of AML cells by the 
combination[76]. Given preclinical rationale, researchers tested the combination of Bcl-2 
and MDM2 inhibition (by idasanutlin) in wildtype-AML to boost activity of venetoclax 
and prevent upfront resistance[77]. Safety and efficacy of venetoclax and idasanutlin has 
been studied in 39 patients with relapsed refractory elderly AML patients. Overall 
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response rate was 46% with superior responses in IDH1/2, RUNX1, JAK2, MPL, and 
CALR mutations. TP53 and FLT3 mutations were associated with primary or 
secondary refractoriness[78]. Additionally, updated data in both safety and efficacy 
appears to show reasonable tolerance to MDM2 and Bcl-2 inhibition.

VENETOCLAX + JAK2 INHIBITION
JAK inhibitors may combine with venetoclax to counteract bone marrow stroma-
mediated resistance in AML. Cytokines activated by JAK/STAT signaling like GM-
CSF support AML cell proliferation and switch dependency of Bcl-2 to Bcl-XL[79]. 
Correspondingly, ex vivo studies of isolated AML blasts expressed sensitivity to 
venetoclax + ruxolinitib combination as an effective method of killing[80].

VENETOCLAX + IDH INHIBITION
The small molecule IDH inhibitors enasidenib (IDH2) and ivosidenib (IDH1) are FDA 
approved for the treatment of AML. Inhibition of altered IDH1 and IDH2 enzymes 
along with hypomethylated genes can allow differentiation of LSCs[81]. Studies 
investigating safety and tolerability of IDH1 and Bcl-2 inhibition are currently ongoing 
with ivosidenib and venetoclax, respectively[82].

VENETOCLAX + FLT3 INHIBITION
Sequencing studies were performed to assess the combination of venetoclax and the 
small molecule FLT3 inhibitor quizartinib in specific FLT3 ITD mutated xenograft 
models. The combination induced durable tumor regression for up to 3 mo after 
cessation of treatment[83]. However, Chyla et al[84] noted that FLT3-ITD or PTPN11 
mutations may confer intrinsic and acquired resistance to venetoclax[84]. Clinical trials 
evaluating venetoclax and FLT3 inhibitor combination therapy are ongoing[9].

CONCLUSION
Up-front AML treatment with venetoclax in combination with a hypomethylating 
agent has shown impressive responses in multiple trials. Unfortunately, response 
durations are variable and patients still inevitably relapse. Attempts at identifying the 
cellular and molecular changes that occur after exposure to venetoclax have provided 
insight into mechanisms of resistance, namely alterations in LSC metabolism. 
Improved techniques to understand mitochondrial adaptations and the stromal 
microenvironment may aid in designing new therapeutic strategies. With more potent 
BH3 mimetics in development and rational combination therapies under investigation, 
the right strategy for building on the success of venetoclax treatment in AML is within 
reach.
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