
Original Article

Engineered Stem Cells Improve
Neurogenic Bladder by Overexpressing
SDF-1 in a Pelvic Nerve Injury Rat Model
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Abstract
There is still a lack of sufficient research on the mechanism behind neurogenic bladder (NB) treatment. The aim of this study
was to explore the effect of overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered immortalized
mesenchymal stem cells (imMSCs) on the NB. In this study, primary bone marrow mesenchymal stem cells (BM-MSCs) were
transfected into immortalized upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1þ) or immortalized normal SDF-1-
engineered BM-MSCs (imMSCs/eSDF-1�). NB rats induced by bilateral pelvic nerve (PN) transection were treated with
imMSCs/eSDF-1þ, imMSCs/eSDF-1�, or sham. After a 4-week treatment, the bladder function was assessed by cystometry
and voiding pattern analysis. The PN and bladder tissues were evaluated via immunostaining and western blotting analysis. We
found that imMSCs/eSDF-1þ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1þ

improved NB and evidently stimulated the recovery of bladder wall in NB rats. The recovery of injured nerve was more
effective in the NBþimMSCs/eSDF-1þ group than in other groups. High SDF-1 expression improved the levels of vascular
endothelial growth factor and basic fibroblast growth factor. Apoptosis was decreased after imMSCs injection, and was
detected rarely in the NBþimMSCs/eSDF-1þ group. Injection of imMSCs boosted the expression of neuronal nitric oxide
synthase, p-AKT, and p-ERK in the NBþimMSCs/eSDF-1þ group than in other groups. Our findings demonstrated that
overexpression of SDF-1 induced additional MSC homing to the injured tissue, which improved the NB by accelerating the
restoration of injured nerve in a rat model.
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Introduction

Neurogenic bladder (NB) is a vexing problem for both the

patients and the urologists1. As is well known, NB is not a

homogeneous entity, but a widely used term to denote lower

urinary tract dysfunction, which is a common complication of

neurological disease following surgical treatment of pelvic

neoplasms2. The symptoms involve frequent urination, urin-

ary incontinence, voiding by abdominal staining, and urinary

retention3. Currently, the primary goals of NB management

include protection of the upper urinary tract function and

restoration of bladder dysfunction4. However, the mechanism

underlying NB treatment is still not fully understood.

Mesenchymal stem cells (MSCs) represent a novel and

potential therapeutic strategy with convincing and promising
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evidence in many medical fields5–7. Currently, stem cell

therapy has evolved from animal experiments to clinical

settings8, which indicates their safety and effectiveness. In

our previous study9, we found that MSC therapy accelerated

the recovery of injured nerve and tissue. Therefore, we

believe that MSC therapy is effective in NB treatment.

Immortalized stem cells were selected for experimental use

for increased accuracy10,11, because immortalized mesench-

ymal stem cells (imMSCs) exhibit higher proliferation and

anti-senescence ability, compared with general MSCs.

In a recent study, researchers found that stromal cell-

derived factor-1 (SDF-1) induced stem cells to recruit

endothelial cells, which contributed to vascular pericytes12.

In our previous experiment, we found that SDF-1 was active

during the whole period of tissue recovery and angiogen-

esis9. Therefore, we wondered whether NB can be amelio-

rated effectively under a high SDF-1 microenvironment. We

utilized genetic engineering technology to overexpress SDF-

1 to treat the NB in a rat model.

In this study, we developed a rat model of NB via bilateral

pelvic nerve (PN) transection, and analyzed the effect of

high SDF-1 on NB via upregulation of SDF-1-engineered

imMSCs. We hypothesized that upregulated SDF-1 in

imMSCs might improve NB function and restore bladder

wall efficiently by promoting angiogenesis, tissue regenera-

tion, and nerve recovery.

Materials and Methods

Cell Culture and Preparation

Primary bone marrow mesenchymal stem cells (BM-MSCs)

were obtained from Catholic Institute of Cell Therapy (CIC,

Seoul, Korea), were cultured in low glucose-containing Dul-

becco’s modified Eagle’s medium (Gibco, Waltham, MA,

USA) supplemented with 20% fetal bovine serum (Gibco,

Waltham, MA, Gibco) and 5 ng/ml basic fibroblast growth

factor (bFGF, Cell Signaling Technology, Danvers, MA,

USA) at 37�C and 5% CO2. To generate upregulated SDF-

1-engineered imMSCs, c-myc, hTERT, tetracycline transac-

tivator, and SDF-1 genes were synthesized and transfected

with pBD lentiviral vector (SL-BIGEN, Seongnam, Korea).

In brief, the reference sequence of SDF-1 was NM_0006096.

We designed an optimized DNA sequence to introduce into a

vector (Genscript, Nanjing, China). DNA sequencing was

performed to confirm the accuracy of the right reading frame

of the introduced sequence (Cosmo Genetech, Seoul,

Korea). After transfection, cells were seeded on 12-well

plates, at a density of 5 � 105 cells per well. After 48 h, the

supernatant was harvested. The SDF-1 protein level was

measured. The SDF-1 expression level was about 10 ng/

ml. Immortalized, upregulated SDF-1-engineered BM-

MSCs (imMSCs/eSDF-1þ) were selected monoclonally

using antibiotics. Selected imMSCs/eSDF-1þ were isolated

from the cell population using the limiting dilution method.

Meanwhile, vectors without SDF-1 gene were administered

into BM-MSCs (imMSCs/eSDF-1�) as a control.

ELISA

BM-MSCs, imMSCs/eSDF-1�, and imMSCs/eSDF-1þ were

seeded in 100 mm culture dishes. After full attachment, the

completed growth media were removed and cells were

washed with phosphate-buffered saline (PBS) three times.

Subsequently, 10 ml of fresh serum-free basal media was

refilled, and incubated at 37�C in 5% CO2 for 3 days. The

collected media were centrifuged at 3,000 rpm and 4 C for 15

min. The supernatant collected from BM-MSCs, imMSCs/

eSDF-1�, and imMSCs/eSDF-1þ conditioned media (CM)

was used to examine the SDF-1 in each group by ELISA

(R&D Systems Europe, Abingdon, UK) according to the

manufacturer’s protocol. Meanwhile for comparison, we

stained BM-MSCs, imMSCs/eSDF-1�, and imMSCs/

eSDF-1þ by Cell Tracker™ CM-DiI (Molecular Probes,

Eugene, OR, USA). Then the same ELISA process pro-

ceeded in staining group. Absorbance was read at a wave-

length of 450 nm in a microplate reader (Synergy H1 M;

Biotek, Winooski, VT, USA). At least three separate dishes

of cells were assayed for each clone.

Experimental Animal and Study Design

All animal experiments in this study were approved by the

Institutional Animal Care and Use Committee of the Catho-

lic University of Korea (CUMC-2016-0218-01). The 12-

week-old male Sprague-Dawley rats, each weighing about

370 to 400 g, were purchased from Orient Bio Co (Orient

Bio Co., Seongnam, Korea), and separated into three experi-

mental groups (NB, NBþimMSCs/eSDF-1�, and

NBþimMSCs/eSDF-1þ) and 1 sham control group with 12

rats each. The major pelvic ganglion and PN of rats were

identified under anesthesia. Rats in the three experimental

groups were subjected to PN transection as described previ-

ously13. The sham control group received sham surgery.

After surgery, the rats were housed individually and supplied

with freely available food and water.

MSC Treatment

One week after the NB model was established, rats in the

NBþimMSCs/eSDF-1� and NBþimMSCs/eSDF-1þ

groups were treated with imMSCs/eSDF-1� and

imMSCs/eSDF-1þ, via bilateral PN perineural injection

under anesthesia (1 � 106 MSCs diluted in PBS) as

described previously14. Rats in NB and sham control

group were injected with equal volumes of saline. To

track the location, of administered imMSCs, they were

labeled with Cell Tracker™ CM-DiI before injection

according to the manufacturer’s protocol.
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Voiding Pattern Analysis

For voiding pattern analysis, rats were individually housed in

metabolic cages with a grid at the bottom, and a filter paper

below the grid to collect the urine for 3 h. Filter papers were

photographed under ultraviolet light and analyzed using the

Image J software (NIH, Bethesda, MD, USA) to identify the

surface area of the individual voiding spots. The number of

spots was defined as the voiding frequency, and 50 ml urine

was considered equal to 2.8 cm2 on the filter paper. Voiding

pattern analysis was conducted before and after treatment.

Cystometry

Cystometry experiments were performed in all rats at week 4

after the treatment. In brief, rats were anesthetized using a

subcutaneous injection of 1.2 mg/kg of urethane. A supra-

pubic midline laparotomy was performed to expose the blad-

der, and a 25-gauge needle connected to a polyethylene

tubing was inserted into the bladder through the bladder

dome. The tubing was connected to a pressure transducer

and a Harvard syringe pump via a three-way stopcock to

record intravesical pressure and to infuse saline into the

bladder. After emptying the bladder, cystometry was per-

formed using a saline infusion at a rate of 0.04 ml/min. The

contraction interval and the contraction pressure (maximum

bladder pressure during voiding) were recorded using a poly-

graph (Grass 7D; Grass Institute Co., Quincy, MA, USA).

Nonvoiding contractions (NVCs) were determined during

the 2 to 4 min before each voiding contraction. NVCs were

defined as contractions >4 cm H2O from the baseline pres-

sure during bladder filling. After cystometry, PN and bladder

were collected for immunofluorescence staining and western

blot analysis.

Histology and Immunofluorescence Staining

The collected PN and bladder were fixed in 4% parafor-

maldehyde for 24 h at 4�C before creating a paraffin block,

as described previously9. The primary antibodies were used

as follows: vascular endothelial growth factor (VEGF;

diluted 1:200; Santa Cruz Biotechnologies, Santa Cruz,

CA, USA), bIII-tubulin (diluted 1:200; Abcam, Cambridge,

UK), bFGF (diluted 1:500; Cell Signaling Technology,

Danvers, MA, USA), SDF-1 (diluted 1:200; Abcam, Cam-

bridge, UK), poly-ADP-ribose polymerase (PARP, diluted

1:500; Abcam, Cambridge, UK), and 6-diamidino-

2-phenylindole (DAPI; Vector Laboratories, Inc., Burlin-

game, CA, USA) were used to stain the nuclei. Digital

images were obtained using a Zeiss LSM 510 Meta con-

focal microscope (Zeiss, Oberkochen, Germany), and blad-

der images were analyzed using ZEN 2012 (Zeiss,

Oberkochen, Germany). The other resulting images were

analyzed using Image J to determine the positive rate for

each figure. In brief, we used Image J to split each color

from merged figure, calculate the intensity of each color,

and then added them. The positive was the ratio of a special

color fluorescence intensity to all colors intensity.

Masson Staining

To evaluate the proportion of collagen and smooth muscle,

the bladder walls of rats in each group were stained with

Masson trichrome. Bladder wall sections were deparaffi-

nized, rehydrated with graded alcohols, immersed in warm

Bouin’s solution (Sigma, St. Louis, MO, USA) (55 to 60�C)

for 2 h and washed under running tap water for 2 min fol-

lowed by distilled water for 30 to 60 s. They were stained

with Weigert Hematoxylin (Merck, Darmstadt, Germany)

for 10 min and washed out. Subsequently, the smooth muscle

was stained red with Biebrich Scarlet-Acid-Fuchsin (Sigma,

St. Louis, MO, USA) for 10 min, rinsed and immersed in

phosphomolybdic phosphotungstic acid (Sigma, St. Louis,

MO, USA) for 15 min. The collagen was stained blue with

Aniline Blue (Sigma, St. Louis, MO, USA) for 10 min and

rinsed in distilled water followed by immersion in 1% acetic

acid for 5 min. Finally, the tissues were rehydrated with

100% ethanol, left to air dry and mounted. All sections of

bladder tissue were stained at the same time.

Analysis of Apoptosis In Vivo

We assessed the apoptosis in PN using an immunostaining kit to

determine the PARP levels as described previously9. The anti-

bodies to PARP along with other primary antibodies are listed in

the Histology and Immunofluorescence Staining section.

Western Blot

Western blot was performed as previously described9. In brief,

the collected tissue was homogenized using ice-cold RIPA

buffer (Cell Signaling Technology, Danvers, MA, USA) con-

taining EDTA-free protease inhibitor cocktail. The phospha-

tase inhibitor cocktail (Roche Diagnostics GmbH, Basel,

Switzerland) and particulate mass were removed by centrifu-

gation (15,000g) for 15 min at 4�C. The supernatants were

analyzed by sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis. The primary antibodies included neuronal nitric

oxide synthase (nNOS, diluted 1:200; Santa Cruz Biotechnol-

ogies), AKT (diluted 1:200; Cell Signaling Technology, Dan-

vers, MA, USA), p-AKT (diluted 1:200; Cell Signaling

Technology, Danvers, MA, USA), p-ERK (diluted 1:200; Cell

Signaling Technology, Danvers, MA, USA), SDF-1(diluted

1:500; Cell Signaling Technology, Danvers, MA, USA), and

b-actin (diluted 1:1,000; Abcam, Cambridge, UK).

Statistical Analysis

All data are presented as mean + standard error and ana-

lyzed using SPSS version 22.0 software (SPSS Inc., Chi-

cago, IL, USA). Student’s t-test and one-way analysis of

variance (ANOVA) or two-way ANOVA (followed by Bon-

ferroni post hoc tests) as appropriate were used to evaluate

Zhu et al 3



the significant differences among groups. P < 0.05 was con-

sidered statistically significant.

Results

imMSCs/eSDF-1þ Express Higher SDF-1 In Vitro
and Vivo

As shown in Figure 1(A, a) imMSCs/eSDF-1þ expressed

higher levels of SDF-1 in an NB rat model (P < 0.01). How-

ever, in the control group, reduced levels of SDF-1 were

expressed in the PN (P < 0.01), suggesting that injury

induced SDF-1 expression in vivo. As shown in

Figure 1(B), ELISA results indicate that imMSCs/eSDF-1þ

expressed higher levels of SDF-1 in vitro (P < 0.01). How-

ever, there was no statistically significant difference in the

SDF-1 expression of BM-MSCs and imMSCs/eSDF-1�

groups, which demonstrates that vectors used in transfection

have no influence on the SDF-1 expression. As shown in

Figure 1(C), in the sham control group, less SDF-1 was

expressed in the PN (P < 0.01) and the imMSCs/eSDF-1þ

overexpressed SDF-1 in PN (P < 0.01).

imMSCs/eSDF-1þ Improves NB Significantly

The result of cystometry (Figure 2A) in NB group was

apparently better than other groups. As shown in

Figure 2(B and C), the mean pressure of the voiding con-

tractions and intermicturition interval in each group varied.

The bladders of NBþimMSCs/eSDF-1� group and

NBþimMSCs/eSDF-1þ group showed better results (P <

0.01), whereas NBþimMSCs/eSDF-1þ group was better

than NBþimMSCs/eSDF-1� group (P < 0.05). The results

of voided volume and voiding frequency before and after

treatment are presented in Figure 2(D and E). As shown in

Figure 2, imMSC treatment efficiently improved NB, espe-

cially in a high SDF-1 environment.

MSCs Treatment Stimulates the Bladder Recovery
Especially in a High SDF-1 Microenvironment

During the 4-week treatment, the bladder wall was

assessed by Masson staining. As shown in Figure 3(A and

B), the smooth muscle of bladder wall was thicker after

MSC treatment (P < 0.01). The smooth muscle in the

Fig. 1. ImMSCs/eSDF-1þ make a higher SDF-1 microenvironment in vitro and in vivo. (A) Representative images of SDF-1 stain in PN for
each group. Original magnification: �200. (a) Positive rate of SDF-1 for each group. Each bar shows the mean values (standard deviation). *P
< 0.01, compared with sham control group. **P < 0.01 compared with NB and NBþimMSCs/eSDF-1� group. (B) SDF-1 concentration of
each group in vitro by ELISA before and after labeled by Cell, Tracker CM-DiI. #P < 0.01 compared with other groups. (C) SDF-1 expression
of each group in PN using western blot. (c) Quantity analysis of western blot. &P < 0.01 compared with sham control group. &&P < 0.01
compared with NB and NBþimMSCs/eSDF-1� groups. imMSC: immortalized mesenchymal stem cell; NB: neurogenic bladder; PN: pelvic
nerve; SDF-1: stromal cell-derived factor-1.
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NBþimMSCs/eSDF-1þ group was more than in

NBþimMSCs/ eSDF-1� group (P < 0.05), which suggests

a more efficient recovery of NB in a high SDF-1 micro-

environment (Figure 3B). Figure 3(C) displays the whole

profiles of bladders after 2 h of water fasting. The bladder

weight/body weight ratio was maintained for accurate

assessment in Figure 3(D). Bladder with imMSCs/eSDF-

1þ treatment showed satisfactory regeneration compared

with imMSCs/ eSDF-1� treatment (P < 0.05) and non-

treatment (P < 0.01).

Fig. 2. (A) Representative images of cystometry in each group. Sham control is the normal control group. NB means neurogenic bladder.
ImMSCs/eSDF-1þ are high SDF-1-expressing engineered MSCs, and NBþimMSCs/eSDF-1� are engineered MSCs transfected by empty
vectors. (B) Mean pressure of the voiding contractions compared in each group. *P < 0.01 compared with NB control group. **P < 0.05
compared with NBþimMSCs/eSDF-1� group. (C)Mean intermicturition interval in each group. #P < 0.01 compared with NB control group.
##P < 0.05 compared with NBþimMSCs/eSDF-1� group. (D) Voided volume and (E) voiding frequency results before and after treatment in
each group. &, $P < 0.05 in the pre- and post-treatment comparison. &&, $$P < 0.01 in the pre- and post-treatment comparison. imMSC:
immortalized mesenchymal stem cell; NB: neurogenic bladder; SDF-1: stromal cell-derived factor-1.
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SDF-1 Induces MSC Homing and Subsequently
Improves the Regeneration of Injured PN

As shown in Figure 4(A), nerve recovery was accelerated by

imMSC injection. As suggested in Figure 4(B), the nerve vol-

ume in NB group was less than in others (P < 0.01). The results

showed that the nerve in NBþimMSCs/eSDF-1þ group was

higher than in NBþimMSCs/eSDF-1� group (P < 0.05). Com-

bined with Figure 1(a), we concluded that NBþimMSCs/

eSDF-1þ induced a higher SDF-1 microenvironment around

the injured nerve, and accelerated the nerve recovery.

Figure 4(C) suggests that the number of imMSCs in

NBþimMSCs/eSDF-1þ group was higher than in

NBþimMSCs/eSDF-1� group (P < 0.05). Meanwhile, 7A and

7B showed a higher nNOS expression in NBþimMSCs/eSDF-

1þ group compared to other groups (P < 0.05), which also

proved there were more regenerated nerve after imMSCs/

eSDF-1þ injection.

High SDF-1 Expression Improves the Quantity of VEGF
and bFGF

Figure 5(A) shows that imMSCs increase VEGF expression.

As depicted in Figure 5(B), imMSCs improve bFGF expression.

Figure 5(a and b) shows that the levels of VEGF andbFGF in the

NBþimMSCs/eSDF-1� and NBþimMSCs/eSDF-1þ group

were higher than in the NB group (P < 0.01). The VEGF and

bFGF levels in the NBþimMSCs/eSDF-1þ group were higher

than in the NBþimMSCs/eSDF-1� group. In conjunction with

Figure 1(a), we conclude that in a higher SDF-1 microenviron-

ment, the expression of VEGF and bFGF was increased. The

stimulation of SDF-1, cell viability, and movement require

additional growth factors such as VEGF and bFGF.

Apoptosis Decreases with MSC Injection Especially in a
High SDF-1 Microenvironment

As shown in Figure 6(A), without MSCs the apoptosis in the

damaged PN was high. However, after imMSC injection the

apoptosis was improved. Figure 6(B) displays a positive rate

of PARP in each group. We found a higher degree of apop-

tosis in the NB group (P < 0.01). Furthermore, the apoptosis

in the NBþimMSCs/eSDF-1þ group was higher than in the

NBþimMSCs/eSDF-1� group, which suggested that apop-

tosis was reduced in a high SDF-1 microenvironment.

MSCs activate PI3K/AKT/mTOR and MAPK Signaling
Pathway via enhanced SDF-1 Expression

In the first study investigating nerve recovery in a high

SDF-1 microenvironment, we identified the underlying

Fig. 3. (A) Representative images of Masson Trichrome stain for each group. Red is smooth muscle, and blue is collagen. Original
magnification: �200. (B) Percentage area of smooth muscle for each group. Each bar shows the mean values (standard deviation). *P <
0.01 compared with NB group. **P < 0.05 compared with NBþimMSCs/eSDF-1� group. (C) Image of rat’s bladder in each group after fasting
water for 2 h. (D) Bladder, weight/body weight ratio of each group in mg/g. #P < 0.01 compared with NB group. ##P < 0.05 compared with
NBþimMSCs/eSDF-1� group. imMSC: immortalized mesenchymal stem cell; NB: neurogenic bladder; SDF-1: stromal cell-derived factor-1.
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mechanism. As shown in Figure 7, p-AKT/AKT and p-ERK/

b-actin levels in the NBþimMSCs/eSDF-1� and

NBþimMSCs/eSDF-1þ group were higher (P < 0.05), which

suggested that after imMSC injection both PI3K/AKT/mam-

malian target of rapamycin (mTOR) and mitogen-activated

protein kinase (MAPK) pathways were stimulated. Mean-

while, as shown in Figure 7, PN with higher SDF-1 expressed

additional p-AKT and p-ERK to mediate the PI3K/AKT/

mTOR and MAPK pathways (P < 0.05).

Discussion

Currently, the quality of life (QOL) during the postoperative

period is of increasing concern15. QOL is an important

aspect in the overall management of NB patients, for

example, to evaluate treatment-related changes in a

patient16. Pelvic surgeries including radical prostatectomy,

rectum resection, and hysterectomy are associated with a

risk of PN injury17–19, which may trigger NB and subse-

quently lower the QOL postoperatively. Our results showed

that NB decreased bladder function, reduced voided volume,

and decelerate voiding frequency, which were ameliorated

by imMSCs/eSDF-1. Obviously, QOL would be improved

when NB was treated by imMSCs/eSDF-1. Li H et al.20

illuminated that the regeneration of peripheral nerves after

pelvic injury was a complex process involving neurons,

Schwann cells, basal lamina, and end-organ responsiveness.

Therefore, effective and potential treatments to recover the

injured nerve and successfully cure NB are imperative. In

this study, we established a rat model of NB and performed a

Fig. 4. MSC treatment accelerates the recovery of injured PN. (A) Representative images of PN staining in each group. Green is bIII-tubulin,
blue is DAPI nucleus, and red is MSCs. Original magnification:�200. (B) Positive rate of nerve in each group. Each bar shows the mean values
(standard deviation). *P < 0.01 compared with NB group. **P < 0.05 compared with NBþimMSCs/eSDF-1� group. (C) Positive rate of
imMSCs in vivo. Each bar shows the mean values (standard deviation). #P < 0.05 compared with NBþimMSCs/eSDF-1� group. imMSC:
immortalized mesenchymal stem cell; NB: neurogenic bladder; PN: pelvic nerve; SDF-1: stromal cell-derived factor-1.
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series of investigations with the imMSCs engineered. We

found that imMSCs injection led to a significant elevation

in the mean intravesical pressure of NB rats and an obvious

thickening of the smooth muscle of bladder wall. Mean-

while, we found that in NB rats higher levels of SDF-1 in

PN facilitated the recovery. We found that exposure to

imMSCs ameliorated experimental NB dysfunction.

In a recent report21, investigators established a rat model

of bilateral cavernous nerve crush injury. After stem cell

injection, the expression of neural markers in the penile

dorsal nerves and the erectile dysfunction improved signif-

icantly, suggesting that stem cells facilitate the repair of

injured nerve. In a previous study14, we also found some

similar outcomes in a rat model of diabetes mellitus erectile

dysfunction. However, in both the studies, neurotrophic

cytokines were merely detected. In our study, the imMSCs

around the injured nerve were directly observed. Under

increased SDF-1 levels produced by imMSCs, the restora-

tion of nerve was steadily enhanced. Ouyang X et al.22

reported that MSCs enhanced the recovery of the injured

smooth muscle. They injected MSC-derived exosomes into

the corpus cavernosum and after 4 weeks the recovery of the

smooth muscles in corpus cavernosum was improved. How-

ever, few studies focused on bladder restoration and nerve

recovery with MSC treatment. In our study, we found that

the injection of imMSCs resulted in a thickening of bladder

wall in NB rats markedly. We found that under a high SDF-1

microenvironment, the VEGF expression was also increased.

VEGF is the key to tissue restoration. VEGF activated the

PI3K-Akt signaling pathway, which increased the expres-

sion of nNOS during the recovery of injured nerve23,24.

However, VEGF stimulated the MAPK signaling pathway

to induce further p-ERK synthesis and activated the gene

proliferation25.

Naderi-Meshkin et al.26 demonstrated that SDF-1

played an important role in MSC homing. Fandel et al.27

also reported stem cell homing to the PN after injection

accompanied by high SDF-1 expression in the PN. In this

study, we observed after imMSCs injection, several

imMSCs migrated to the damaged nerve as the SDF-1

expression was upregulated. Our findings suggested that

the increased SDF-1 expression led to further aggregation

of imMSCs around the injured nerve. We supposed that

MSCs also expressed SDF-1, which suggested a positive

feedback, induced by SDF-1 expression in the injured

nerve. Injured nerves expressed SDF-1 inducing migra-

tion of MSCs, which further expressed SDF-1, and upre-

gulated the concentration of SDF-1 rapidly, resulting in

enhanced migration of MSCs to the target tissue. To ver-

ify our hypothesis, we used a gene transfer technique,

which facilitated imMSCs expression of higher levels of

SDF-1 compared with normal imMSCs. Based on our

results, we found that the quality of stem cells and the

effect of MSC treatment yielded better outcomes in the

Fig. 5. SDF-1 improves VEGF and bFGF expression in vivo. (A) Representative images of VEGF stain for each group. Original magnification:
�200. (a) Positive rate of VEGF for each group. Each bar shows the mean values (standard deviation). #P < 0.01 compared with NB group.
##P < 0.01 compared with NBþimMSCs/eSDF-1� group. (B) Representative images of bFGF stain for each group. Original magnification:
�200. (b) Positive rate of bFGF for each group. Each bar shows the mean values (standard deviation). &P < 0.01 compared with NB group.
&&P < 0.01 compared with NBþimMSCs/eSDF-1� group. bFGF: basic fibroblast growth factor; imMSC: immortalized mesenchymal stem cell;
NB: neurogenic bladder; SDF-1: stromal cell-derived factor-1; VEGF: vascular endothelial growth factor.
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upregulated SDF-1 group compared with the normal SDF-

1 group, which validated our hypothesis of a positive

feedback mediated via SDF-1 between injured nerves

and MSCs. In this positive feedback, nerve injury trig-

gered higher expression of MSCs and their directional

migration. Zhou F et al.28 believed that MSCs spread

rapidly, upon injection, and only a few MSCs reached

the target area. A few studies29 considered that reactive

oxygen species were toxic to injected stem cells due to

the induction of apoptosis, which reduced the levels of

MSCs rapidly. Both studies reported that the injected

MSCs failed to remain at the injection site. However, the

homing mechanisms of MSCs driven by SDF-1 explain

the congregation of MSCs around the injured nerve.

Meanwhile, we used the immortalized MSCs to prevent

apoptosis of stem cells, to generate a stable microenvir-

onment30. In brief, we eliminated other effects induced by

MSCs and an unstable microenvironment. Under such

conditions, we demonstrated that imMSCs expressing a

high level of SDF-1 had a positive effect on the restora-

tion of injured nerves. The experiment involving MSC

treatment was performed during an early stage of

prostatitis.

There are still some defects in this article. First, we did

not assess the viability of MSCs before injection, which

decreased the accuracy of at least one part of the experiment.

Comparing the viability before and after transfection, selec-

tion, and label would reduce errors by flow cytometry. Sec-

ondly, in the part of injured nerve regeneration, we just used

the nerve staining and detection of nNOS expression. Add-

ing a detection of some nerve biomarkers by a real-time

polymerase chain reaction could make the results more con-

vincing. At last, the mechanism research was not deep

enough. So in the next study, we should focus on the path-

way and factors to investigate the accurate mechanism of

MSCs for NB.

Fig. 6. MSCs degrade apoptosis by increasing the expression of SDF-1. (A) Representative images of apoptosis for each group. Original
magnification: �200. (B) Positive rate of PARP for each group. Each bar shows the mean values (standard deviation). *P < 0.01 compared
with NB group. *P < 0.05 compared with NBþimMSCs/eSDF-1� group. imMSC: immortalized mesenchymal stem cell; NB: neurogenic
bladder; PARP: poly-ADP-ribose polymerase; SDF-1: stromal cell-derived factor-1.
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Conclusions

The study demonstrated that high levels of SDF-1 expression

induced rapid MSC homing to the target tissue and imMSCs/

eSDF-1þ improved NB by accelerating the restoration of

injured nerves in a rat model. These experiments suggest a

new therapeutic strategy using MSCs for NB, and, at least in

part, provide a theoretic and experimental basis for clinical

treatment.
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