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Abstract

Appropriate ways to measure the similarity between single-cell RNA-sequencing (scRNA-seq) data are ubiquitous in
bioinformatics, but using single clustering or classification methods to process scRNA-seq data is generally difficult. This
has led to the emergence of integrated methods and tools that aim to automatically process specific problems associated
with scRNA-seq data. These approaches have attracted a lot of interest in bioinformatics and related fields. In this paper, we
systematically review the integrated methods and tools, highlighting the pros and cons of each approach. We not only pay
particular attention to clustering and classification methods but also discuss methods that have emerged recently as
powerful alternatives, including nonlinear and linear methods and descending dimension methods. Finally, we focus on
clustering and classification methods for scRNA-seq data, in particular, integrated methods, and provide a comprehensive
description of scRNA-seq data and download URLs.
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Introduction
Many bioinformatics problems involve DNA and protein
sequence analyses or temporal series analyses. Each cell
has its unique phenotype and biological function, which is
reflected in the differences between different histology. Bulk
RNA sequencing (RNA-seq) is based on studies on a large number
of cells, and its expression level is the relative average level of
a group of cells. Therefore, in the mixed cell population, the
traditional bulk RNA-seq cannot analyze the critical differences

of individual cells. In particular, it cannot study the complex
system with ever-changing expression and the expression
characteristics of genes in the system. The emergence of single-
cell RNA-seq solves this problem by providing the expression
profile information of single cells. Although it is impossible
to obtain the complete information of each RNA expressed
by each cell, with limited raw materials, gene clustering
analysis/identification of gene expression patterns can reveal
or discover the existence of rare cell types in the cell population.

http://www.oxfordjournals.org/
http://orcid.org/0000-0001-6406-1142
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Single-cell RNA-seq (scRNA-seq) provides precision and
details. It uses optimized next-generation sequencing technolo-
gies and acquires transcriptomic information from individual
cells to provide a better understanding of cell functions
at genetic and cellular levels. scRNA-seq has been used to
study cancer, metagenomics and regulatory and evolutionary
networks [1–3]. Identification of genes that are essential for
a given cell type is critical for understanding the biological
characteristics of cells. Kater et al. [4] showed a clustering
robustness score to solve the problem that most clustering
methods are not robust to noise. By artificially adding noise, they
obtained clusters of cells with biological meaningful in single-
cell expression dataset. Studies have shown there is significant
heterogeneity in gene expression between individual cells of
the same cell type. The rapid development of molecular biology
technologies has dramatically improved the ability to analyze
transcriptomes; in particular, high-throughput sequencing
technology and transcriptome sequencing (RNA-seq) analysis
are now common experimental methods. Xie et al. [5] presented
a novel biclustering algorithm for the analysis of large-scale bulk
RNA-seq and scRNA-seq data.

In recent years, ‘scRNA-seq technology’ has become an
essential tool for molecular biology research. Compared with
traditional cell-based RNA-seq, scRNA-seq can better reflect
the molecular biological processes within a particular cell
population. In addition, scRNA-seq enables more precise
subpopulation analysis of specific cell types and allows the
detection of different responses of individual cells to the
same stimulus in the same cell type [6, 7]. In many studies
on gene transcription [8, 9], what is detected is the average
gene expression of a population of somatic cells, tissue cells or
organism cells. Although these studies have helped the progress
of gene transcriptome research, traditional cell-based RNA-seq
cannot clearly show the heterogeneity between the cells in an
organism. scRNA-seq can provide information on individual
cell transcriptomes and can be used to develop cell subsets
to determine the time stage of cell differentiation and the
progression of single cells. In addition to cell heterogeneity, the
analysis of cell differentiation requires the clustering of scRNA-
seq data. Such clustering helps in understanding potential
cellular mechanisms, which can promote the discovery of new
markers on specific types of cells and the recognition of tumor
subtypes.

Köster et al. [10] proposed a Bayesian model for analyzing
the transcript expression of single cells. Transcriptome analysis
helps to predict gene expression from genotype data. However,
the cells in our bodies have almost the same genotype, but the
transcriptome information only reflects the activity of some
genes. In addition, gene expression is heterogeneous even within
similar cell types, and individual cell transcriptome is critical
to elucidating stochastic biological processes. The analysis of
scRNA-seq data presents some challenges. scRNA-seq provides
deep scrutiny into the gene expression character of diverse
cell types. The current main challenge is the noisy nature of
the scRNA data. Many of the features of scRNA-seq data are
zero or nearly zero, so processing noise information is of great
significance. This noise makes it difficult to distinguish very
similar cell types, and this is where the technology needs to
be improved. Second, scRNA-seq data always have high dimen-
sions, which increase the difficulty of the analysis to some
extent.

Therefore, dimensionality reduction methods have been
used to process the original data. The most common dimen-
sionality reduction method is principal components analysis

(PCA) [11], which is unsupervised and aims to find a lower
dimensional representation of the data. Peng et al. [12] proposed
two models, unsupervised Gene Ontology AutoEncoder (GOAE)
and supervised Gene Ontology Neural Network (GONN), to
reduce dimensionality. They combined scRNA-seq data and gene
ontology information to extract the hidden layer information
and obtain lower dimensionality representations of the data.
Because of the large numbers of zeros in scRNA-seq, the classical
dimensionality building method often fails. Pierson and Yau [13]
proposed zero-inflated factor analysis (ZIFA), which makes drop-
out events exactly zero, thereby modeling scRNA-seq data and
improving the modeling precision. Although ZIFA is easy to use,
it is likely to lose information; however, drop-out events can be
recovered to reduce the loss.

Sequence analysis is essential in bioinformatics [14–17],
and metric learning often plays an important role in this.
Common metric learning algorithms for classification include
information-theoretic metric learning (ITML) [18], large margin
nearest neighbor (LMNN) [19] and geometric mean metric
learning (GMML) [20]. ITML, which was proposed by Davis et al.
in 2007 [18], uses Bregman divergence or divergence distance
to measure similarity. LMNN [19] was proposed by Weinberger
et al. in 2000 and is the most commonly used Mahalanobis
distance metric learning method. GMML [20, 21]was proposed
by Zadeh and Hosseini in 2016 [19], and the main innovation
of this method is its ability to achieve the effect that the
similarity distance is small and the dissimilarity distance is
large using only one objective function. In scRNA-seq data,
the classification accuracy of several datasets can be more
than 90% and sometimes close to 100%, whereas the clustering
task is more difficult. Common clustering machine-learning
methods include K-means [21], expectation maximization (EM)
[22] and spectral clustering [23]. K-means [21] is a classical
clustering method that is easy to operate, and the number
of clusters required can be set before the experiment. The K-
means method is robust on a variety of datasets. Many of the
newly proposed clustering methods are extensions of K-means.
EM [22] is an integrated clustering method that also has been
shown to be stable and reliable. Spectral clustering [23] is based
on graph theory, which introduces the concept of degree and
then uses K-means to cluster after steps such as eigenvalue
decomposition. Common combinations of methods include
T-distributed stochastic neighbor embedding (t-SNE) with K-
means [24] and PCA with hierarchical clustering [25]. Jiang et al.
embedded the cell similarity measurement method based on
variance analysis into the hierarchical clustering framework
and developed the clustering algorithm ‘Corr’ [26].

scRNA-seq technology can be used to perform gene expres-
sion studies on a variety of cells simultaneously, avoiding the
need to label each cell. The results of existing scRNA-seq studies
have shown that gene expression profiles between individual
cells are significantly different in the same cell type, indicating
only a few of the expressed genes detected in the same cell
group are shared by a single cell, and most of the genes are
expressed randomly in each cell. Monier et al. [27] present a tool
called IRIS-EDA, which is a Shiny web server for expression data
analysis. scRNA-seq analysis has incomparable advantages over
traditional sequencing analysis in the fields of cancer evolution
and drug resistance analysis [28, 29] in the treatment process,
as well as epidermal mesenchymal transformation [30], which
is extremely important in the cancer transformation process
and the measurement of mutation rate in cancer cells [31–33].
Single-cell level analysis can help in understanding the complex
processes of cancer occurrence, development, metastasis and
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recurrence. Individualized clinical treatment also will be the
target and direction of scRNA-seq technology. Generally, scRNA-
seq has three advantages (applications) over traditional bulk
RNA-seq: (i) it can reveal complex and rare cell populations,
(ii) uncover heterogenous gene regulatory relationships among
cells, and (iii) track the trajectories of distinct cell lineages in
development in terms of both temporal and spatial information.

This review is organized as follows. In ‘the challenges of
scRNA-seq’, the challenges of scRNA-seq are discussed. In
‘methods for dimensionality reduction and clustering analysis
tools’, we review dimensionality reduction methods and
describe some of the advanced clustering tools and trends,
including SC3, an R package for clustering and single-cell
regulatory network inference and clustering (SCENIC). In
‘performances of the methods on scRNA-seq datasets’, we de-
scribe scRNA-seq datasets and provide the download URLs. In
‘discussion and conclusions’, we discuss the current limitations
of some of the methods based on the existing literature.

The challenges of scRNA-seq
The study of a single cell is irreplaceable for the exploration
of the mystery of biology and also faces significant challenges.
Gene transcription is not stable and continuous but a sporadic
active transcription. For a fixed cell, transcription is in a con-
stantly changing state [34–36]. Due to the technical limitations
of single-cell transcription level measurement, it is difficult to
detect low-level gene expression, and most intelligent detection
methods can detect about 10–20% of the actual mRNA molecules
[37, 38]. Since there are very few single-cell materials available,
an amplification step is generally required to generate a larger
amount. However, due to amplification is nonlinear, the propor-
tion of cDNA in cells is not balanced, and the amplification is
biased, so some markers cannot be amplified.

scRNA-seq has great limitations in obtaining information.
The main limitation is caused by biological noise during gene
expression [34, 36]. A significant feature of scRNA-seq data is a
large number of zero-inflated counts due to dropout or transient
gene expression, which may mislead downstream analyses. The
read count is connected with gene-specific expression level,
while the nuisance variables are difficult to estimate. The com-
monly used method of inter-sample normalization is trimmed
mean of M values (TMM) and differential expression analysis for
sequence count data (DESeq) [39–41]. Both methods eliminated
some genes based on a weighted average or median of samples,
but both methods performed poorly when a large number of zero
counts were counted. In addition to normalization, confounding
factors such as biological variables and technical noise also
influence the observed read counts.

In 1992, Eberwine et al. [42] used in vitro transcriptional ampli-
fication to study acutely dissociated cells in restricted areas
of rat brain and analyzed gene expression characteristics in
single living neurons. However, the number of gene detection
and detection flux were low. With the continuous development
of detection technology, Tang et al. have combined single-cell
RNA with high-throughput sequencing for the 1st time [43],
significantly increasing the detection flux. However, due to the
limitation of single-cell isolation technology, not all laboratories
can successfully complete single-cell sequencing experiments.

Although many researchers began to study scRNA-seq and
there were some experimental methods that were easy to start
using, only a very small number of single cells were labeled, and
individual cells could not be enriched, and the computational
channels for processing original data were limited, which caused

difficulties in sequencing single cells. Sequencing has the risks
of low coverage, low mappability, high duplicate rate and high
error rate. Some companies have developed tools to process
scRNA raw data but only in the early stages.

The workflow for scRNA-seq is summarized in Figure 1.
Single-cell data are high-dimensional and contain a lot of noise,
so the raw single-cell data generally are processed for dimen-
sionality reduction and denoising, before being classified for
analysis, including clustering analysis, cell type identification,
sorting and other operations.

Methods for dimensionality reduction and
clustering analysis tools
Clustering plays an essential role in single-cell analysis. Given
the high dimensionality of single-cell data, many approaches
combine classic clustering and dimension reduction. Effective
dimensionality reduction methods are critical because most
scRNA-seq data are large and noisy, with the characteristics of
a small number of samples but a large number of dimensions.
Dimensionality reduction is usually carried out after counting
normalization to avoid the curse of dimensionality.

Dimensionality reduction methods

Principal components analysis

PCA [11] is a commonly used unsupervised dimensionality re-
duction method [44]. PCA assumes that the data are normally
distributed, diagonalizes the covariance matrix of the original
matrix and the resulting covariance matrix is a set of new
variables of the diagonal matrix. The orthogonal transformation
is used to transform a set of potential linear correlation variables
into linear independent variables, which means that linear
dimensionality reduction is realized. One of the main problems
with linear dimensionality reduction algorithms is that when
they concentrate dissimilar data points in a lower dimensional
region, the data points are far apart. By projecting cells into
two-dimensional space, PCA can easily visualize samples and
improve the interpretation ability. An extended version of
PCA, pcaReduce [25], creates the relationship between the data
patterns and cell type. pcaReduce is a hierarchical clustering
combining PCA, k-means and iteration. It starts with a large
number of clusters, and pcaReduce iteratively combines similar
clusters. After each combination, the component of the smallest
variance in the data is deleted.

T-distributed stochastic neighbor embedding

To represent high-dimensional data on the low-dimensional and
nonlinear manifold, we also need to show similar data points
together, which is not what the linear dimension-reduction algo-
rithms can do. t-SNE [45] is a nonlinear dimensionality reduc-
tion method, and it converts the distance of high-dimensional
space of points into the probability of similarity of points and
maintains the sum of the difference of conditional probabili-
ties between a pair of points in high-dimensional space and
low-dimensional space to be the minimum. At the same time,
the long tail of t-distribution is used to solve the overlapping
problem when the high-dimensional data is mapped to the low-
dimensional data. t-SNE algorithm defines the soft boundary
between the local and global structure of data, which can make
the points scattered locally and aggregated globally, and take
care of the points at close range and far range at the same time.
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Figure 1. The workflow of scRNA-seq data and the pipeline of scRNA-seq data application. The 1st stage is dataset processing. Cells–genes matrix was obtained by

processing the original data with the effective dimensionality reduction method. The 2nd stage is to calculate the similarity matrix. The similarity matrix can be used

for cell sequencing, cell type recognition and other applications. In addition, machine learning can be used to cluster or classify single-cell data.

t-SNE has been used recently to reduce the dimensionality of
scRNA-seq data [46, 47].

Zero-inflated factor analysis

A large number of dropout events in single-cell RNA data make
most dimension-reduction algorithms fail to work. ZIFA [13] is
a linear dimensionality reduction method for scRNA-seq data,
which is completed on the basis of modification by probabilistic
PCA/factor analysis (PPCA/FA). In the absence of dropout event,
it is equivalent to PPCA/FA. ZIFA regards 0 in data as normal
data and models it. So, drop-out events in the data are assumed
to result in zero counts and are set as precisely 0 rather than
approximately 0. However, these drop-out events could be recre-
ated by detecting technology or environmental effects, so this

assumption could lead to loss of information and decreased
accuracy.

Neural networks

Neural networks can continuously extract the main features
through a hidden layer to achieve the effect of dimensionality
reduction. For example, denoising self-coding has been used
widely to reconstruct data from higher to lower dimensions
[48, 49]. Lin et al. [46] proposed a supervised method for scRNA-
seq dimensionality reduction based on a neural network. This
method uses protein–protein and protein–DNA interaction data
to learn the neural network of the structure and parameters
in the model. Lin et al.’s method promotes the development
of supervised models and has been shown to perform best in
unsupervised models.
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Table 1. Summary of dimensionality reduction methods

Dimensionality reduction method Reference Year Usage or download URL

1 PCA [11] 1987 MATLAB, Python, R etc. all have a free package
3 FA [51] 1980 http://personality-project.org/r
4 Classical multidimensional scaling [52] 1978 https://www.statmethods.net/advstats/mds.html
5 Sammon mapping [53] 1969 MATLAB, Python, R, etc. all have a free package
6 Linear discriminant analysis / 1936 MATLAB, Python, R, etc. all have a free package
9 Local linear embedding (LLE) [55] 2000 https://cs.nyu.edu/~roweis/lle/code.html
10 Laplacian eigenmaps [56] 2003 MATLAB, Python, R, etc. all have a free package
11 Hessian LLE [57] 2003 https://cs.nyu.edu/~roweis/code.html
12 Local tangent space alignment [58] 2004 https://manifoldlearningjl.readthedocs.io/en/latest/ltsa.html
18 Generalized discriminant analysis [59] 2000 https://github.com/mhaghighat/gda
20 Neighborhood preserving embedding [60] 2005 http://www.cad.zju.edu.cn/home/dengcai/Data/code/NPE.m
21 Locality preserving projection [61] 2005 http://www.cad.zju.edu.cn/home/dengcai/Data/code/LPP.m
22 t-distributed stochastic neighbor

embedding
[45] 2008 https://lvdmaaten.github.io/tsne/

23 LMNN [19] 2005 http://kilian.cs.cornell.edu/code/lmnn/lmnn.html

Some of the open dimensionality reduction methods are
listed in Table 1. These methods each have their characteris-
tics, so the most appropriate dimensionality reduction method
should be chosen according to the characteristics of the target
dataset. In 2007, van der Maaten published a MATLAB Toolbox
for Dimensionality Reduction that contains implementations of
many methods for dimensionality reduction [50].

Classic clustering methods

Clustering methods aim to group data objects into multiple
classes or clusters so that objects in the same cluster are similar
and different from objects in different clusters [62]. Clustering
can be based on partitioning or layering, where partitioning
divides objects into different clusters, and layering classifies
objects into levels. Clustering based on distance clusters similar
objects close to each other. Clustering based on a probability
distribution model finds a set of objects in a group of objects
that conform to a specific distribution model. The objects are not
necessarily the closest or most similar, but they perfectly fit the
model described by the probability distribution. Most clustering
methods need prior knowledge on a number of clusters, and the
quality of clustering needs to be improved. Classic clustering
methods such as K-means [21], X-means [63], spectral clustering
[23] and EM [22] can be used in single-cell clustering directly. K-
means [21] is an unsupervised machine-learning technique that
operates on a complete dataset without the need for a special
training dataset. X-means [63] is an extended version of K-means
by an improve-structure part where Euclidean distance is used to
calculate the distance between each use case, and other distance
functions are used to calculate the distance between any two use
cases. Spectral clustering [23] is an evolutionary algorithm from
graph theory. The main idea is to consider all the data as points
in space that can be connected by edges. EM [22] was proposed
by Arthur et al. in 1977. The EM algorithm assigns a probability
distribution to each instance, which indicates the probability of
it belonging to each of the clusters.

Popular clustering analysis tools

Clustering is another effective method to detect cell types.
Poisson and error models can be used to count data and explain
technical noise in various sources of noise in single-cell data.
scRNA-seq data analysis can help in studying the heterogeneity

and evolution of cancer cells. Except for a few early methods,
most of the currently available integrated methods achieve
state-of-the-art performances on some problems. Although
the analyses of scRNA-seq data are complex and procedures
may vary depending on the purpose, many mature tools have
been developed to integrate two or more functions that greatly
simplify the independent operations.

The challenges of clustering in scRNA-seq research are
mainly reflected in an unclear number of single-cell clusters,
unfixed cell types and poor scalability. In the past few years,
the number of cells in scRNA-seq experiments has grown
by several orders of magnitude. Although researchers have
developed a variety of tools, they are not user-friendly because
they use different programming languages and require different
input data formats. In this section, we describe 11 of the most
advanced scRNA-seq tools currently available. A summary of
these methods and tools, the download URLs and other useful
information are given in Table 2.

SC3, an R package for clustering

SC3 was proposed by Kiselev et al. [64] in 2017. It is an interactive
R package that uses a parallelization approach to avoid the need
for user-specified parameters. SC3 was verified experimentally
on 12 scRNA-seq datasets. SC3 constrained parameter values
via a pipeline and was found to be superior to five other tested
methods in terms of accuracy and stability. Because SC3 has a
long run time, Kiselev et al. proposed randomly selecting subsets
and constructing clusters based on the random matrix theory.
They found that the estimated value was consistent with the
number of original clusters suggested by them. SC3 is based
on PCA and spectral dimensionality reductions, and it utilizes
k-means and additionally performs the consensus clustering.

Single-cell regulatory network inference and clustering

SCENIC [64, 65]was proposed by Aibar et al. in 2017 [63] who used
it to identify stable cell states in tumor and brain scRNA-seq
data based on the activity of the gene regulatory networks in
each cell. The authors proposed two complementary methods to
handle the large dimensions of single-cell data: (i) small sample
extraction to infer the gene regulatory network and (ii) gradient
enhancement instead of the random forest (RF) to achieve a
more efficient solution. They demonstrated that single-cell data

http://personality-project.org/r
https://www.statmethods.net/advstats/mds.html
https://cs.nyu.edu/~roweis/lle/code.html
https://cs.nyu.edu/~roweis/code.html
https://manifoldlearningjl.readthedocs.io/en/latest/ltsa.html
https://github.com/mhaghighat/gda
http://www.cad.zju.edu.cn/home/dengcai/Data/code/NPE.m
http://www.cad.zju.edu.cn/home/dengcai/Data/code/LPP.m
https://lvdmaaten.github.io/tsne/
http://kilian.cs.cornell.edu/code/lmnn/lmnn.html
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Table 2. Summary of advanced tools

Tools Language Method Download Cite

1 SC3 R Cluster https://github.com/hemberg-lab/sc3 10.1101/036558; 10.1038/nmeth.4236
2 SCENIC R/Python Cluster https://github.com/aertslab/SCENIC 10.1101/144501; 10.1038/nmeth.4463
3 BackSPIN Python Bicluster https://github.com/linnarsson-lab/BackSPIN 10.1126/science.aaa1934
4 BiSNN-Walk / Bicluster / 10.1089/cmb.2017.0049
5 SNN-Cliq MATLAB/Python Cluster http://bioinfo.uncc.edu/SNNCliq 10.1093/bioinformatics/btv088
6 NMF Python Cluster https://github.com/ccshao/nimfa 10.1093/bioinformatics/btw607
7 SIMLR MATLAB ML+cluster https://github.com/BatzoglouLabSU/SIMLR 10.1038/nmeth.4207
8 SINCERA R Cluster https://github.com/xu-lab/SINCERA 10.1371/journal.pcbi.1004575;

10.1007/978-1-4939-7710-9_15
9 SEURAT R Cluster https://github.com/satijalab/seurat 10.1038/nbt.3192; 10.1101/164889
10 Monocle R Cluster https://github.com/cole-trapnell-lab/

monocle-release
10.1038/nbt.2859; 10.1038/nmeth.4150;
10.1101/110668; 10.1038/nmeth.4402

11 SCRL C++ ML+cluster https://github.com/SuntreeLi/
SCRL

10.1093/nar/gkx750

were suitable for gene regulation and that genomic regulatory
codes can be used to guide the identification of transcription
factors and cell states.

SEURAT

Satija et al. [66] proposed SEURAT, a toolbox for spatial cell local-
ization. SEURAT combines scRNA-seq data within situ RNA pat-
terns to predict spatial cell localization. The toolkit was applied
to infer the spatial location of a complete transcriptome and
correctly located unusual subpopulations. The reliability of SEU-
RAT was verified using the RNA-seq data of 851 single cells from
Danio rerio embryos. SEURAT’s test dataset is Pollan [67], which
includes the following four cell types: ‘NPC’, ‘GW16’, ‘GW21’ and
‘GW21+3’. The toolkit’s expression matrix includes the number
of genes, the number of cells and the number of genes in
each cell, as well as the number of cells in which each gene is
expressed. In addition, users can look for genes that fluctuate
significantly and then use those genes rather than all of them
for subsequent analysis to reduce the amount of computation.
Users can look at the cell population with the toolkit, and then
you can look for markers for each subpopulation.

Single-cell interpretation via multi-kernel learning

In 2017, Wang et al. [68] proposed single-cell interpretation
via multi-kernel learning (SIMLR), a kernel-based similarity
learning method, for dimensionality reduction of scRNA-seq
data. SIMLR can also be applied to large-scale datasets. They
conducted single-kernel comparisons on four datasets without
weight terms and showed that adding weight terms significantly
enhanced SIMLR performance. Further experimental studies
conducted by Zhang et al. [69] verified the robustness of SIMLR
for drop-out events in single-cell data and its application to the
imputed data by low-rank to have better performance than the
general clustering algorithm.

SINCERA

Guo et al. [70, 71] proposed SINCERA, a pipeline for scRNA-seq
profiling analysis. SINCERA can identify cell types, gene signa-
tures and can determine key nodes. Analysis of mouse lung
cells using the SINCERA pipeline distinguished the main cell
types of the fetal lung. Guo et al. subsequently introduced logis-
tic regression models that predict gene sequences, providing a
valuable tool for analyzing scRNA-seq data. SINCERA is based
on hierarchical clustering, by which data is converted to z-score

before clustering, and the number k for clustering is determined
by finding the 1st singleton in the hierarchy.

Shared nearest neighbor (SNN-Cliq)

Xu et al. [72] developed SNN-Cliq in 2005 for grouping cells of the
same type. scRNA-seq data usually have tens of thousands of
dimensions, and only a few of the thousands of genes are sig-
nificantly expressed in different types of cells, which make the
clustering problem difficult. SNN-Cliq combined with an SNN
similarity metric can automatically determine the number of
clusters, especially in high-dimensional single-cell data, which
is a great advantage.

Nonnegative matrix factorization

In 2016, Shao et al. [73] proposed nonnegative matrix factoriza-
tion (NMF) to identify subgroups in scRNA-seq datasets. Identify-
ing cell types from single-cell data is an unsupervised problem.
Although PCA is used widely, single-cell data are generally too
noisy. The 1st few principal components extracted from PCA can
explain only a small part of the differences, and cell subgroups
are not easy to distinguish through the projection of the 1st
several dimensions. The NMF approach is different from PCA
because its feature superposition constraint is nonnegative. NMF
was designed specially to detect single parts, which helps to
detect the natural groupings of individual cells and functional
cell subsets.

Monocle

To study cell differentiation, the expression profiles of indi-
vidual cells are required. Monocle was developed by Trapnell
et al. [74] as an unsupervised algorithm for analyzing single-cell
gene expression data to reveal the expression sequence of key
regulatory factors and the interactions associated with differen-
tiation. The authors used the Monocle algorithm to study mouse
myoblasts and found eight transcription factors that had not
been considered previously. scRNA-seq data collected at differ-
ent time points can help to reveal key events in differentiation.
Monocle requires users to prepare phenotype data and feature
data required by Monocle objects as well as the expression
matrix, and the expression matrix is counted. This tool not only
contains the general functions of a single-cell toolkit, such as
quality control, difference analysis etc. In the monocle package,
it is interesting to note that dimensionality reduction must be
followed by clustering in order to be visualized. In addition, Mon-

https://github.com/hemberg-lab/sc3
https://github.com/aertslab/SCENIC
https://github.com/linnarsson-lab/BackSPIN
http://bioinfo.uncc.edu/SNNCliq
https://github.com/ccshao/nimfa
https://github.com/BatzoglouLabSU/SIMLR
https://github.com/xu-lab/SINCERA
https://github.com/satijalab/seurat
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/SuntreeLi/
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Table 3. Summary of other popular analytical tools

Tools Download Tools Download

SAMtools https://github.com/samtools/samtools SCDE https://github.com/hms-dbmi/scde
SART https://github.com/alexdobin/STAR GeneQC http://bmbl.sdstate.edu/GeneQC/home.html
MAST https://github.com/RGLab/MAST IRIS-EDA http://bmbl.sdstate.edu/IRIS/
Kallisto https://github.com/pachterlab/kallisto QUBIC2 https://github.com/maqin2001/qubic2
BPSC https://github.com/nghiavtr/BPSC CellRanger https://github.com/10XGenomics/cellranger
salmon https://github.com/COMBINE-lab/salmon Scater https://github.com/davismcc/scater
UML-tools https://github.com/CGATOxford/UMI-tools SAVER https://github.com/mohuangx/SAVER

ocle develops the function to infer the development trajectory,
which becomes the highlight of this tool.

BackSPIN

Zeisel et al. [75] developed BackSPIN in 2015 and tested it on the
adult nervous system, which is highly complex and has many
cell types that are challenging to identify. scRNA-seq data were
used to classify mammalian cortical cells. BackSPIN detected
different types of cells based on molecule clustering and showed
that transcription factors formed a complex hierarchical regu-
latory code, revealing the diversity of brain cell types and their
transcriptomes.

BiSNN-Walk

Shi and Huang [76] proposed BiSNN-Walk, an iterative biclus-
tering method based on SNN-Cliq [72]. BiSNN-Walk differs from
SNN-Cliq in that it returns a sorted list as a reliable indicator of
a cluster. In addition, BiSNN-Walk uses a metric method based
on entropy to select the starting point of clustering, and its
clustering ability was tested on three scRNA-seq datasets.

Single-cell representation learning

Single-cell representation learning (SCRL) [47] is a nonlinear
dimensionality reduction method based on machine learning
and clustering that was developed by Li et al. in 2017. To process
drop-out events of single-cell RNA data, SCRL uses biological
knowledge such as high-throughput RNA sequencing and adopts
a network-embedding method to express a more abundant and
low-dimensional expression of scRNA-seq data.

We have provided the download URLs and references for 14
other popular scRNA-seq analysis tools in Table 3, so interested
readers can find them easily.

Performances of the methods on scRNA-seq
datasets
Transcriptome datasets

The 12 datasets summarized in Table 4 are named after
the primary provider of the published dataset. The 1st six
datasets are benchwork labeled and are considered as the
gold standard; the other six datasets are computationally
labeled and are considered as silver standard. Yan’s dataset
consists of the transcriptomes of human oocytes and early
embryonic cells at seven key stages of development, using
two to three embryos per stage. Deng’s dataset includes the
transcriptomes of single cells isolated from mouse embryos at
different pre-implantation stages. Treutlein’s dataset contains
transcriptome data from single distal lung epithelium cells.
Zeisel’s dataset contains 19 972 genes from 3005 cells and

was used to study specialized cell types in mouse cortex and
hippocampus.

Dataset size

We considered a small dataset as one with RNA-seq data of less
than 100 cells, a large dataset had more than 1000 cells and a
medium-size dataset was in the middle. As shown in Table 4,
Biase’s and Treutlein’s datasets were classified as small, and
Klein’s and Zeisel’s datasets were large with 2717 and 3005 cells,
respectively. The numbers of genes in these 12 datasets were
extremely large. Except for Patel’s dataset, which contained 5948
genes, the other 11 datasets contained from 19 972 to 41 480
genes. These scRNA-seq datasets are large and contain a lot of
expression data.

Performances on raw scRNA-seq datasets

To better understand the performance of each method on
scRNA-seq data, we conducted classification and clustering
experiments on the raw datasets. The experimental results
are particularly important because they can be used to analyze
and judge whether the data preprocessing steps and algorithm
improvements are effective.

We used the raw scRNA-seq data of the 12 datasets without
any preprocessing with four widely used machine-learning clas-
sification methods, including KNN, RF, J48 and bagging. KNN is
the most commonly used classification method, which deter-
mines the class of samples to be classified by the class of
adjacent k samples. J48 is a decision tree-based algorithm. RF
and bagging are integrated machine-learning algorithms. These
methods are free and efficient in Weka software. The results are
shown in Figure 2. The methods’ classification performance was
measured with accuracy.

As shown in Figure 2, In general, although the four meth-
ods showed differences in the results for the 12 datasets, the
classification of expression data showed accuracies that could
reach over 80%. Overall, bagging was the most stable achieving
good classification accuracy on all 12 datasets, which may be
explained by its integrated classification mechanism. For the six
gold datasets, RF was better than the other three methods. Ting’s
dataset showed the worst results among all the datasets and
methods, possibly because the dataset contains too much noise,
which affected the ability of the algorithms to accurately clas-
sify the expression data. Thus, for complex datasets, machine
learning still has room for improvement.

Unsupervised clustering is currently the core part of the
scRNA-seq analysis. It does not require researchers to make any
input to the known expressed genes and can directly cluster sim-
ilar cells by an algorithm. Because many subsequent analyses
of single cells are based on clustering, the results of clustering
have a great impact on the final conclusion. We performed

https://github.com/samtools/samtools
https://github.com/hms-dbmi/scde
https://github.com/alexdobin/STAR
http://bmbl.sdstate.edu/GeneQC/home.html
https://github.com/RGLab/MAST
http://bmbl.sdstate.edu/IRIS/
https://github.com/pachterlab/kallisto
https://github.com/maqin2001/qubic2
https://github.com/nghiavtr/BPSC
https://github.com/10XGenomics/cellranger
https://github.com/COMBINE-lab/salmon
https://github.com/davismcc/scater
https://github.com/CGATOxford/UMI-tools
https://github.com/mohuangx/SAVER
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Table 4. Summary of scRNA-seq datasets

Dataset # of
genes

# of
cells

# of
clusters

Cells in each cluster Standard Cell resource Recommended
methods

1 Biase’s [77] 25 737 49 3 9 + 20 + 20 Bench Two and four-cell
Mouse embryo

SC3, pcaReduce
and SINCERA

2 Yan’s [78] 20 214 124 7 3 + 3 + 6 + 12 + 20 +
16 + 30

Bench Human preimplantation
embryos and embryonic
stem cells

pcaReduce

3 Goolam’s [79] 41 480 124 5 6 + 64 + 42 + 6 + 6 Bench Four-cell mouse embryos pcaReduce
4 Deng’s [80] 22 457 268 10 50 + 14 + 37 + 8 + 43 +

10 + 30 + 12 + 60 + 4
Bench Mouse preimplantation

embryos
SC3 and pcaReduce

5 Pollen’s [67] 23 730 301 11 22 + 17 + 11 + 37 + 31 + 54
+ 24 + 40 + 24 + 15 + 25

Bench Human SC3, SIMLR and
pcaReduce

6 Kolodziejczyk’s
[81]

38 653 704 3 295 + 159 + 250 Bench Mouse embryonic
stem cell

SC3, SINCERA and
SEURAT

7 Treutlein’s [82] 23 271 80 5 41 + 14 + 12 + 11 + 3 Computational Human lung epithelium SC3
8 Ting’s [83] 29 018 149 7 24 + 41 + 11 + 34 + 12 +

12 + 15
Computational Human pancreatic

circulating tumor cells
SC3

9 Patel’s [84] 5948 430 5 118 + 94 + 75 + 73 + 70 Computational Human glioblastomas SC3, tSNE+kmeans
and SINCERA

10 Usoskin’s [85] 25 334 622 11 125 + 233 + 26 + 48 + 12 +
17 + 32 + 64 + 22 + 31 + 12

Computational Human neuron SC3

11 Klein’s [86] 24 175 2717 4 933 + 303 + 683 + 798 Computational Human embryonic
stem cells

SC3, tSNE+kmeans
and SINCERA

12 Zeisel’s [75] 19 972 3005 9 290 + 390 + 948 + 820 +
98 + 175 + 198 + 26 + 60

Computational Mouse cortex SC3

Figure 2. True Positive (TP) rate of four classification methods based on expression data. The blue, orange, gray and yellow bars represent the classification performance

of KNN, RF, J48 and bagging, respectively.

experiments on the 12 datasets with three clustering methods.
The results are shown in Figure 3. Greedy [87] is a hierarchi-
cal clustering algorithm adapted to large networks, which can
detect high modularity partitions quickly and without limit to
the number of nodes. Overall, the spectral method was more
stable on all 12 datasets, which may be because of its inte-
grated classification mechanism. We need to input the number
of clustering on used clustering methods except for X-means
and greedy. The default parameters of the algorithm were used
in all experiments. In the 2nd picture in Figure 3, it can be easily
seen that in the overall experiment results, spectral and greedy
were significantly better than EM. EM showed the worst result
because EM is unable to recognize expression data when there
is a lot of noise.

To some extent, these diversities are also reflected in the
effectiveness of the algorithm, that is, some methods are better
for certain types of data. Because of the complexity of clustering
problems, it is unlikely that one method is superior to all other
methods.

Performances of seven clustering methods and
toolboxes
on the 12 datasets

Cell classification results vary because of different parameter
combinations and different dataset sizes, making it difficult
and time-consuming to find the optimized parameters for the
best result. Hence, methods that integrate machine learning to
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Figure 3. Accuracy of 3 clustering methods based on 12 expression datasets. The figure above shows the accuracy of the spectral, greedy and EM clustering on the

dataset, while the figure below intuitively shows the percentage of each of the three methods in clustering performance accuracy.

provide a profound and easy-to-operate pipeline have been
developed. At present, many clustering methods have been
developed for single-cell data, but these methods show very
different characteristics in model assumptions and clustering.
Therefore, there is an urgent need for large-scale comparison
and evaluation of these methods. To this end, we compared
several clustering methods and tools, evaluated their clustering
capabilities and conducted analysis to explore their effects on
clustering cell types and detecting differentially expressed genes
in the context of real data.

To evaluate the performance of clustering methods, we tested
the clustering methods SC3, pcaReduce and tSNE+kmeans on
12 published datasets. The analysis refers to adjusted Rand
index (ARI) due to its wide adoption in the field. In order to
test the stability of the method, we repeated the experiment

100 times with fixed parameters. The clustering performance
shows that SC3 has the best robustness, while pcaReduce and
tSNE+kmeans still have worse performance. Figure 4 shows that
most of the ARI values of SC3 are concentrated and located in
the upper half of the graph, indicating that SC3 plays a stable
role and has the best effect. The ARI values of tSNE+kmeans and
pcaReduce are widely distributed.

ARI of the three methods in the Pollan dataset is almost
all between 0.25 and 0.6, where SC3 results are more concen-
trated at the endpoints of the interval, and pcaReduce values
are more concentrated between 0.25 and 0.4. In comparison,
tSNE+kmeans results are better, most of which are around 0.6.
This shows that tSNE+kmeans is effective for dimensionality
reduction of the dataset of Pollan. Based on the Biase dataset,
SC3 results were stable above 0.9, and most ARI of pcaReduce
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Figure 4. The clustering results of SC3, pcaReduce and tSNE+kmeans. We use 12 colors to represent different datasets, labeled on the right side of the picture. The

column of the box in the picture represents the ARI distribution. The wider the horizontal direction is, the more clustering results are distributed in the value of ARI.

were distributed between 0.8 and 0.9. On the contrary, more
than half of tSNE+kmeans were below 0.1, which indicated
that tSNE+kmeans was completely invalid for dimensionality
reduction of Baise dataset. Usually, no dimensionality reduction
method or clustering is suitable for all datasets. We can observe
the characteristics of statistical datasets and find the effective
dimensionality reduction method corresponding to the dataset.

Then we conducted an experiment on all datasets with the
default parameters of the toolbox and recorded its experimental
results as shown in Figure 5, which showed the clustering perfor-
mances on five toolboxes: SC3, SNN-Cliq, SINCERA, SEURAT and
pcaReduce. First, we analyze the experimental results based on
the dataset Pollen and find that the results of the five clustering
algorithms are very close, from which we can draw a conclusion
that Pollen is universal to the algorithms. In terms of algorithmic
comparison, SC3 produced the best performances, beating the
other four clustering methods tested. SC3 worked best on most
datasets, and its powerful integration features made it a stable
toolbox. However, the SEURAT algorithm performed poorly with
most datasets, and it is the most unstable method. SEURAT is a
toolbox for spatial cell localization, and it may be that the noise
in the single-cell RNA dataset affects the performance of the
algorithm.

Discussion and conclusions
scRNA-seq provides deep scrutiny into the gene expression
character of diverse cell types. The main challenge now is the
noisy nature of the single-cell RNA data. This noise makes it
difficult to distinguish very similar cell types, and this is where
the technology needs to be improved. In this review, we covered
several aspects of scRNA-seq applications, from quantitative
analysis and characterization of cell types through clustering
and classification to gene regulatory network reconstruction
and cell-state identification. Using 12 published sets of single-
cell RNA data, we showed the classification and clustering

performance of each algorithm. We have listed the classical
machine-learning methods, summarized the currently generally
accepted toolkits and conducted experiments on the single-
cell RNA dataset. At present, single-cell RNA classification
has been relatively mature, but there is still a lot of room
for improvement in clustering. scRNA-seq technologies allow
researchers to uncover new and potentially unexpected biolog-
ical discoveries compared with traditional profiling methods.
scRNA-seq has also been applied to identify subclones from
the transcriptomes of neoplastic cells, and the technique
holds enormous potential for both basic biology and clinical
applications.

Experimental studies emphasize that there is no one way to
perform the best in all situations. Some of the shortcomings of
these approaches, such as scalability, robustness and in some
cases unavailability, need to be addressed in studies. Several
recommendations have been made based on the above exper-
iments and analysis, with details showcased in Table 4. Specifi-
cally, for the Pollen’s dataset, we recommend the algorithm with
the fastest convergence (SIMLR) as it showed little difference
in clustering performance among various algorithms. SIMLR is
a kernel-based similarity learning method, based on dimen-
sionality reduction of scRNA-seq data, and can be typically
applied to relative large-scale datasets. For the Biase’s dataset,
SC3, pcaReduce and SINCERA all achieved a better effect than
the other algorithms. For the Goolam’s dataset, we recommend
using pcaReduce for dimensionality reduction and clustering
due to its superior prediction performance, while for the Klein’s
dataset, we recommend using the tSNE+kmeans or SC3 method.
From the perspective of the algorithm, it is easy to see, according
to Figures 4 and 5, that SC3 is stable in most of the benchmark
datasets and scales well with the most datasets in terms of their
sizes and variating dimensionality. SC3, pcaReduce and SINCERA
are more robust on almost datasets than the other tools in
this review. For single cell datasets created from heterogeneous
sources, multi-modal and multi-view learning can be introduced
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Figure 5. ARI of five scRNA clustering analysis tools. We use abbreviations SNN, SIN, SEU and pcaR to represent the clustering tool SNN-Cliq, SINCERA, SEURAT and

pcaReduce, respectively. The closer to red means the better clustering effect, and the closer to blue means the worse clustering effect.

to combine all the gene expression data from a single cell so that
the data can be complementary to each other, to make better
use of the data for analysis. Further research into individual
cells will contribute to the field of personalized medicine with
a deeper understanding of the underlying processes of various
developmental physiological and disease systems.

Key Points
• The paper reviewed machine-learning approaches for

clustering and classification based on the character-
istics of single-cell RNA-sequencing (scRNA-seq). Effi-
cient methods and tools for dimensionality reduction
were concluded in detail.

• Various tools applied in scRNA-seq were explained
clearly, and we highlighted the pros and cons of each
approach, which could help the readers to select proper
tools to distinguish tasks.

• We provided a comprehensive description of scRNA-seq
data and downloaded URLs. And the performances of
the methods on scRNA-seq datasets were showed in the
paper.

• The paper stated clearly recommendations after per-
formed various methods and tools on a series of scRNA-
seq datasets. The corresponding summary can be found
in Table 4 and the discussion section at the end of this
article.
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