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We examine a nonreciprocally coupled dynamical model of a mix-
ture of two diffusing species. We demonstrate that nonreciprocity,
which is encoded in the model via antagonistic cross-diffusivities,
provides a generic mechanism for the emergence of traveling
patterns in purely diffusive systems with conservative dynam-
ics. In the absence of nonreciprocity, the binary fluid mixture
undergoes a phase transition from a homogeneous mixed state
to a demixed state with spatially separated regions rich in one
of the two components. Above a critical value of the parame-
ter tuning nonreciprocity, the static demixed pattern acquires a
finite velocity, resulting in a state that breaks both spatial and
time-reversal symmetry, as well as the reflection parity of the
static pattern. We elucidate the generic nature of the transition
to traveling patterns using a minimal model that can be stud-
ied analytically. Our work has direct relevance to nonequilibrium
assembly in mixtures of chemically interacting colloids that are
known to exhibit nonreciprocal effective interactions, as well as
to mixtures of active and passive agents where traveling states of
the type predicted here have been observed in simulations. It also
provides insight on transitions to traveling and oscillatory states
seen in a broad range of nonreciprocal systems with nonconserva-
tive dynamics, from reaction–diffusion and prey–predators mod-
els to multispecies mixtures of microorganisms with antagonistic
interactions.
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Traveling patterns occur ubiquitously in nature. Examples
range from oscillating chemical reactions (1–3), to waves of

metabolic synchronization in yeast (4), to the spatial spread of
epidemics (5–8). Most mathematical models that capture such
spatiotemporal dynamics, including reaction–diffusion equations
(1, 9–12), excitable systems (13, 14), collections of coupled oscil-
lators (15, 16), and prey–predator equations (17–19), are unified
by the fact that the dynamical variables are nonconserved fields
(20). In this case, the coupling to birth–death or to other reac-
tion processes provides a promoter–inhibitor mechanism that
sets up oscillatory states. In this paper, we demonstrate that trav-
eling patterns can arise in multicomponent systems described
by purely diffusive conserved fields from nonreciprocal interac-
tions between species. The appearance of traveling or sustained
oscillatory states in a purely diffusive system with no apparent
external forcing is unexpected and defies intuition. Our work sug-
gests that nonreciprocity provides a generic mechanism for the
establishment of traveling states in the dynamics of conserved
scalar fields.

The third law of Newtonian mechanics establishes that inter-
actions are reciprocal: For every action, there is an equal
and opposite reaction. While, of course, this remains true at
the microscopic level, nonreciprocal effective interactions can
occur ubiquitously on mesoscopic scales when interactions are
mediated by a nonequilibrium environment (21–25). A striking
physical example is realized in diffusiophoretic colloidal mix-
tures (26–28). Nonreciprocal interactions are also the norm in
the living world. Examples are promoter–inhibitor interactions
among different cell types (29) and the antagonistic interactions
among species in bacterial suspensions (30–34). Social forces
that control the behavior of human crowds (35–37) and col-
lective animal behavior (38, 39) are other important examples
as well.

To highlight the role of nonreciprocal couplings in driving
time-dependent phases, we examine a minimal model of the
dynamics of two interdiffusing species, each described by a
scalar field φµ, for µ=A,B . The evolution of each concen-
tration field is governed by a φ4 field theory that allows for a
spinodal instability according to model B dynamics (40). When
decoupled, each phase field can undergo a Hopf bifurcation
describing the transition from a homogeneous state to a phase-
separated state composed of dilute and dense phases. The two
fields are coupled via cross-diffusion terms with diffusivities κµν .
When these couplings are reciprocal, the interaction between
the two fields leads to a transition between a mixed state where
both fields are homogeneous to a demixed state with distinct
regions of high A and low B . Nonreciprocity is introduced
by allowing the two cross-diffusivities to have opposite signs
and is quantified by δ= (κBA−κAB )/2. Nonreciprocal cross-
diffusivities drive a second transition through a drift bifurcation
to a time-dependent state that breaks parity, where the domains
of the demixed regions travel at a constant drift velocity. This
transition is closely related to ones previously reported in spe-
cific models of prey–predator and reaction–diffusion dynamics
(8–11, 17, 18, 41), but occurs here from the coupling of two
conserved fields. We demonstrate that the transition to travel-
ing states is a parity and time-reversal (PT) symmetry breaking
bifurcation that arises generically from nonreciprocal couplings.
The phase diagram obtained from numerical solutions of a
one-dimensional (1D) realization of this minimal model in the
simplest case where only field A is supercritical, while B is
subcritical, that is, the ground state value of field B is sim-
ply φg

B = 0, is shown in Fig. 1A. Tuning the control parameter
that drives phase separation of species A (χA) and the mea-
sure of nonreciprocity δ, we observe three distinct states: a mixed
state where both fields are homogeneous, a static demixed state
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Fig. 1. (A) State diagram spanned by δ/κ and χA. The system has three
distinct states: homogeneous (gray, circles), static patterns or demixed (cyan,
rectangles), and traveling patterns (pink, triangles). Symbols indicate results
from the simulations, while the lines marking the boundaries of the colored
domains are obtained from the stability analysis of the one-mode model.
The static demixed state exists in the region between the black and the
dashed blue lines, but is unstable. (B) Examples of spatial variations of φA(x)
(solid lines) and φB(x) (dashed lines) in the static (blue) and traveling (red)
states. (C and D) Spatiotemporal patterns of φA(x, t) in the (C) static and (D)
traveling states. In B–D, we use χA =−0.05 and (C) δ=κ and (D) δ= 2κ.

that breaks translational symmetry with out-of-phase spatial
modulations of the two fields, and a time-dependent state that
additionally breaks reflection and time-reversal symmetry, where
the spatial modulation of the demixed state travels at constant
velocity. The solid lines are obtained from a one-mode approx-
imation to the continuum model that can be solved analytically
and provides an excellent fit to the numerics. Within this one-
mode approximation, the transition from the stationary to the
traveling state can be understood as an instability of the relative
phase of the first Fourier harmonic of the fields. The insta-
bility arises because nonreciprocity allows perturbations in the
two fields to travel in the same direction, promoting a “run-
and-catch” scenario that stabilizes the traveling pattern. While
the spatial pattern in the static demixed phase is even in the
relative displacement of the two phase fields, nonreciprocity
breaks this reflection symmetry in the traveling state, mediat-
ing a PT-symmetry-breaking transition. Note that the transition
to a PT-broken phase occurs at a finite value of δ, and hence
requires sufficiently strong nonreciprocity. Finally, the phase
boundary separating the static and traveling patterns in Fig. 1A
corresponds to a so-called “exceptional point” where the eigen-
modes of the matrix controlling the dynamical stability of the
system coalesce (42–44). In parallel to our investigation, Saha
et al. (45) have also reported traveling density waves in scalar
fields with Cahn–Hilliard dynamics and nonreciprocal couplings.
The simulations carried out by these authors support our find-
ing that nonreciprocal couplings provide a generic mechanism
for breaking time-reversal symmetry and setting spatial patterns
in motion.

A microscopic model that displays the phenomenology cap-
tured by Fig. 1A is a mixture of active and passive Brownian parti-
cles, where the active component exhibits motility-induced phase
separation, and fluctuations in the density of passive particles
can enhance fluctuations in the density of the active fraction via
an effective negative cross-diffusivity (46–48). The connection

between the active–passive mixture and the dynamics embodied
by our model is unfolded in SI Appendix. Another realization of
this macrodynamics is a binary suspension of colloidal particles
where species A attracts species B, but species B repels species A.
Such competing interactions have been studied in simple models
(49, 50) and can be realized in mixtures of self-catalytic active
colloids, where the local chemistry mediates nonreciprocal inter-
actions among the two species, as demonstrated, for instance, in
refs. 27 and 28 via numerical simulations.

Continuum Model
We consider a binary mixture described by two conserved
phase fields φA and φB with Cahn–Hilliard dynamics (51–53)
augmented by cross-diffusion,

∂tφµ =∇ ·
[(
χµ +φ2

µ− γµ∇2)∇φµ +κµν∇φν)
]
, [1]

where µ, ν=A,B and no summation is intended.* In the absence
of cross-diffusive couplings (κµν = 0), the fields are decoupled,
with ground states φg

µ = 0 for χµ> 0, describing homogeneous
states, and φg

µ =±
√
−3χµ when χµ< 0, corresponding to phase-

separated states.
The cross-diffusivities control interspecies interaction, allow-

ing phase gradient of one species to drive currents of the other
species. Equal cross-diffusivities, κAB =κBA =κ, yield an effec-
tive repulsion between the two fields. When sufficiently strong
to overcome the entropy of mixing, such a repulsion results in
the formation of spatial domains of high/low φA/φB , that is,
a demixed state. Here, in contrast, we introduce nonreciproc-
ity by allowing these two quantities to have opposite signs, as
can, for instance, be achieved in mixtures of active and passive
Brownian particles (SI Appendix, section VI) or in mixtures of
colloids with competing repulsive and attractive interactions (SI
Appendix, section VI).† We tune the degree of nonreciprocity
δ > 0 by letting

κAB =κ− δ,
κBA =κ+ δ. [2]

As shown below, this nonreciprocity breaks PT symmetry and
gives rise to spatiotemporal patterns of φA and φB that break
both spatial and temporal translational symmetry.

We have studied, numerically, Eq. 1 in a 1D box of length
L= 2π, for the case where χA< 0 and χB > 0, and ignoring φ2

B in
the self-diffusivity. The results are easily generalized to the case
where both components are supercritical (χA< 0 and χB < 0)
and to higher dimensions (SI Appendix, sections IV and V), but
remain qualitatively unchanged. We have integrated Eq. 1 with
a fourth-order central difference on a uniform grid with spacing
h = 2π/64. To march in time, we use a second-order, 128-stage
Runge–Kutta–Chebyshev scheme with a time step ∆t = 0.1 (56,
57). All simulations start from nearly uniform phase fields, where
weak random fluctuations are added on top of the initial compo-
sitions φ0

A = 0 and φ0
B = 0. We fix the values of the parameters as

γA = 0.04, γB = 0, χB = 0.005, and κ= 0.005, and study how the
system dynamics changes with χA and δ.

We find three distinct states by varying χA and δ, as sum-
marized in Fig. 1A. When the cross-diffusivities are reciprocal

*The natural coupling of two scalar fields with model B dynamics coming from a term
∼ gφ2

Aφ
2
B in the free energy density is known to yield a rich phase diagram with the

possibility of tetracritical points and first-order transitions (54, 55), as pointed out to us
by David Nelson. We plan to explore the effect of nonreciprocal biquadratic couplings
of this type in future work.

†We note that, in a binary mixture of diffusing particles, the cross-diffusivities would
differ, as each κµν would depend on the concentration of the two species as required
to maintain detailed balance, but they would always have the same sign.
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(δ= 0), by increasing |χA|, the system undergoes a Hopf bifur-
cation from a homogeneous state (gray circles) to a demixed
state (blue rectangles) where the two fields are spatially mod-
ulated with alternating regions of high φA/low φB (Fig. 1 B
and C). This state is stabilized by the cubic term in Eq. 1, as
in conventional Cahn–Hilliard models. Above a critical value
of δ, the demixed state undergoes a second bifurcation to a
state where the domains of high φA/low φB travel at a constant
speed (red triangles in Fig. 1 A, see also Fig. 1 B and D for
spatiotemporal patterns). The velocity of the traveling pattern
provides an order parameter for this transition, and the direc-
tion of motion is picked spontaneously. The opposite signs of
the cross-diffusivities provide effective antagonistic repulsive and
attractive interactions between the two fields. The drift bifurca-
tion is triggered by the nucleation of a phase shift in the spatial
modulation of the two fields that allows species A to outrun B ,
while B tries to catch up with A. At weak nonreciprocity, species
A is too slow to escape from B , and the static pattern is restored.
Strong nonreciprocity, on other hand, allows species A to outrun
B . As the distance between the two increases, A gradually slows
down while B speeds up until the two share a common speed and
become trapped in a steady traveling state. This “run-and-catch”
scenario is quantified below with a simple one-mode analysis of
our dynamical equations that captures the behavior quantita-
tively. The transitions between the various states obtained from
the one-mode approximation are shown as solid lines in Fig. 1A
and provide an excellent fit to the numerics in one dimension.
Finally, as discussed further below, the transition is associated
with the breaking of reflection symmetry or parity of the spa-
tial modulations, as well as of time-reversal symmetry, and hence
provides a realization of a PT-breaking transition.

We show, in SI Appendix, that the same scenario applies qual-
itatively in two dimensions. In this case, in addition to traveling
spatial structures, we also observe oscillatory patterns that are
absent in one dimension. In the oscillatory state, the system
organizes into high/low concentration region of each species
that periodically split and merge. The frequency of oscilla-
tion increases with δ, suggesting that the oscillating states are
a richer manifestation of nonreciprocity and of the “run-and-
catch” mechanism that controls the dynamics in one dimension.
Both traveling and oscillatory states appear to be stable and
coexist at high δ, with the state selection being controlled by
initial conditions. This suggests that it would be interesting to
go beyond the deterministic model considered here to examine
the role of noise. A full study of 2D systems will be reported
elsewhere.

One-Mode Approximation
To uncover the physics behind the PT-breaking bifurcation,
we expand the fields φµ in a Fourier series as φµ(x , t) =∑∞

j=−∞ φ̂
j
µ(t)e iqj x , where φ̂j

µ = (2π)−1
∫ 2π

0
dxφµe

−iqj x is the
amplitude of mode j . Substituting this in Eq. 1, and applying
the Galerkin method (58), one obtains a set of coupled ordinary
differential equations for the Fourier amplitudes. For the 1D
model described above, we have verified numerically that only
the first Fourier mode q1 = 1 is activated. We can then replace
the original partial differential equations with a single-mode
approximation, given by

d φ̂1
A

dt
=−

(
αA + |φ̂1

A|2
)
φ̂1
A− (κ− δ)φ̂1

B , [3a]

d φ̂1
B

dt
=−αB φ̂

1
B − (κ+ δ)φ̂1

A, [3b]

where αA =χA + γA + (φ0
A)2 can be negative and αB =χB > 0.

When χB > 0, the cubic term in the dynamics of φB simply pro-

vides a higher-order damping and can be neglected. Writing
the complex amplitudes in terms of amplitudes and phases as
φ̂1
µ = ρµe

iθµ , Eq. 3 can be written as

ρ̇A =−(αA + ρ2A)ρA− (κ− δ)ρB cos θ, [4a]

ρ̇B =−αBρB − (κ+ δ)ρA cos θ, [4b]

θ̇= [(κ− δ)ρB/ρA + (κ+ δ)ρA/ρB ]sin θ, [4c]

Φ̇ = [(κ− δ)ρB/ρA− (κ+ δ)ρA/ρB ]sin θ, [4d]

where θ≡ θA− θB and Φ≡ θA + θB are the difference and sum
of the two phases. Note that the sum phase Φ is slaved to
the other quantities. A broken PT pattern traveling at con-
stant velocity corresponds to ρ̇A = ρ̇B = θ̇= 0 and Φ̇ = constant,
which requires sin θ 6= 0 and (κ− δ)ρB/ρA + (κ+ δ)ρA/ρB =
0, or, equivalently, κABρ

2
B =−κBAρ

2
A; hence the two cross-

diffusivities must have opposite signs. As we will see below, this
is a necessary but not sufficient condition for the existence of the
traveling state. Next, we examine the fixed points of Eqs. 4a–4c
and their stability.

Fixed Points. There are three fixed points: a trivial fixed point
(FH ) with ρA = ρB = 0 (θ and Φ are undetermined), correspond-
ing to a homogeneous mixed state, and two nontrivial fixed
points, corresponding to static (FS ) and traveling (FT ) demixed
states. The state FS describes out-of-phase spatial variations of
the two phases, with θs =π and

ρsA =

(
κ2− δ2−αAαB

αB

)1/2
, [5a]

ρsB = (κ+ δ)ρsA/αB , [5b]

while Φ remains undetermined. This solution, of course, only
exists provided αAαB <κ

2− δ2. Since αB > 0, the onset of the
static demixed state requires αA< 0 to drive the growth of
ρA, which is then saturated by the cubic damping in Eq. 4a.
Interspecies interactions modulate the pattern, resulting in out-
of-phase spatial variations of φA and φB , while θ̇A = θ̇B remains
zero, that is, the modulation is static. Note that, in this state, the
two fields, although out of phase, have the same parity, either
both even or both odd functions of x .

The FT state is a spatial modulation traveling at constant
speed

v = Φ̇t/2 =±
√
δ2− δ2c ∼ (δ− δc)1/2, [6]

with δc =
√
κ2 +α2

B as the critical value of nonreciprocity
required for the establishment of the traveling pattern, and

ρtA = (−αA−αB )1/2, [7a]

ρtB =
√

(δ+κ)/(δ−κ) ρtA, [7b]

θt = arccos

−
√

α2
B

δ2−κ2

. [7c]

As we will see below, the speed v provides the order parame-
ter for the transition from the static to the traveling state. This
latter, of course, only exists when κ− δ < 0, or, more specifi-
cally, it requires both αA<−αB and δ2≥κ2 +α2

B , that is, strong
enough nonreciprocity. It arises because a solution with sin θ 6= 0

allows each field to travel at a finite velocity vµ = θ̇µ. The direc-
tion of each vµ is set by fluctuations or initial conditions. As
shown in Fig. 2, the velocity of the traveling modulation and the
spatial profiles of the two fields obtained from the one-mode
approximation provide an excellent fit to those extracted from
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Fig. 2. (A) Comparison of the amplitude of the first Fourier modes as
obtained from simulations (symbols) and the one-mode approximations
(lines): ρA (solid line and filled symbols) and ρB (dashed line and empty
symbols) as functions of δ/κ. (B) Velocity of the traveling pattern as a
function of δ/κ from simulations (symbols) and one-mode approximation
(line). In both A and B, the black vertical dashed line denotes the critical
value δc/κ= (1 +α2

B/κ
2)1/2 of the static-to-traveling transition.χA =−0.05

is used in A and B.

numerical solution of Eq. 1. As discussed below, the traveling
pattern breaks the reflection symmetry (parity) of the static one,
as well as time-reversal invariance.

Linear Stability Analysis. A linear stability analysis of the fixed
points yields the boundaries between the various states shown
in Fig. 1A and provides a clear understanding of the mechanism
of the drift instability. Linearizing Eq. 3 about the homogeneous
state reveals that, in this state, the dynamics of fluctuations is
controlled by two eigenvalues given by

λ±=−1

2
(αA +αB )± 1

2

√
(αA−αB )2 + 4(κ2− δ2). [8]

If δ2<κ2 + (αA−αB )2/4, the eigenvalues are real. The largest
eigenvalue λ+ becomes positive, signaling an instability, when
δ2 =κ2−αAαB . This diffusive instability is displayed as a blue
line in Fig. 1A. It is a supercritical pitchfork bifurcation, where
the trivial steady-state FH undergoes spontaneous breaking of
translational symmetry, leading to the transition to the static
phase-separated state FS . Conversely, when δ2>κ2 + (αA−
αB )2/4, the eigenvalues are complex conjugate. The state FH

can still become unstable when αA<−αB , albeit now via an
oscillatory instability shown as a red line in Fig. 1A.

Further insight is gained by examining the stability of FS .
This requires the analysis of the eigenvalues of the 3× 3 matrix
obtained by linearizing Eqs. 4a–4c. Details are given in SI
Appendix. Note that the matrix is block diagonal, coupling sep-
arately the two amplitudes and the phase difference θ. One finds
that the instability is driven by the growth of fluctuations in the
relative phase θ that become unstable when δ > δc . This bound-
ary δ= δc corresponds to the appearance of FT and is shown
as a black line in Fig. 1A. The instability of the relative phase
is associated with the “run-and-catch” scenario described earlier
and signals the transition to a state where the two fields have
a constants phase lag (different from π), while traveling with a
common speed.

To highlight the mechanism responsible for the traveling pat-
tern, note that the velocities of the field modulations vµ = θ̇µ are
given by vA =κAB (ρB/ρA) sin θ and vB =−κBA(ρA/ρB ) sin θ,
and hence are identically zero in the static state FS where θs =π.
Now consider the effect of a small fluctuation in the relative
phase by letting θ=π+ψ, as shown in Fig. 3A. Evaluating the
amplitudes at the steady-state values, the velocities are then
given by v s

A =− (κABκBA/αB )ψ and v s
B =αBψ (Fig. 3B). If the

cross-diffusivities κAB and κBA have the same sign, the two
species move in opposite directions (black and blue arrows in

Fig. 3A), exerting reciprocal driving forces on each other, and
the perturbation ψ decays. On the other hand, if κAB and κBA

have opposite signs, the two species travel in the same direction
(black and red arrows in Fig. 3A) and can play run-and-catch with
each other. To establish the precise condition for the onset of the
traveling state, it is useful to examine the ratio of the two veloc-
ity, which is well defined even in the static demixed state and is
given by

vA
vB

=−κABρ
2
B

κBAρ2A
=− (κ− δ)ρ2B

(κ+ δ)ρ2A
. [9]

In the stationary demixed state, where ρsB/ρ
s
A = (κ+ δ)/αB , we

find v s
A/v

s
B = (δ2−κ2)/α2

B . This quantity is shown in Fig. 3B.
When v s

A/v
s
B < 0 (blue portion of the curve) a small fluctuation

ψ= θ−π of the relative phase yields opposite field velocities
(blue arrows), while, when v s

A/v
s
B > 0, the velocities are in the

same direction (green portion of the curve and green arrows).
Only when v s

A/v
s
B > 1, however, is nonreciprocity strong enough

to destabilize the static pattern (red line and arrows in Fig. 3B).
The onset of the traveling state corresponds to v s

A = v s
B or δ= δc ,

as obtained from the linear stability analysis. The condition
vA = vB provides a general necessary condition for the onset of
traveling patterns of two interacting scalar fields.

The equality of the velocities is not, however, sufficient
to stabilize the traveling pattern, as the perturbation ψ will
keep increasing if vA> vB persists. Nonreciprocal interactions
come again to the rescue by facilitating the “redistribution” of

A B

C DD

Fig. 3. A pictorial explanation of the “run-and-catch” mechanism that
leads to the stable traveling state. (A) A phase shift ψ= θ−π of φA (solid
line) and φB (dashed line) relative to the out-of-phase modulation of the
stationary demixed state results in finite velocities for the two fields. For a
given vB (black arrow), vA is in the opposite (blue) or same (red) direction
depending on whether the cross-diffusivities have equal or opposite signs.
(B) Ratio of velocities of the two species as given by Eq. 9 evaluated at the
FS fixed point as a function of δ/κ. The arrows are a depiction of the veloc-
ities obtained for a small finite ψ. Arrow colors correspond to the colors
of each portion of the curve. (C) Ratio of the velocities (red) and ampli-
tudes (blue) of the two species as functions of ψ= θ−π obtained from
a simulation where the static pattern experiences a drift bifurcation and
becomes traveling (i.e., D). The values at ψ= 0 and ψ=ψt = θt −π agree
with those obtained from the one-mode model. The horizontal dashed line
corresponds to vA/vB = 1 and the vertical dashed line is the value ψt cor-
responding to the steady traveling state. (D) Spatiotemporal patterns at
the onset of the static-to-traveling transition with δ/κ= 1.5. χA =−0.05
is used.
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amplitude growth. Specifically, as ψ increases, both the damp-
ing of ρA and the activation of ρB originating from the non-
reciprocal nature of the cross-couplings become weaker (last
terms in Eqs. 4a and 4b). Consequently, the amplitude ratio
ρA/ρB increases and suppresses the velocity difference until
vA = vB , allowing the development of a steady traveling pat-
tern, as shown in Fig. 3C. We have validated this simple picture
displayed in Fig. 3D by examining numerically the mechanisms
of stabilization of the traveling state FT for δ slightly larger
than δc .

Static-to-Traveling as a PT-Breaking Transition
The static-to-traveling transition described in this work belongs
to a more generic class of PT-breaking transitions (20, 59,
60), which has been studied in optical and quantum systems
(60, 61) and, more recently, in polar active fluids with non-
reciprocal interactions (44). This type of transition is known to
occur at a so-called exceptional point, which is simply a point
where the eigenvalues of the matrix that governs the linear sta-
bility of a fixed point become equal and its eigenvectors are
colinear. While not uncommon in hydrodynamics when fluids
are driven by external forces or in systems described by non-
conserved fields, the occurrence of such a transitions giving
rise to nontrivial traveling structures in conserved systems is
unexpected.

The dynamics of our coupled fields can be written in a compact
form as

∂t

(
φA

φB

)
= M ·

(
φA

φB

)
, [10]

where the 2× 2 matrix operator M = M[φ2
A,φ2

B ,∇2] can be
inferred from Eq. 1. In the static, spatially modulated solution
corresponding to the demixed state, the two fields φA and φB

are out of phase, but have the same parity under spatial inver-
sion, x→−x , as required by the symmetry of M. The domains
become traveling by acquiring a component of the opposite par-
ity that breaks the relative parity of the two fields, as described
in ref. 20. Hence the transition to the traveling state breaks both
parity and time-reversal invariance.

This is most easily understood in the context of the one-mode
approximation by considering a static FS solution of the form
φB = ρB cos(x ) and φA = ρA cos(x +π). Both fields are even
and are out of phase, but have different amplitudes. A per-
turbation ψ in the phase difference yields φA = ρA cos(x +π+
ψ) = ρA [− cosψ cos x + sinψ sin x ], breaking parity as φA now
acquires an odd component. The response to such a perturba-
tion is governed by Eq. 4c linearized about the steady state for
δ→ δc , which is given by

ψ̇' 2δc(δ− δc)

αB
ψ. [11]

For δ < δc , the odd component of φA proportional to ψ decays,
restoring the parity of the static solution. For δ > δc , ψ grows to a
finite value, destabilizing the static state. As a result, φA acquires
a finite odd component, breaking the parity of the static solu-
tion. Meanwhile, near the transition, Eq. 4d gives Φ̇T ' 2αBψ,
resulting in a finite Φ̇ for δ > δc and breaking time-reversal
symmetry.

Discussion and Outlook
We have shown that nonreciprocal effective interactions in a
minimal model of conserved coupled fields with purely dif-
fusive dynamics lead to a PT-breaking transition to traveling
spatially modulated states. While the emergence of traveling spa-
tiotemporal patterns is well known in reaction–diffusion, prey–
predators, and related models, its appearance in the dynamics of
conserved fields without external forcing is surprising. Although

the work presented here is limited to a minimal model in one
dimension, preliminary results shown in SI Appendix indicate that
the same mechanism is at play in two dimensions, as well as in
mixtures of active and passive particles and of particles interact-
ing via competing repulsive and attractive interactions, as may be
realized in phoretic colloidal mixtures. We speculate, therefore,
that the mechanism described here through which nonrecipro-
cal effective couplings grant motility to static spatial modulations
may be a generic property of multispecies systems describes by
scalar fields.

The type of static-to-traveling transition described here occurs
in Mullins–Sekerka models of crystal growth (62), Keller–
Segel, prey–predator and reaction–diffusion models of popula-
tion dynamics and general systems described by nonconserved
dynamical fields, where it has been referred to as a drift bifurca-
tion (18, 20, 41). It occurs in these systems when a stationary or
standing wave pattern generated through a conventional Hopf
bifurcation undergoes a second instability to a traveling state.
The drift bifurcation can be understood, using amplitude equa-
tions, as arising from the antagonistic coupling of at least two
leading modes (41). Here we show that a similar mechanism can
be at play in multispecies systems with dynamics described by two
conserved scalar fields coupled by sufficiently strong nonrecipro-
cal interactions. When sufficiently strong, nonreciprocity leads
to an effective antagonistic repulsion/attraction between the
two fields, resulting in the run-and-catch mechanism described
here that yields a PT-symmetry-breaking transition. Our one-
mode approximation provides a minimal analytic description
of this generic mechanism, where v = Φ̇/2 serves as the order
parameter for the transition.

A scenario similar to the one described here was recently
identified in a binary Vicsek model with nonreciprocal inter-
actions (44). The mechanisms promoting the onset of a state
with broken PT are the same in both models, but the out-
comes are distinct due to the different symmetry of the two
systems. In ref. 44, it is suggested that nonreciprocal interac-
tion in a polar system may generically result in macroscopically
chiral phases. Here, in contrast, we consider a scalar model
with conserved dynamics and demonstrate that, in this case,
nonreciprocity generically yields spatially inhomogeneous trav-
eling states through the same type of PT-breaking transition.
Together, these works pave the way to the study of the interplay
of nonreciprocity and spontaneously broken symmetry, suggest-
ing a path to the classification of a new type of PT-breaking
transitions.

Understanding and quantifying the role of nonreciprocity in
controlling nonequilibrium pattern formation has direct implica-
tions for the assembly of chemically interacting colloids, where
different particles naturally produce different chemicals mediat-
ing nonreciprocal couplings that can induce the type of chasing
behavior seen in our work. It also provides a general framework
for understanding the nature of wave and oscillatory behav-
ior seen ubiquitously in systems with nonconserved fields, from
diffusion reaction to prey–predator and population dynamics
models. Our predictions can be tested in detailed simulations of
active–passive colloidal mixtures or of particles with antagonis-
tic interactions, as well as experiments in mixtures of chemically
driven microswimmers.

Our work opens up many directions of inquiry. Obvious exten-
sions are to higher dimensions where we expect a richer phase
diagram and to systems with birth and death processes that
select a scale of spatial patterns (63). The exploration of the
role of nonreciprocal interactions in active matter systems with
broken orientational symmetry, either polar or nematic, is only
beginning (44) and promises to reveal a rich phenomenology.
Chemically mediated or other nonequilibrium couplings can
often be time delayed, which can provide an additional, pos-
sibly competing mechanism for the emergence of oscillatory
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behavior. Finally, an important open problem is understanding
how nonreciprocity arises as an emergent property in systems
with microscopic reciprocal interactions, such as active–passive
mixtures.
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