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In biology, it is often critical to determine the identity of an organism
and phenotypic traits of interest. Whole-genome sequencing can be
useful for this but has limited power for trait prediction. However,
we can take advantage of the inherent information content of phe-
notypes to bypass these limitations. We demonstrate, in clinical and
environmental bacterial isolates, that growth dynamics in standard-
ized conditions can differentiate between genotypes, even among
strains from the same species. We find that for pairs of isolates, there
is little correlation between genetic distance, according to phyloge-
netic analysis, and phenotypic distance, as determined by growth
dynamics. This absence of correlation underscores the challenge in
using genomics to infer phenotypes and vice versa. Bypassing this
complexity, we show that growth dynamics alone can robustly pre-
dict antibiotic responses. These findings are a foundation for a
method to identify traits not easily traced to a genetic mechanism.
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In microbiology, the main approach to identify bacteria has
been through the characterization of observable phenotypes

(1). However, advances in sequencing technology have shifted
the focus to genetic information (2). In general, mapping from a
piece of DNA to the corresponding product (RNA or protein) is
definitive, as dictated by the central dogma. To this end, genome-
wide association studies have been instrumental in identifying
genes responsible for observed phenotypic traits (2–4). For
example, studies have enumerated genes encoding β-lactamase,
an enzyme that degrades β-lactam antibiotics (3). These have
become a genetic signature for identifying resistance to β-lactam
antibiotics (4).
However, how a gene and its product affect the behavior of an

organism is typically difficult to predict (2, 5). This challenge is,
in part, due to the sheer magnitude of interactions between
genes, their products, and environmental factors that collectively
define the operation of an organism (6–9). While the genetic
sequences of β-lactamases are well documented, how this en-
zyme affects an organism depends on other factors (5). For in-
stance, even in the presence of the β-lactamase gene, expression
can be too low for single-cell antibiotic tolerance. However, a
population can still survive with a sufficiently high initial cell
density (5, 10). Simultaneously, phenotypic resistance can arise
in the absence of a clear and unequivocal genetic basis. It has
been shown for some antibiotics, like those that target the ri-
bosome, that antibiotic tolerance can be cell density dependent,
as with the inoculum effect (11–13). This complexity limits the
general utilization of genetics for trait prediction (14).
Conversely, it remains impossible to deduce the complete

genomic information of an organism solely based on its pheno-
typic traits. However, for many applications, the ability to differ-
entiate between organisms of interest is sufficient (Fig. 1) (15).
Consider two bacterial strains in the same environment; we define
a strain as an organism with a unique genetic sequence. Typically,

these strains would exhibit two different phenotypes (e.g., growth
rate, nutrient utilization) (16–20). For instance, pathogenic and
commensal strains of Escherichia coli can be differentiated by the
carbon sources they utilize (21–23).
Alternatively, a single strain growing in two different environ-

ments generally exhibits two distinct phenotypes (24). Yet these
phenotypes are intrinsically linked as both arise from the same
genotype. With a sufficiently strong relationship, it is possible to
use one to infer the other. This intuition underlies several ad hoc
applications with phenotypic signatures linked to traits of interest
(19–22, 25). In Klebsiella pneumoniae, changes in D-arabinose
metabolism have been linked to hypervirulence (20). Additionally,
studies have identified instances where resistance to bacterio-
phages, viruses that infect bacteria, is correlated with antibiotic
resistance (26, 27).
The interactions between cells and their environment are

complex, changing over time and across environmental conditions.
Previous work has shown that these interactions can manifest in
temporal growth dynamics, which quantify changes in cell growth
over time (28–30). For example, Tan et al. demonstrated that growth
signatures can differentiate laboratory strains as well as the same
strain under different environmental conditions (28). We take ad-
vantage of this property to use growth dynamics for both strain
identification and antibiotic resistance prediction. The funda-
mental requirement for this strategy is for the phenotype to be
adequately complex, such that there exists a sufficiently unique
mapping with the underlying genotype or another phenotype.
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Results
We utilized a library of bacterial isolates collected from patients
across the Duke University Hospital and North Carolina Com-
munity Hospital systems (Methods). This library consists of 244
fully sequenced clinical isolates, which corresponds to 203
unique strains based on whole-genome sequencing (WGS) and
41 unique sequence types according to multilocus sequence
typing (SI Appendix, section 3.1) (31). We chose this library for its

two main properties: 1) its composition, as it contains a few genera
within Enterobacteriaceae, mainly E. coli, and 2) its characteriza-
tion, which includes WGS and the antibiotic resistance profile
spanning numerous antibiotic classes (32). The first point is crucial
for evaluating the feasibility of strain-level identification, even
when the strains of interest are closely related. The second point
becomes useful for evaluating the mapping between growth and
other traits.

A

B C

Fig. 1. Growth dynamics reflect the complex interplay between microbes and their environments and encode rich information. (A) The interactions between
cells and their environment are complex and manifest in temporal growth dynamics. Such a complex phenotype contains information on microbial organisms
from genetic identity to key characteristics. In the same environment, two genetically different strains are expected to generate different growth dynamics.
(B and C) The information encoded in the growth dynamics can be used for trait inference or strain identification.

A

B

C

Fig. 2. Workflow for growth-based predictions. (A) Experimental procedure. From individual colonies, isolates were grown overnight. These cultures were
diluted into 96-well plates and grown under standardized conditions to generate growth dynamics. (B) Model development. The training dataset consists of
antibiotic susceptibility profiles and strain identity. Growth dynamics train SVM models; these models predict either strain identity or antibiotic resistance. For
an unknown sample, growth is the input for the trained models to predict identity and resistance profile. (C) Phenotypic profiles of clinical isolates. Growth
dynamics (time derivative of growth curves) for the 10,000× condition.
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Determining Identity from Growth Dynamics. We first examined
whether temporal growth dynamics contain sufficient infor-
mation for strain-level discrimination. To do this, we used the
time derivative of the growth curve as the input to train a
support vector machine (SVM) model (Methods). Specifically,
we took the derivative of 99 time point growth curves, resulting
in 98 features representing the change in cell density over
time. SVM is a supervised learning algorithm which maximizes
the margin (distance) between support vectors, data points
closest to a separating hyperplane (boundary), and this
boundary. This trait allows SVM to develop accurate models
for small datasets (33). For our multiclass classification
problem, we applied a one-versus-all approach where each
model consisted of n classifiers (corresponding to n strains).
Each classifier is an independent SVM model that discrimi-
nates between one strain and all others. The classifier corre-
sponding to the maximum margin, the largest-valued margin
of n classifiers, is the predicted class. A larger value implies a
greater confidence in the prediction being correct: The farther
a sample is from the boundary, the less likely noise could push
it to either side. Accordingly, we used the maximum margin as
a metric to estimate the confidence of predictions (SI Ap-
pendix, section 1.5).
As an initial proof of concept, we generated a dataset con-

sisting of technical replicates. We measured the growth dynamic
of 203 strains grown under a rich media condition (lysogeny
broth [LB] with 10,000× dilution) for ∼16 h (99 time points in
10 min increments) (Fig. 2). The use of technical replicates
allowed the minimization of variabilities due to other factors,
like those associated with each starter culture. In these tech-
nical replicates, the growth rates would still fluctuate due to
the bacteria–environment interaction in different wells; it is
these fluctuations that we use for strain identification. In
Fig. 3, we provide an example of the training process using
SVM with four random strains. Here, we applied principal
component analysis to examine the features in a two-dimensional
(2D) space. Like this 2D example, SVM optimizes the separating
hyperplanes in our true model, albeit in a 98-dimensional space.
Using a single-nucleotide polymorphism (SNP)-based approach to

strain definition (Methods), we saw an average classification
accuracy of 91.50% (SI Appendix, section 1.1). This accuracy
drastically surpassed what we expected with random chance
(0.49%). In addition to the SNP-based approach, which uti-
lizes SNPs to measure the genetic distance between isolates, we
also demonstrate the general applicability of this method to
changing strain definitions. To this end, we utilize a multilocus
sequence typing (MLST)-based approach which uses a core set
of genes to evaluate genetic distance. With a MLST-based
approach to strain definition, we saw an average classification
accuracy of 97.56%. In SI Appendix, we explore how this strain-
level prediction is affected by changing the input features (SI
Appendix, section 1.1).
To demonstrate the generality of these findings to a higher

degree of experimental variability, we generated a secondary
dataset containing growth dynamics for the same clinical isolate
library with both biological and technical replicates (Methods).
With an average classification accuracy of 82.56% (SNP-based
strain definition), we show the robustness of the predictive
power. In fact, biological replicates not previously seen by the
model could also be predicted with a high degree of accuracy (SI
Appendix, section 1.7); this was consistently shown using both a
SNP- and MLST-based approach to strain definition. This ap-
proach would ideally be how this method would be used in long-
term applications. This general capability allows us to distinguish
organisms beyond the species level, using phenotypes, in a scalable
manner.
A critical requirement for this approach to work is that the

data are of sufficient temporal resolution and reproducibility. In
SI Appendix, we examine the impact of changing the temporal
resolution of growth dynamics on predictive power and observe
that in general, increasing temporal resolution leads to an in-
crease in classification accuracy (SI Appendix, Fig. S1.1). Impor-
tantly, the variability between replicates should be less than the
difference between strains. To illustrate this point, we analyzed a
set of recently published growth curves for the Keio collection, an
E. coli single-gene knockout library (SI Appendix, section 1.3) (34).
Using the time derivative of the growth curves as the features,
we achieved an accuracy of 12.69% for 3,866 strains. In this model,

A

B C

Fig. 3. Development of prediction confidence. (A) Four-strain example. Growth dynamics are the time derivative of smoothed growth curves (10,000×
condition). (B) SVM output. We examine SVM predictions in 2D through principal component analysis as an example for visualization purposes. The Left
illustrates the training set. In this four-class example (1, 2, 3, 4), the test point (red) is predicted as 1. (C) Maximum margin: CI estimate. We examine the
distribution of maximum margins for correctly classified (green) and misclassified (red) samples in the test set (10,000×). Logistic regression predicts the
probability of the prediction being correct; the shaded region indicates the 95% CI.
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the predicted class label was based on the highest-valued 10
margins (k = 10). Here, k represents the number of highest-valued
margins we consider. For each test sample, the output of the SVM
model was 3,866 margins, each corresponding to the distance from
the separating boundary to this sample (per class). For k = 10, if
the class corresponding to one of the highest-valued 10 margins
was the same as the true class, then the prediction was considered
to be correct. The accuracy for this library was much lower than
that from our own dataset, likely due to two technical issues: 1)
low temporal resolution (49 time points over 18 h) and 2) fewer
replicates under higher experimental variability. Despite these
caveats, the accuracy far exceeded random chance (0.26% for k =
10) on a library consisting of over 3,000 strains differing in genetic
sequence by a single gene, underscoring the rich information
content in growth dynamics.
Given the high accuracy in distinguishing different strains

solely based on growth dynamics, we wondered if a correlation
exists between genetic and phenotypic distances. To date, there
is no consensus in the literature about whether this correlation
exists (35–40). Plata et al. describe a correlation between phe-
notypic similarity in terms of carbon utilization and genetic dis-
tance, especially at lower genetic distances (particularly at the
species level) (36). One of the main limitations of this work,
however, lies in the utilization of 16S rRNA sequences to quantify
genetic distance. While a common approach to examining bacte-
rial phylogeny, it has a limited taxonomic resolution, which con-
strains the ability to measure genetic distance. In contrast,
Galardini et al. report no correlation between phenotypic and
phylogenetic distances for a library of about 700 E. coli strains
grown under 214 conditions (35). Although this analysis uses WGS
to calculate genetic distance, responses to the growth conditions
used to define the phenotypic distance are controlled by a small
subset of genes. As a result, the correlation becomes highly de-
pendent on the evolutionary rate of genes regulating the chosen
phenotypes relative to the other genes of E. coli.
Previous work examining the correlation between phenotypic

and genetic distances is additionally limited by their approach to
measuring phenotypic profiles. Specifically, they use metrics to
calculate phenotypic distances that limit the dynamic range of
the phenotype (35, 36). For example, Plata et al. define the
phenotypic profile with a binary metric for growth; this results in
much of the information stored within the phenotype being
discarded. To avoid the confounding factors that limit the in-
terpretability of previous work, we use 1) WGS to define genetic
distances and 2) temporal growth dynamics to define phenotypic
distances. The first ensures the high-resolution measure of ge-
netic distances. The second allows the utilization of a phenotype
that is regulated by a diverse set of genes and is crucial to en-
hancing the dynamic range of phenotypic diversity.
Here, we computed the phenotypic distances between two

strains as the Euclidean distance between the time derivative of
the growth curves (Methods). The genetic distance between them
was the pairwise distance used to construct the phylogenic tree.
This is defined according to the Tamura–Nei model, in which the
number of base substitutions between sequences reflect esti-
mates of evolutionary divergence (Methods) (41). This metric is
generally used in phylogeny to generate a tree in which branch
length and structure describe the evolutionary history of a set of
organisms. With these metrics, there was no statistically signifi-
cant correlation between the genetic distance, as determined by
phylogenetic analysis (SNP-based definition), and the phenotypic
distance, defined as the distance between the average growth
dynamics under the 10,000× condition (Fig. 4 A and B). Simi-
larly, there was no statistically significant correlation when the
genetic distance was defined by MLST (SI Appendix, Table S2.1).
One reason for the lack of correlation may have been the

limited genetic diversity of our clinical isolates. To test this notion,
we constructed a library of 607 environmental isolates collected

around the Duke University campus, which were more genetically
diverse (Methods). The isolates in this library spanned over 17
taxonomic orders. For 143 unique strains grown under a rich
media condition, tryptic soy broth (10,000× dilution), we achieved
a classification accuracy of 82.75% on a validation set. This was
significantly better than chance, 0.70%. By changing the features
from the time derivative of growth curves to growth rate, we en-
hanced this accuracy to 90.68%. This indicated that distinct strain
libraries may benefit from different data processing pipelines.
Despite an increase in experimental variability (batch and plat-
form controls), we maintained high predictive power. As with the
clinical isolates, we saw no correlation between phenotypic and
genetic distances for the environmental isolates (Fig. 4B and
SI Appendix, Fig. S2.3 and Table S2.3).
With a lack of correlation between phenotypic and genetic

distances, we were interested in whether one phenotype could
predict a second phenotype. To start, we examined the correla-
tion between pairs of phenotypes. To this end, we used phage
and antibiotic treatments for two reasons: 1) their ability to per-
turb growth dynamics and 2) a previously described relationship
between resistances to phage and antibiotics (26, 27). We used λ
phage, a well-studied temperate phage that targets E. coli. Despite
this general ability, the infection and coexistence parameters can
differ between strains, resulting in growth variation (42, 43).
Similarly, we used a sublethal concentration of carbenicillin, to
which organisms could exhibit unique response parameters (5).
Specifically, resistance to antibiotics has been shown to be medi-
ated by modulations in bacterial metabolism, which can lead to
changes in growth dynamics (44, 45). As with the 10,000× condi-
tion, the growth dynamics in each condition were able to distin-
guish different strains with high accuracy. In particular, the phage
and carbenicillin conditions resulted in an average classification
accuracy of 92.12 and 91.01%, respectively. Like the 10,000×
condition, there was no correlation between genetic and pheno-
typic distances for either condition (SI Appendix, section 2.2). In
contrast, the correlation between growth dynamics of a pair of
conditions was statistically significant (Fig. 4C and SI Appendix,
section 2.2). This correlation occurred likely because these traits
were intrinsically related by genotype.

Growth Predicts Antibiotic Resistance.Given the strong correlation
between growth dynamics under different conditions, we rea-
soned that they can serve as the basis to predict a more distant,
but still related, phenotype: antibiotic resistance. This was im-
plied with previous work, which showed that phenotypic drug
sensitivity profiles cluster based on common mechanisms of ac-
tion (46). For the 244 clinical isolates, we had the corresponding
resistance profiles to four antibiotics from the clinical microbi-
ology laboratory. The antibiotics were ampicillin–sulbactam (SAM),
trimethoprim–sulfamethoxazole (SXT), gentamicin (GM), and
ciprofloxacin (CIP). For a direct comparison to sequence-based
approaches, we used the WGS of these isolates to predict anti-
biotic resistance with three sources of antibiotic resistance genes:
1) a compiled database of resistance mechanisms from the liter-
ature, 2) a curated amino acid sequence database, the Compre-
hensive Antibiotic Resistance Database (CARD), and 3) a curated
database of nucleotide sequences, ResFinder (SI Appendix, section
3.2) (47, 48).
We defined the true resistance phenotype as that from clinical

antimicrobial susceptibility tests; isolates were classified as re-
sistant if they presented either an intermediate or resistant
phenotype, according to the minimum inhibitory concentration
(32). This acted as the label for an SVM model (1 = resistance,
0 = sensitive) where the input was growth dynamics for a set of
growth conditions. We tested all combinations of growth con-
ditions as the input (Methods; 10,000× dilution, 100× dilution,
phage, and carbenicillin), and the results of these predictions are
visualized (Fig. 5 and SI Appendix, Fig. S1.2 and section 1.2). To
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predict antibiotic resistance, previous work has used specific
genetic signatures and growth under the corresponding antibiotic
(4). In contrast, we show in Fig. 5 that growth dynamics in the
absence of the corresponding antibiotic can similarly predict
resistance. Due to the characteristics of the clinical isolate library,
one caveat is that genetically similar isolates could be present in
both the training and test datasets for this prediction. While in this
work this may inflate the reported predictive accuracy, this is an
expected feature of clinical isolates should this approach be ap-
plied in practice.
In Fig. 5A, we illustrate the differences between antibiotic

resistance predictions using growth dynamics and WGS-based
methods. Specifically, the accuracy of predictions for SAM

resistance was on par with WGS, while WGS performed better in
the case of SXT. This is additionally demonstrated by the re-
ceiver operating characteristic (ROC) curves (Fig. 5B). A ROC
curve shows the false positive rate vs. the true positive rate and is
used to evaluate different models. Here, the red curves (WGS-
based methods) were closer to the ideal theoretical ROC curve
[passes through point (0, 1)] for SXT relative to the phenotype-
based ROC curves. In contrast, the reverse was true of SAM. For
CIP, the results were mixed, with WGS having improved per-
formance only when using a set of simple genetic markers (49,
50). Similarly, the results for GM were inconclusive due to gen-
erally poor accuracy for both methods. Taken as a whole, this result
highlights that both phenotype-based predictions and sequence-

A B

C

Fig. 4. Correlation between genetic and phenotypic landscape. (A) Distance metrics. Genetic distance is defined by phylogeny, and phenotypic distance is the
Euclidean distance between pairs of curves representing the time derivative of the growth curve. (B) Correlation between genetic and phenotypic distances.
Each point in the density plot is defined as the distance comparison (x axis is genetic distance, and y axis is phenotypic distance) of a pair of isolates. As the
color goes from blue to yellow, the number of isolates at a particular point on the plot increases. No significant correlation exists between genetic and
phenotypic distances. The Left corresponds to the 10,000× condition for the clinical isolates using a SNP approach to strain definition (P value = 0.59). The
Center corresponds to the 10,000× condition for the clinical isolates using a MLST definition of strain identity (P value = 0.49). The Right corresponds to
environmental isolates, taxonomic order Bacillales, using a SNP approach to strain definition (P value = 2.7 × 10−7). (C) Correlation between phenotypic
distances. Each point in the density plot is defined as the phenotypic distance comparison (between growth dynamics of growth conditions) of a pair of
isolates. As the color goes from blue to yellow, the number of isolates at a particular point on the plot increases. Here, CAR refers to the carbenicillin growth
condition. A significant correlation exists between pairs of phenotypes for the clinical isolates.

A B

Fig. 5. Antibiotic resistance prediction. (A) Growth dynamics can predict antibiotic resistance. We predict antibiotic resistance profiles for four antibiotics.
Each line going outward from the center represents the strength of the mapping for one of three metrics: accuracy, sensitivity, or specificity. Each quarter of
the circle represents the predictions for one of four antibiotics. The black lines within each slice correspond to WGS-based predictions using three databases:
1) the literature, 2) CARD, and (3) ResFinder. The black asterisk refers to literature. The red asterisks highlight the condition at which the best prediction occurs
based on the highest value for the average of accuracy, sensitivity, and specificity. (B) Evaluation of resistance prediction. We compare ROC curves for the
phenotype-based predictions and genotype-based predictions (red).
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based ones contribute valuable information and can be used
alongside one another. Additionally, this result is a demonstration of
predicting antibiotic resistance using a secondary phenotype without
requiring growth in the corresponding antibiotic.
The main limitation with sequence-based approaches is that

the effect of a gene on an organism is difficult to predict (14).
The presence of a gene conferring resistance does not necessarily
mean phenotypic resistance and vice versa (8, 13). This lack of a
direct connection was especially apparent for SAM and GM,
where WGS predictions had a significantly higher sensitivity than
specificity. Sensitivity is defined as the proportion of positive
(resistant) isolates that are correctly predicted, while specificity is
defined as the proportion of negative (sensitive) isolates that are
correctly predicted. In this context, a higher sensitivity than
specificity implied the presence of sensitive isolates predicted as
resistant. This may have occurred due to the presence of genes
known to confer resistance not providing phenotypic resistance.
In contrast, resistance to CIP is mediated by specific mutations

in the targets, DNA gyrase and topoisomerase (50). Since these
are crucial to cell division, they are relatively conserved, making
mutations highly likely to correspond to a resistant phenotype,
resulting in high specificity and sensitivity. As for GM, one
reason the predictions with growth dynamics were not accurate
may have been due to the imbalanced dataset; only 15% of the
244 clinical isolates were resistant. While the phenotype-based
predictions were not necessarily better than the sequence-based
benchmark for all antibiotics, the growth conditions were not
optimized for this prediction and can be significantly improved
upon in future iterations. The use of growth conditions that
maximize the information from the resulting growth dynamics
could potentially improve the predictive accuracy. This was shown
with the increased accuracy of SAM resistance prediction when
using the carbenicillin growth condition in the predictor (SI Ap-
pendix, Table S1.5).

Discussion
For a given environment, a genotype is typically uniquely mapped to
a particular phenotype (1). However, knowing the genotype does
not necessarily enable phenotype prediction due to the complex
mapping between the two (5, 14). One explanation for this com-
plexity is that genotype to phenotype maps of different systems can
have unique properties (14). For complex gene networks, changes in
genotype can result in a similar phenotype (51). However, in RNA
folding, even minor changes in the genotype can result in vastly
different structures and functions (14). The challenge in developing
this mapping is, in part, reflected by the lack of correlation between
genetic and phenotypic distances, which we and others have ob-
served (35, 38). Previous work has indicated contradictory findings
of the existence of this correlation (35, 36). As a result, we took two
measures to address limitations associated with these studies. The
first was to utilize growth as the phenotype, which is a high-level
trait and a fundamental feature of organisms. The second was to
increase the dynamic range of phenotypic distance by using the
temporal domain of growth.
There are several explanations that could underlie this ap-

parent lack of correlation between genetic and phenotypic dis-
tances (35, 38, 40). Most pertinently, genetic variants are often
neutral. Another explanation may be an incomplete view of the
genetic information (a lack of annotated information on plas-
mids, which can affect growth). By definition, genomic sequences
have a much higher dimension (∼4 million bases) than the growth
data (∼100 data points). While the variations in the growth curves
directly reflect phenotypic variation, many of the variations in the
genomic sequence do not. There are likely elements of the genetic
sequence that should be weighted more heavily in the distance
calculation than others. Due to the inability to apply this weighting
in an unbiased manner, however, many of the genetic variations
may act as noise. Based on our findings, the concept of a genotype

to phenotype correlation may be more nuanced than previously
appreciated, with the results dependent on the approach to
quantifying phenotypic and genetic distances.
There are several implications for the lack of correlation be-

tween the genetic and phenotypic landscapes. A major one is
that it casts doubts on the attempt to directly use WGS to predict
phenotypic traits, especially for those with a complex genetic
basis (52). Some have commented on approaches to bypass this
complexity (53). Burga and Lehner described intermediate phe-
notypes, like gene expression, as an alternative to genetics for
phenotype prediction (53). These can be useful for developing a
mapping since they capture both genetic and nongenetic factors.
However, for certain applications, our results show that an explicit
mapping is unnecessary. In particular, we show that growth dy-
namics contain sufficient information to distinguish different
strains, even beyond the species level. Intuitively, this is expected,
as single-gene mutations have been shown to affect growth (34).
However, the ability to distinguish hundreds of closely related
strains has not been previously explored. In contrast to the lack of
correlation between genetic and phenotypic distances, we saw
statistically significant correlations between phenotypic distances
of different growth conditions. This correlation was unexpected but
implies that at an organism level, seemingly unrelated phenotypes
can be linked. We show this by using growth dynamics to predict
related phenotypes of practical relevance. While we focus on an-
tibiotic resistance, we envision that such phenotype–phenotype
mappings can be established for other traits of interest, especially
those that are more difficult to quantify like biofilm formation and
virulence.
This work has implications for how clinicians identify and treat

bacterial infections. In particular, we demonstrated the ability to
differentiate clinically relevant bacteria with a resolution beyond
that of standard methods of bacterial identification. Addition-
ally, we described a method to bypass the current combinatorial
problem of antibiotic resistance detection. Rather than testing all
possible antibiotics with multiple concentrations for a pathogen
of interest, the prediction of antibiotic resistance with growth
phenotypes can be used to narrow down treatment options.
In contrast to other efforts to map phenotypes, the fundamental

innovation of our strategy is the use of the temporal features of
growth dynamics. The intuition here is that the temporal domain
incorporates the feedback between microbial growth and envi-
ronmental factors (29). This information is lost, however, when
studies discretize growth dynamics with metrics like the area under
the curve or maximum value (20, 24, 37, 39). For example, the
Biolog system generates a metric summarizing the growth of mi-
crobes for each condition in a panel of metabolites (54). Like our
work, this system has identified unique growth signatures of in-
dividual strains (55). Doing so, however, requires a screen of about
1,200 growth conditions (55). This is difficult to scale up, especially
for the differentiation of a large set of strains. In contrast, we show
that temporal growth dynamics can increase the information
content of individual growth conditions, simplifying experiments
by requiring fewer conditions. As a result, it is more compact and
can be more readily scaled up and standardized. The importance
of these dynamics has been suggested, but it is unclear whether
this is generally applicable (28). To this end, our work demon-
strates the broad scope of temporal growth dynamics to encode
information.

Methods
Strains, Media, and Growth Conditions.
Clinical isolates. We used a library of clinical isolates collected from two
sources. The first source consists of 185 isolates within a few genera in the
family Enterobacteriaceae (e.g., Klebsiella, Citrobacter, and Escherichia)
isolated from blood samples at the Duke University hospital (supplied by
Vance Fowler and Joshua Thaden), and the second consists of 59 multidrug-
resistant E. coli isolates collected from patients at North Carolina community
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hospitals (supplied by Deverick Anderson) (32). The raw WGS data for all
isolates utilized in this paper have been deposited in National Center for
Biotechnology Information (NCBI). Those for the first source were stored
under either Bioproject PRJNA290784 or PRJNA259658 (isolates are la-
beled as GN0xxxx). Those for the second source were deposited at the DNA
Data Bank of Japan (DDBJ)/European Molecular Biology Laboratory (EMBL)/
GenBank Sequence Read Archive 423 (SRA) under accession numbers DRX055674
to DRX05573.

To generate the primary dataset consisting of technical replicates, we
follow the following protocol. For each isolate, a frozen stock was plated on
LB agar (Miller’s) plates, and individual colonies were randomly selected to
inoculate growth media for experiments. Three milliliters of LB (Miller’s)
were used to prepare overnight cultures, which were shaken at 37 °C for
12 h. The optical density (OD) (absorbance at 600 nm) for the overnight
culture was taken on a plate reader (Victor3, Perkin-Elmer or infinite M200
Pro, Tecan) to ensure a consistent initial cell number. To calculate the initial
cell number, we assumed that 1 OD600 = 8 × 108 cells/mL This overnight
culture (for each isolate) was used to inoculate 4 wells in a 96-well plate (to
generate four technical replicates). For the growth curves, measurements for
each well were taken every 10 min with periodic shaking (5 s orbital) at 30 °C
for a total of 99 measurements under one of four growth conditions. Each
well was covered with 50 μL of mineral oil. The four conditions were 1) LB
(Miller’s) with an initial cell density of 2 × 104 cells/well, 2) LB (Miller’s) and λ
bacteriophage (multiplicity of infection = 1) with an initial cell density of 2 ×
104 cells/well, 3) LB (Miller’s) with an initial cell density of 2 × 106 cells/well,
and 4) LB (Miller’s) to a concentration of 5 μg/mL. Carbenicillin had an initial
cell density of 2 × 104 cells/well. In the main text (Results section), we de-
scribe these conditions as 10,000× dilution, phage, 100× dilution, and car-
benicillin, respectively. To prepare the phage condition, we propagated λ
bacteriophage by transfecting λ DNA from New England Biolabs (NEB)
(catalog #N3011s) into chemically competent JM101 E. coli cells from Agilent
technologies (catalog #200234). The transformed E. coli were plated, and
phage stocks were collected and titered.

To generate a secondary dataset on a subset of the clinical isolates con-
sisting of both biological and technical replicates in a higher-throughput
manner, we followed the following protocol. For biological replicate ex-
periments, frozen stocks were plated on LB agar plates, and three distinct
colonies were selected to inoculate growth media. Overnight cultures were
prepared in 1 mL of LB broth in 96-well deep-well microplates (VWR), which
were shaken at 37 °C for 16 h at 1,000 rpm. The OD (absorbance at 600 nm)
for the overnight culture was taken on a plate reader (Tecan Spark multi-
mode microplate reader). To ensure a consistent initial cell number, cultures
were diluted to 1 OD600 (assumed to be equivalent to 8 × 108 cells/mL) and
further diluted 1:8 (1 × 108 cells/mL). Cultures were then finally diluted
10-fold in 100 μL of fresh LB in a 384-well deep-well plate (Thermo Scientific)
using a MANTIS liquid handler for an initial cell density of 1 × 106 cells/well.
Each of the three overnight cultures (biological replicates each from a dis-
tinct colony) were used to inoculate four wells (to generate four technical
replicates). The spatial position of all wells for each experiment was ran-
domized across the plate to minimize plate effects. To minimize evapora-
tion, the plate was loaded with the lid into the Tecan Spark microplate
reader equipped with a lid lifter, and the chamber temperature was main-
tained at 30 °C. OD600 readings were taken every 10 min with periodic
shaking (5 s orbital) for 24 h.
Environmental isolates. A library consisting of 607 environmental isolates was
collected across the Duke University campus as part of an undergraduate
program: The Blue Devil Resistome Project (a Bass Connections project). The
raw WGS data of all isolates utilized in this paper are publicly available at
NCBI under accession number PRJNA543692. These have also been deposited
in the China National GeneBank DataBase (CNGBdb) (https://db.cngb.org/)
with accession number CNP0000455. For this isolate library, we used tryptic
soy rather than LB because that was the media the isolates were originally
isolated from the environment on. For each isolate, one frozen stock was
plated on tryptic soy agar plates, and individual colonies were randomly
selected to inoculate growth media for experiments. Three milliliters of
tryptic soy broth were used to prepare overnight cultures, which were
shaken at either 30 °C or 37 °C for at least 16 h (until sufficient growth for
subsequent experiments). The OD (absorbance at 600 nm) for the overnight
culture was taken on a plate reader (Victor3, Perkin-Elmer, or infinite M200
Pro, Tecan) to ensure a consistent initial cell number. For all isolates, mea-
surements were taken every 10 min with periodic shaking (5 s orbital) in
replicates of 12 under a single growth condition at 30 °C for a total of 99
measurements. Here, we had two sets of biological replicates, each of which
had six technical replicates. Each well was covered with 50 μL of mineral oil.
The growth condition used here was tryptic soy broth with an initial cell

density of 2 × 104 cells/well. In the main text (Results section), we describe
this growth condition as 10,000× dilution. Additionally, the replicates (per
isolate) were processed in batches of six such that six replicates were con-
ducted, with a different colony, on one plate reader on 1 d and the second
set of six were conducted on a different platform (plate reader) on a dif-
ferent day. This allowed us to include both technical and biological repli-
cates in this protocol. The purpose of this protocol design was to introduce
both batch and platform variability into the dataset. Of the 607 sequenced
isolates in this library, we collected growth curves for 522 isolates, which,
based on WGS, were composed of 143 unique strains.

Processing Plate Reader Data. Each 96-well plate included three or four blanks
containing only media (LB [Miller’s] or tryptic soy broth). Similarly, each
384-well plate included 96 blanks containing only media (LB [Miller’s]). We
averaged these wells and subtracted the result from all time courses, then
zeroed all negative OD600 values. To convert these blanked growth curves
into the time derivative, we filtered noise with a median filter of size 3 and
then took the derivative between consecutive time points. Unless specified
otherwise, in the main text (Results section), we used a weighted growth
rate metric (dcdt) rather than growth rate (dln(c)dt ) where c refers to cell con-
centration and t represents time. This metric uses cell density as a weighting
factor such that higher OD600 values are weighted more heavily than lower
values. The intuition behind this approach is that instrument noise is higher
at lower cell densities and lower at higher cell densities. To convert the blanked
growth curves into growth rate, we filtered noise with amoving average filter of
size 5 and took the numerical gradient of the log of the smoothed growth
curves. We compare in SI Appendix the result of using the growth rate, time
derivative of the growth curves, and other data processing methods.

Model development.
Clinical isolates: Prediction of genetic identity and antibiotic resistance. For the
clinical isolates, we applied a fourfold cross-validation procedure to optimize
model parameters based on the prediction accuracy of the training set. To
do this, we split the replicates for each unique strain into the test set (one
replicate) and training set (three replicates) and ran the SVM model on a set
of hyperparameters. We rotated through the replicates such that each was
used as the test set once. The average of the test set across these four folds is
used to optimize the model hyperparameters and is reported in the main
text (Results section). In SI Appendix, we compare these results to those from
a holdout-based dataset splitting approach. Additional details can be found
in SI Appendix, sections 1.1 and 1.2.

Due to the small size of the isolate library, we modified the method for
splitting a dataset for training to examine the potential for predicting an-
tibiotic resistance. In this approach, we used all replicates for all isolates
except one isolate for training and used the four replicates from the left-out
isolate as the test set. This was repeated for all isolates, and the predictions

are reported in terms of accuracy (number  of  true  positive  samples
number  of  samples ), true positive rate

or sensitivity (number  of  true  positive  samples
number  of  positive  samples ), and true negative rate or specificity

(number  of  true  negative  samples
number  of  negative  samples ), such that the predictions for all isolates were

combined. For 244 isolates with four replicates per isolate, the total number
of samples used to calculate each of the described metrics was 976.
Environmental isolates: Prediction of genetic identity. For the environmental
isolates, we applied a threefold cross-validation procedure with holdout to
optimize model parameters based on the prediction accuracy of the training
set. To do this, we split the replicates for each unique strain into the vali-
dation set (three replicates), test set (three replicate), and training set (six
replicates) and ran the SVM model on a set of hyperparameters. To train the
model, we rotated through the replicates (except those in the validation set)
such that each fold (consisting of three replicates) was used as the test set
once. The average accuracy of the test sets across the three folds was used to
optimize the model hyperparameters. Using the optimized model parame-
ters, we predicted the accuracy of the validation set, which is reported in the
main text (Results section). Additional details can be found in SI Appendix,
section 1.4.
Keio collection (published data): Prediction of genetic identity. For the published
data of the Keio collection, we applied a threefold cross-validation procedure
to optimize model parameters based on the prediction accuracy of the
training set. To do this, we split the replicates for each unique strain into the
test set (one replicate) and training set (two replicates) and ran the SVM
model on a set of hyperparameters. We rotated through the replicates such
that each was used as the test set once. The average accuracy of the test set
across these three folds was used to optimize the model hyperparameters
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and was reported in the main text. Additional details can be found in
SI Appendix, section 1.3.

Calculation of Phenotypic Distance. We took the mean of all replicates (12 for
environmental isolates and 4 for clinical isolates) of the time derivative of the
growth curves. The final phenotypic distance between a pair of strains was
defined as the Euclidean distance between their mean growth dynamics. In
the main text (Results section), we used the time derivative of the growth
curves from the 10,000× dilution growth condition. SI Appendix includes
additional analysis where the phenotypic distance between pairs of strains
was based on all possible combinations of growth conditions as well as using
the growth rate as the phenotype (SI Appendix, section 2.2).

Processing of Whole-Genome Sequences.
SNP phylogeny: Clinical isolates. SNPs were identified from genome assemblies
or raw reads following the Nucleic Acid Structure Predictor (NASP) pipeline
using E. coli strain EC958 (GenBank accession no. HG941718.1) as a reference
(SI Appendix, Fig. S3.2) (56). Duplicated regions of the reference genome,
including repeat regions and multiple gene copies, were determined by
aligning the reference sequence to itself using NUCmer version 3.23 (57). SNPs
that fell within these duplicate regions were excluded from further analysis to
avoid false SNP calls due to ambiguous read alignment. Each query genome
assembly was aligned to the reference with NUCmer version 3.23. Raw reads
were adapter trimmed with Trimmomatic (58). Trimmed reads were aligned
against a FASTA-formatted reference using Burrows-Wheeler Aligner Maximal
Exact Matches (BWA-MEM) binary alignment map files created with Samtools
version 1.2. SNPs were detected with GenomeAnalysisTK version 3.4, and the
best SNPs in all genomes compared to the reference were concatenated in a
matrix (59–61). A maximum-likelihood tree was inferred on the matrix with
MEGA7 using the Tamura–Nei model (SI Appendix, SI Appendix 3.1) (41).
SNP phylogeny: Environmental isolates. The genomic DNA of the environmental
isolates were sequenced on the MGISEQ-2000 (BGI) platform to obtain about
100× clean data for each sample, and paired-end libraries with an insert size
of 200 to 400 base pairs were constructed. We filtered out poor-quality reads
with SOAPnuke (https://github.com/BGI-flexlab/SOAPnuke) and fastp (62).
We assembled the clean reads with SPAdes version 3.13.0 and used Meta-
Phlan2 to identify the species of the isolates based on marker genes (63, 64).
For the isolates unclassified by MetaPhlan2, MASH was used to find the
closest species by distance estimation against NCBI RefSeq genomes, and the
species was assigned when the top two hits were identical (65). Since the
isolates were highly diverse, we grouped them by order (SI Appendix, Table
S3.1). Phylogenetic analysis of each order was performed based on whole-
genome SNPs following the NASP pipeline, and the reference was chosen
according to SI Appendix, Table S3.1 (56). Duplicated regions of the refer-
ence genome, including repeat regions and multiple gene copies, were de-
termined by aligning the reference sequence to itself using the NUCmer
version 3.23. SNPs that fell within these duplicate regions were excluded
from further analysis to avoid false SNP calls due to ambiguous read align-
ment. Each query genome assembly was aligned to the reference with
NUCmer version 3.23. The best SNPs in all genomes, relative to the reference,
were concatenated in a matrix. The pairwise distance analysis was inferred
on the matrix with MEGA7 using the Tamura–Nei model (41, 66).
MLST phylogeny: Clinical isolates. For MLST, we uploaded the assembled fasta
files to MLST 2.0 on the Center for Genomic Epidemiology website (https://

cge.cbs.dtu.dk/services/MLST/) and chose Escherichia coli #1 as the MLST
configuration (31). The pairwise distance analysis was inferred with MEGA X
using the Tamura–Nei model (41, 66).
Antibiotic resistance analysis. We compiled a database with the sequences of
resistance genes for four different antibiotic classes, including 477 genes for
SAM, a β-lactam and β-lactamase inhibitor combination therapy; 272 genes
for SXT, a sulfonamide and methoprim combination therapy; 166 genes for
GM, an aminoglycoside; and 97 genes for CIP, a fluoroquinolone (SI Ap-
pendix, section 3.2). The whole-genome sequences of the clinical isolates
were aligned against the database using Blast+(Nucleotide-Nucleotide
BLAST 2.6.0+). The parameters for BLAST search were ≥95% gene identity
and 50% sequence length of the resistance gene. The similarity between the
antibiotic resistance gene in the database and the corresponding sequence
in the genome, which means the percentage of alignment length (sub-
tracting gaps and mismatches), was determined. BLAST results with expec-
ted values better than 10−20 were considered to be significant (67).
Additionally, we used two curated databases, CARD and ResFinder, to pre-
dict antimicrobial resistance using only perfect hits (47, 48). The first is a
gene nucleotide sequence database, and the second is a gene product amino
acid sequence database.

Correlation between Phenotypic and Phylogenetic Distance. To examine the
correlation between phylogenetic and phenotypic distance, we use theMantel
test, as implemented by Glerean et al. in the MATLAB package bramila_mantel
(68). Both the phylogenetic distance and the phenotypic distance (per growth
condition) are represented by a square distance matrix. To assess the statistical
significance between these matrices, the bramila_mantel package uses the
Mantel test by correlating the upper triangular matrix of the two and reports
the Spearman coefficient (SI Appendix, section 2.2). The corresponding P values
are obtained through a permutation test (5,000 iterations) which interpolates
the density function from the permutations.

Data Availability. The raw WGS data of the environmental isolate library de-
scribed in this paper are publicly available at NCBI (accession no. PRJNA543692).
The relevant data (plate reader experiments) and code that support the findings
of this study are available in a Github repository (https://github.com/youlab/
strain_prediction_CZ) (69).
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