Table 7.:
Perfomance for hdPS algorithms and Super Learners
| Data Set | Method | Negative Log Likelihood | AUC | Negative Log Likelihood (Train) | AUC (Train) | Processing Time (Seconds) |
|---|---|---|---|---|---|---|
| NOAH | k=50, n=200 | 0.50 | 0.80 | 0.51 | 0.79 | 19.77 |
| k=100, n=200 | 0.50 | 0.80 | 0.50 | 0.80 | 20.69 | |
| k=200, n=200 | 0.49 | 0.80 | 0.49 | 0.81 | 22.02 | |
| k=350, n=200 | 0.49 | 0.82 | 0.47 | 0.83 | 25.38 | |
| k=500, n=200 | 0.49 | 0.82 | 0.46 | 0.84 | 27.35 | |
| k=750, n=500 | 0.50 | 0.81 | 0.45 | 0.85 | 50.58 | |
| k=1000, n=500 | 0.52 | 0.80 | 0.43 | 0.86 | 57.08 | |
| sl_baseline | 0.53 | 0.77 | 0.53 | 0.77 | 1035.43 | |
| sl_hdps | 0.48 | 0.82 | 0.47 | 0.83 | 1636.48 | |
| NSAID | k=50, n=200 | 0.60 | 0.68 | 0.61 | 0.67 | 43.15 |
| k=100, n=200 | 0.60 | 0.69 | 0.60 | 0.69 | 43.48 | |
| k=200, n=200 | 0.59 | 0.70 | 0.60 | 0.69 | 47.08 | |
| k=350, n=200 | 0.60 | 0.69 | 0.59 | 0.70 | 52.99 | |
| k=500, n=200 | 0.60 | 0.69 | 0.59 | 0.71 | 58.90 | |
| k=750, n=500 | 0.60 | 0.69 | 0.58 | 0.71 | 112.44 | |
| k=1000, n=500 | 0.61 | 0.69 | 0.58 | 0.72 | 119.28 | |
| sl_baseline | 0.61 | 0.67 | 0.61 | 0.66 | 1101.84 | |
| sl_hdps | 0.59 | 0.70 | 0.59 | 0.71 | 2075.05 | |
| VYTORIN | k=50, n=200 | 0.44 | 0.64 | 0.43 | 0.64 | 113.45 |
| k=100, n=200 | 0.43 | 0.65 | 0.43 | 0.65 | 116.73 | |
| k=200, n=200 | 0.43 | 0.65 | 0.43 | 0.66 | 146.81 | |
| k=350, n=200 | 0.43 | 0.65 | 0.42 | 0.67 | 166.18 | |
| k=500, n=200 | 0.43 | 0.65 | 0.42 | 0.67 | 189.18 | |
| k=750, n=500 | 0.43 | 0.65 | 0.42 | 0.68 | 315.22 | |
| k=1000, n=500 | 0.43 | 0.65 | 0.42 | 0.68 | 350.45 | |
| sl_baseline | 0.42 | 0.69 | 0.42 | 0.70 | 9165.93 | |
| sl_hdps | 0.42 | 0.70 | 0.41 | 0.71 | 15743.89 |