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Abstract
Advancing knowledge of the transcriptome has revealed that circular RNAs 
(circRNAs) are widely expressed and evolutionarily conserved molecules that 
may serve relevant biological roles. More interesting is the accumulating evidence 
which demonstrates the implication of circRNAs in diseases, especially cancers. 
This revelation has helped to form the rationale for many studies exploring their 
utility as clinical biomarkers. CircRNAs are highly stable due to their unique 
structures, exhibit some tissue specificity, and are enriched in exosomes, which 
facilitate their detection in a range of body fluids. These properties make 
circRNAs ideal candidates for biomarker development in many diseases. This 
review will outline the discovery, biogenesis, and proposed functions of 
circRNAs.
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Core tip: Circular RNAs are unusually stable RNA molecules that are tissue- and cell 
lineage-specific, abundantly expressed in cells, and enriched in exosomes. These 
properties facilitate their detection in different body fluids and probable utility as 
biomarkers. Herein, we review the literature that investigates their potential as biomarkers 
for prostate cancer.
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INTRODUCTION
Whilst they are amongst the last addition to the RNA family, circular RNAs 
(circRNAs) are not new discoveries[1]. Circular transcripts were originally found to 
naturally exist in plant viroids in 1976[2] and in the hepatitis delta virus in 1986[3]. They 
were noted as endogenous molecules in eukaryotes by a study investigating splicing 
in the DCC gene[4]. In this study, splicing was observed to occur in a non-sequential 
fashion by means of “exon scrambling”; upstream exons moved downstream to bind 
exons and yielded circular transcripts[4]. Because their exons are inverted compared to 
the exonic arrangement on the genomic open reading frame, circRNAs were initially 
labeled as by-products of splicing error[5]. This narrative began to change upon 
discovery that the Syr gene in adult mice was only expressed as 1.23-kb circular 
transcripts[6]. Given the importance of this gene in sex determination during 
embryogenesis, it inferred possible pre-determined biological of circRNAs, albeit 
being grouped as non-coding RNAs (ncRNAs) at this time[7]. However, renewed 
interest in circRNAs occurred when Salzman et al[8] identified a myriad of circRNAs in 
a variety of normal, and malignant cell types. Additionally, the functional exploration 
of CDR1as revealed its ability to sponge miR-7 in neuronal tissue, inferring that 
miRNA sponging may be a function of other circRNAs as well[9]. Consequently, 
interest in the mechanistic machinery that drives the genesis of circRNAs, as well as 
their function has intensified over the last few years.

CIRCULAR RNA BIOGENESIS
The combinatorial model best explains the alternative splicing (AS) mechanism that 
facilitates exon skipping. In this model, splicing regulatory factors coordinate the 
splicing order to determine which exons are included in the final mRNA transcript[10]. 
The outcome is multiple isoforms of a protein with different functions[11]. AS not only 
coordinates diversity amongst the linear transcriptome, it also facilitates a diverse 
group of circRNAs formed via backsplicing[12]. In the backsplicing process, circular 
transcripts are generated through covalently fusing the 5′ site of an upstream exon 
(acceptor) with the 3′ end of the same, or a downstream exon (donor)[5,13,14] (Figure 1A). 
The diversity amongst circRNAs was evidenced with multiple genes in a recent study- 
a salient example was the BIRC6 gene which was shown to generate over 500 circular 
isoforms[15]. Unsurprisingly, the study also highlighted that diversity amongst circular 
isoforms was directly proportional to exon counts in the gene[15].

Interestingly, backsplicing is flanked by the canonical splicing motif, AG-GT[15] and 
the circular RNAs and their relative linear RNAs share canonical splice sites 
suggesting that they are both generated by the same spliceosome machinery[16]. One 
study demonstrated that introducing mutations into the canonical splice sites 
significantly decreased circRNA production[16]. This study, as well as others[17] have 
also projected that circular and linear RNAs are competitively generated by the same 
spliceosome.

Liang et al[18] indicate that circRNAs are seldomly formed from the first or last exons 
as these exons lack splicing binding sites. Moreover, the number of exons in a single 
circRNA usually ranges between one and five exons, with several sources reporting 
that circRNAs with two to three exons are most prevalent[4,5,8,12]. Nonetheless, exons are 
not exclusive components of circRNAs; circularization of introns, long non-coding 
RNAs (lncRNAs), antisense transcripts, and intergenic regions is also possible[8,19]. 
Fascinatingly, there are multiple pieces of evidence of circRNAs consisting of both 
exonic and intronic regions[5,8,20,21], but exonic circRNAs are still most prevalent and 
studied[12,20]. Interestingly, Vo et al[15], mentioned a new subset of circRNAs generated 
from exons provided by adjacent genes on the same strand called read-through 
circRNAs (rt-circRNAs). The specific mechanisms of backsplicing are intricate and are 
still being investigated as bioinformatics of circRNA mapping improves. However, the 
following models are recurrently proposed to facilitate backsplicing: Exon skipping 
model (Lariat model), Intron-pairing, and the RNA-binding protein (RBP) models.

Exon skipping model (Lariat model)
In the exon skipping model, canonical splicing occurs first, producing the mRNA 
transcript, and an intermediate lariat consisting of introns and skipped exons[1,5] 
(Figure 1B). The intermediate lariat is unstable and undergoes further splicing (intra-
lariat splicing) in which circRNA(s) are produced via backsplicing, and the intron lariat 
forms a separate RNA strand[1,5,20]. However, backsplicing via exon skipping can also 
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Figure 1  Biogenesis of circRNAs. A: In backsplicing, circRNAs are usually flanked by the canonical splicing motifs, AG-GT, and covalently fuse the 5′ site of 
an upstream exon (acceptor) with the 3′ end of a downstream exon (donor); B: In the exon skipping model, an unstable intermediate lariat consisting of introns and 
skipped exons are generated after splicing. The intermediate lariat is then spliced to produce circRNA; C: Flanking introns containing complementary sequences (Alu 
repeats) bind and increase the possibility of backsplicing; D: RNA-binding proteins, such as Quaking can bind to flanking introns and dimerize to create a closed RNA 
loop which facilitates backsplicing. QKI: Quaking.

occur independent of lariat formation by means of direct backsplicing[5].

Intron-pairing
A common feature amongst circularized exons is the presence of long flanking introns 
containing complementary sequences (Alu repeats)[20] (Figure 1C). This characteristic 
makes it possible to predict the backsplicing sites of circularization using 
bioinformatics. Hybridization of these complementary sequences increases the 
proximity of exonic backsplicing sites and facilitates backsplicing of said sites[18,20]. In 
this model, the circRNA generation is prioritized over linear transcripts, unlike in the 
exon skipping model[5,20]. Thus further suggesting that circRNAs are purposely 
produced, and according to Eger et al[5], explain the higher expression of certain 
circRNAs for some genes over linear transcripts. Interestingly, multiple studies 
propose that flanking intronic sequences represented in this model can be considered 
modulators in circularization efficiency[16,20,22]. Zhang et al[21] calls this model of 
backsplicing “alternative circularization”, and adds that alternative circularization in 
concert with alternative splicing, also enhances exonic circularization diversity from a 
single gene.

RBPs-mediated backsplicing
Multiple studies have demonstrated RBPs-mediated exon circularization with RBPs 
such as Quaking (QKI) and Muscleblind protein (MBL)[16,23]. In this model, RBPs bind 
to flanking introns (near to splicing sites) and dimerize to create a closed RNA loop 
that facilitates backsplicing[23,24] (Figure 1D). Conn et al[23] showed that inserting 
synthetic QKI into intron sites significantly induced circRNA formation and confirmed 
QKI-directed biosynthesis of circRNA. Similarly, in a prior study, circMbl formation 
was significantly increased after cells were transfected with MBL variants. This finding 
was accompanied by a reduction in linear Mbl generation[16]. Altogether, these results 
not only demonstrated RBP-regulated circRNA generation but also demonstrated the 
role of RBPs in competitive splicing to generate circular versus linear mRNAs.

CIRCULAR RNA FUNCTIONS
Though there are several pieces of evidence supporting functions such as miRNA 
sponging in molecules like CDR1as, substantial investigation of general functionality 
have only been demonstrated in a handful of circRNAs. Herein, we highlight three 
proposed functions of circRNAs that have been investigated: MiRNA sponging, 
protein binding, and cap-independent translation. However, whether these functions 
are generally exhibited by all or most circRNAs is not known.
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CircRNAs are miRNA sponges and intermediate miRNA reservoirs
Perhaps the most examined function of circRNAs is their ability to sponge miRNAs. 
Some circRNAs harbor microRNA response elements (MREs) which facilitate the 
competitive binding of miRNAs[25,26]. The sequestration of miRNAs by circRNAs 
modifies their activity in regards to mRNA target gene expression[1,25]. In essence, 
circRNAs are indirectly involved in mRNA gene expression through miRNA 
sponging. For example, CDR1as contains over 70 conserved binding sites for miR-
7[9,25,27], and the binding capacity is 10 times higher than that of any other transcript or 
mRNA target[27]. Hansen and colleagues further add that the competition between 
miR-7 targets and CDR1as creates a buffer effect that prevents transient fluctuations in 
miR-7 expression[28]. Furthermore, cleavage of CDR1as-miR-7 by argonaute 2 (AGO2) 
results in the release of miR-7 and the subsequent inhibition of miR-7 targets[25,28,29]. As 
such, CDR1as functions not only as a miRNA sponge but also as an intermediate 
reservoir for miR-7[29].

Protein binding
Some circRNAs can competitively bind RBPs as well as store, sort, and sequester 
proteins in the cytoplasm to limit nuclear entry, regulate their function, and act as 
scaffolds for protein-protein interactions[30,31]. For example, CircFOXO3 binds and 
prevents the interaction of p21 and CKD1 to suppress cell cycle progression at the G1 
stage in a non-tumor cell line[32], and scaffolds p53 and Mdm2 in breast cancer cell lines 
to promote Mdm2-induced p53 degradation[33]. The interaction between circMbl and 
MBL is interesting as MBL can prioritize the generation of circMbl over linear forms, 
which in turn regulates MBL levels by sponging[16].

CircRNAs mediated protein translation in a cap-independent manner
The predominant opinion on circRNAs is that they are ncRNAs that do not translate 
proteins. However, the advent of engineered circRNAs that translate protein[20] 
fostered questions as to whether protein-coding endogenous eukaryotic circRNAs 
exist. Whilst the predominant stance still aligns with the former view, it has since 
come to light that there is a minute proportion (< 1%) of circRNAs that contain the 
start AUG codon, and are able to associate with ribosomes. Amongst them is 
circZNF609, which consists of a start and stop codon similar to those in the linear 
transcript. In their study, Legnini et al[34] were able to identify circ-ZNF609 as 
eukaryotic circRNAs that associate with polysomes, and are protein-coding. In circular 
transcripts like circ-ZNF609, the 5’untranslated regions (5’UTR) are included in the 
circular sequence during circularization. The 5’UTRs undergo folding to form internal 
ribosomal entry sites (IRES) which facilitate ribosomal association[34]. Some circRNAs 
such as circ-FBXW7 are also able to translate protein by other mechanisms such as N6- 
adenosine methylation[12,29]. Considering that most circRNAs are less abundant than 
their linear counterparts, it is unsurprising that the aforementioned examples of 
protein-coding circRNAs are less efficient in this activity than linear transcripts. 
Accumulating evidence also suggests that cap-independent translation is a cellular 
stress response to generate immediate and selective changes in protein levels[34].

THE POTENTIAL OF CIRCULAR RNA AS BIOMARKERS
Abundance
CircRNAs represent approximately 10% of the total RNA content in cells[35], with some 
being more abundantly expressed than their linear isoforms[8,36]. Their global 
expression and abundance can be stage-or-age dependent[37] as evidenced by several 
studies demonstrating variation in circRNA expressions at different developmental 
stages. Two studies reported the induction of circRNA expression during embryonic 
development in humans and flies across a range of tissues[38,39]. For example, the 
circular RNA generated from the NCX1 gene (primarily expressed in cardiomyocytes) 
was most highly expressed during fetal development according to Szabo et al[38]. In the 
mouse brain, one study demonstrated that certain circRNAs were more expressed in 
aged mice versus mice half their age[40] suggesting a function in neuronal maturity; 
another study described circRNA abundance at different stages of hippocampus 
development in the brain[41]. Interestingly, circRNA abundance can be independent of 
linear RNA expression[42] indicating splicing preference for generating certain 
circRNAs at different biological stages and suggesting an overall function in 
development.
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Tissue- and cell lineage-specificity
The expression of some circRNAs is cell and tissue-dependent[17,42,43] which suggests 
they can be used as molecular markers for different diseases. For example, the 
expression levels of circular isoforms of the DCC gene varied across human tissues and 
did not correlate with their linear counterparts[4]. Similarly, certain circRNAs are 
concentrated in different parts of mammalian brains, and also had varying ratios of 
circRNAs versus linear RNAs[17]. In mice, the circular forms of Rmst and Khl12 were 
highly expressed in the brains versus the liver and lungs[41]. These studies suggest that 
circRNA generation and subsequent expression is a widely regulated process. 
Furthermore, this regulation appears to be evolutionarily conserved across mammals, 
having had several studies document the conservation between mouse, pigs, flies, and 
humans in brain tissues[1,17,20,42].

Stability
Unlike linear transcripts, circRNAs are covalently closed loops that lack 
polyadenylated tails[8,20]. Hence, circRNAs are relatively more stable, and have 
increased protection from exonuclease degradation[8,20]. Considering that exonucleases, 
and not endonucleases are the predominant nucleases in host RNA cells[44], it is 
inferred that the accumulation and detection of circRNAs is favored over the linear 
transcripts. Though RNA circularization generally increases stability of RNA 
molecules, hepatitis delta virus (HDV) circular RNAs become more susceptible to 
degradation by nucleases as they increase in molecular size. However, there is 
evidence suggesting that these larger HDV circles can be stabilized by their 
interactions with RBPs such as Ag-S[45].

Unsurprisingly, most circRNAs also have a half-life that is approximately 2.5 times 
longer than their linear counterparts in mammalian cells[20,25]. Due to their relative 
stability, circRNAs can also be detected at higher levels (approximately 6.3 folds 
higher) in exosomes than in cells[46]. This is an important property which contributes to 
their detection in body fluids.

Exosome enrichment and detection in body fluids
CircRNAs are more enriched in exosomes compared to intracellular levels[30,46]. 
Exosomes are vesicles that facilitate cell-to-cell communication between parent and 
recipient cells[27]. CircRNAs are sorted into exosomes potentially as a response to 
stimuli or physiological needs[27]. Though the precise mechanism is largely unclear, the 
sorting of circRNAs into exosomes is considered to be a regulated and selective 
process and can be guided by different factors such as RBPs and miRNA 
abundance[30,46]. Because of their enrichment and stability in exosomes, circRNAs are 
detectable in a range of body fluids including saliva[47], plasma[48], urine[49], gastric 
fluid[50], and supports their consideration as minimally-invasive biomarkers. One study 
shows that a group of exosomal-circRNAs (exo-circRNAs) in serum could distinguish 
between colon cancer patients and healthy controls[46]. Another study demonstrated 
that circRNA-IARS in exosomes could be a potential early diagnostic and prognostic 
predictor of pancreatic ductal adenocarcinoma (PDAC)[51]. These two studies 
demonstrate the translational potential of exo-circRNAs as circulating clinical 
biomarkers.

Genomic information
Unlike protein biomarkers, circRNAs are transcriptomic molecules that entail nucleic 
acid sequences. These sequences could potentially convey genomic information 
pertaining to germline mutations, as well as therapy-related somatic mutations which 
may inform disease prognosis and facilitate therapy decision[52]. Although cell-free 
tumor DNA can also provide similar information, it reflects the tumor cell genome and 
is passively released from dead tumor cells. In contrast, circRNAs are gene transcripts 
and can be both passively and selectively released from tumor cells in exosomes. 
Therefore, circRNAs could be more effective early indicators of disease.

CIRCULAR RNA IN PROSTATE CANCER
Current biomarkers in prostate cancer
Prostate cancer (PCa) is one of the most common cancers amongst men 
worldwide[53,54]. Like many other cancers, PCa management is plagued with the 
possibility of metastasis, therapy resistance, and poor diagnostic and prognostic 
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biomarkers for screening[54]. Despite the emergence of a plethora of potential prostate 
cancer biomarkers, the prostate-specific antigen (PSA) still remains the best tool to 
general screening, and monitoring post-treatment[54]. Still, PSA testing is not without 
its shortcomings and controversies. Whilst it is prostate-specific, the PSA is not PCa 
specific, and its level in the blood can be affected by other factors such as age, trauma, 
inflammation, benign prostatic hypertrophy (BPH), etc[55]. Moreover, the established 
normal range of PSA (< 4.0 ng/mL) insufficiently captures PCa cases and often lead to 
under-diagnoses and false-positives[56,57]. Reports show that only 25%-30% of elevated 
PSA within the grey zone (4.0-9.9 ng/mL) cases are confirmed with PCa when 
biopsied[57,58]. From their study, Thompson et al[57] showed that normal PSA is also 
possible in men with PCa and high Gleason grade- this was observed in 15% of their 
study participants with normal PSAs.

The limitation of PSA also lies in deciding which cases move forward with biopsy 
for pathological diagnosis of PCa, which has been the blame for hundreds of 
thousands of unnecessary prostate biopsies in the United States yearly[59]. Serum levels 
of other PSA isoforms (e.g. p2PSA) show improved specificity to the PSA blood test[55]. 
Other potential biomarkers such as the prostate cancer antigen 3 (PCA3) score has 
shown utility in PCa diagnosis and monitoring[60]. PCA3 is a long non-coding RNA 
that is highly expressed in PCa (primary and metastatic cases)[60]. Whilst possessing a 
higher specificity than serum PSA, PCA3 score has variable sensitivity and requires a 
digital rectal examination to collect the specimen, which limits its clinical usage[61]. As 
evidenced by one study, using PCa-specific circRNAs (circ_0057558 and circ_0062019) 
from tissues and PSA levels together could offer a diagnostic advantage over just the 
PSA test[62]. In this study, the combination increased the AUC, specificity, and 
sensitivity for distinguishing between BPH and PCa[62]. However, reliable, and 
minimally-invasive PCa clinical biomarkers that can provide diagnostic and 
prognostic information solely, or in supplementation to the PSA test is still lacking.

CircRNAs as potential biomarkers of prostate cancer
The advancement of transcriptomic profiling has revealed a plethora of circRNAs 
worthy of further investigations for PCa biomarker development[15,36,63,64]. Chen and 
colleagues identified a group of circRNAs that are able to distinguish between 
localized PCa and normal prostate[36]. This study also proposed that circRNA 
abundance may not only be tissue-dependent but also based on functional roles in the 
tumor such as cell proliferation[36]. The functional analyses conducted in this study 
have strengthened the consideration of circRNAs as PCa biomarkers.

Along with establishing the MiOncoCirc catalog of circRNAs, Vo and colleagues 
identified a subset of circRNAs able to distinguish between PCa subtypes using tissue 
biopsies[36]. From this subset, circAMACR was upregulated and associated with 
androgen receptor (AR) amplification in castration-resistant prostate cancer. 
Additionally, circAURKA was upregulated in the suggestion of neuroendocrine 
prostate cancer (NEPC)[36]. These are promising markers for therapy-resistant PCa 
progression and warrant further investigations in clinical settings in different patient 
cohorts.

In collaboration with Yan Dong’s Lab, we reported and validated that multiple 
circRNAs are encoded by the AR gene, and are widespread in PCa cells and xenograft 
models[65]. We have further demonstrated that one of the AR circRNAs, namely 
circAR3, is abundantly expressed in prostate tissues and detectable in patient plasma 
in prostate- and prostate cancer-specific manners[52]. It is worth to be noticed that the 
levels of intratumoral circAR3 reduced in high Gleason tumors, while plasma circAR3 
is positively associated with high Gleason scores and positive lymph node metastasis, 
making it suitable for biomarker development in PCa[52]. This disproportional 
expression of circRNAs in tissue and blood may likely be explained by the release 
rates of circRNAs from tissue to bloodstream that can be affected by multiple factors 
(Figure 2): (1) CircRNAs can be selectively packaged into exosomes and actively 
released from the tumor into the circulatory system where they are detectable in 
plasma; (2) With PCa development, the prostate architecture is disrupted leading to 
faster release of circRNAs from the tissues into the stromal space. They can circumvent 
the endothelial cells of the blood vessels and enter the bloodstream. Similar to PSA, the 
plasma concentration of PCa-specific circRNAs can be increased in this way; (3) Cell 
death induced by stresses such as hypoxia, inflammation, and anti-tumor therapies 
can increase the release of circRNAs into the bloodstream; and (4) As tumor invasion 
and metastasis occur, microparticles containing circRNAs are shed from tumor cells, 
subsequently increasing the circRNA concentration in plasma. As indicated with 
circAR3, plasma levels were higher in lymph node metastasis than without[52]. 
Altogether, these form a complex network that constitutes the disproportion between 
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Figure 2  The disproportion of circRNAs between tumor and plasma. A: CircRNAs can be selectively enriched in exosomes and actively released into 
plasma as exosomes. During PCa progression, the integrity of normal prostatic tissues will be interrupted; this facilitates the release of circRNAs into the bloodstream; 
B: Stresses such as hypoxia, inflammation, and anti-tumor therapies will cause cell death and increase the release of circRNAs. Microparticles containing circRNAs 
shed from the metastasizing tumor will subsequently increase the circRNA concentration in plasma.

circRNA levels in tumors versus plasma.
The functional characterization of circRNAs in PCa cells further advocates that 

certain circRNAs could be developed into PCa biomarkers. CircRNA-miRNA mapping 
has revealed that studying the interaction between circRNAs and miRNAs may 
further help to characterize the role of certain circRNAs in PCa development. In vitro 
investigations of interactions such as CDR1as-miR-7[66], circRNA-MYLK- miR-29a[64], 
and circBAGE2-miR-103a[66] have implicated tumor suppressive and oncogenic roles of 
circRNAs, which could imply their utility as biomarkers as well as therapeutic 
targets[64]. Other studies have shown that some circRNAs may play roles in 
contributing to therapy-resistance PCa. For example, downregulated circFOXO3 
promotes PCa progression to be resistance to docetaxel[67], while hsa_circ_0004870 
downregulation is correlated with enzalutamide resistance[11].

CONCLUSION
The surmounting evidence linking circRNA expression to the development of PCa is 
promising. Their presence and stability in body fluids such as plasma and urine allow 
their expressions to be analyzed in regards to a range of urologic diseases. Moreover, 
their detectability in said body fluids is a key pro in regards to convenient, minimally 
invasive sample collection which is an important feature for ideal biomarkers. Most 
exciting is the validation of a circRNA that is prostate and prostate-cancer specific, and 
detectable in the plasma of patients. Overall, further investigations are needed to truly 
label circRNAs as biomarkers. Firstly, it might be useful to focus on functionally 
characterizing specific circRNAs in pathogenesis and or tumorigenesis.

Molecular pathological epidemiology (MPE) research focuses on the etiology and 
pathogenesis of diseases. The inclusion of MPE studies in the future could provide 
clearer correlations between circRNAs, tumor characteristics/molecular changes, risk 
factors (environmental, lifestyle, microbiome, genetic mutations, etc.), and disease 
outcome (including tumor subtypes) in PCa patients. It would also be interesting to 
see whether the findings of such studies could expand on the potential clinical 
applications of circRNAs in cancer management; specifically as it relates to 
constructing predictive models that could improve screening and personalized 
medicine. But, the success of MPE research is hindered by challenges such as the need 
for trans-disciplinary experts, and poorer success rates with funding applications[68]. 
Nonetheless, MPE research generally have strong impact[68], thus it is a promising 
direction for elevating prostate cancer research with circRNAs.

Furthermore, considering the wide expression of circRNAs, perhaps closer attention 
should be on defining disease-specific circRNA panels which could be used in 
addition to traditional diagnostic markers. Additionally, for clinical validation, sample 
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processing, detection method, and interpretation (cut-off) values need to be 
standardized across studies prior to truly establishing their clinical capacity as 
biomarkers. Nonetheless, with the growing capacity of next-generation sequencing 
and bioinformatics, the knowledge of circRNAs and their biomarker potential will 
undoubtedly continue to expand.
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