Skip to main content
. Author manuscript; available in PMC: 2020 Aug 24.
Published in final edited form as: J Appl Stat. 2019 Feb 22;46(12):2216–2236. doi: 10.1080/02664763.2019.1582614

Table 6.:

Non-zero weights of individual algorithms in Super Learners 1 and 2 across all three data sets.

Data Set Algorithms Selected for SL1 Weight
NOAC SL.caret.bayesglm_All 0.30
SL.caret.C5.0_All 0.11
SL.caret.C5.0Tree_ll 0.11
SL.caret.gbm_All 0.39
SL.caret.glm_All 0.01
SL.caret.pda2_All 0.07
SL.caret.plr_ll 0.01
NSAID SL.caret.C5.0_All 0.06
SL.caret.C5.0Rules_All 0.01
SL.caret.C5.0Tree_All 0.06
SL.caret.ctree2_All 0.01
SL.caret.gbm_All 0.52
SL.caret.glm_All 0.35
VYTORIN SL.caret.gbm_All 0.93
SL.caret.multinom_All 0.07
Data Set Algorithms Selected for SL2 Weight
NOAC SL.caret.C5.0_screen.baseline 0.03
SL.caret.C5.0Tree_screen.baseline 0.03
SL.caret.earth_screen.baseline 0.05
SL.caret.gcvEarth_screen.baseline 0.05
SL.caret.pda2_screen.baseline 0.02
SL.caret.rpart_screen.baseline 0.04
SL.caret.rpartCost_screen.baseline 0.04
SL.caret.sddaLDA_screen.baseline 0.03
SL.caret.sddaQDA_screen.baseline 0.03
SL.hdps.100_All 0.00
SL.hdps.350_All 0.48
SL.hdps.500_All 0.19
NSAID SL.caret.gbm_screen.baseline 0.24
SL.caret.sddaLDA_screen.baseline 0.03
SL.caret.sddaQDA_screen.baseline 0.03
SL.hdps.100_All 0.25
SL.hdps.200_All 0.21
SL.hdps.500_All 0.01
SL.hdps.1000_All 0.23
VYTORIN SL.caret.C5.0Rules_screen.baseline 0.01
SL.caret.gbm_screen.baseline 0.71
SL.hdps.350_All 0.07
SL.hdps.750_All 0.04
SL.hdps.1000_All 0.17