Skip to main content
. Author manuscript; available in PMC: 2020 Aug 24.
Published in final edited form as: J Appl Stat. 2019 Feb 22;46(12):2216–2236. doi: 10.1080/02664763.2019.1582614

Table 7.:

Perfomance for hdPS algorithms and Super Learners

Data Set Method Negative Log Likelihood AUC Negative Log Likelihood (Train) AUC (Train) Processing Time (Seconds)
NOAH k=50, n=200 0.50 0.80 0.51 0.79 19.77
k=100, n=200 0.50 0.80 0.50 0.80 20.69
k=200, n=200 0.49 0.80 0.49 0.81 22.02
k=350, n=200 0.49 0.82 0.47 0.83 25.38
k=500, n=200 0.49 0.82 0.46 0.84 27.35
k=750, n=500 0.50 0.81 0.45 0.85 50.58
k=1000, n=500 0.52 0.80 0.43 0.86 57.08
sl_baseline 0.53 0.77 0.53 0.77 1035.43
sl_hdps 0.48 0.82 0.47 0.83 1636.48
NSAID k=50, n=200 0.60 0.68 0.61 0.67 43.15
k=100, n=200 0.60 0.69 0.60 0.69 43.48
k=200, n=200 0.59 0.70 0.60 0.69 47.08
k=350, n=200 0.60 0.69 0.59 0.70 52.99
k=500, n=200 0.60 0.69 0.59 0.71 58.90
k=750, n=500 0.60 0.69 0.58 0.71 112.44
k=1000, n=500 0.61 0.69 0.58 0.72 119.28
sl_baseline 0.61 0.67 0.61 0.66 1101.84
sl_hdps 0.59 0.70 0.59 0.71 2075.05
VYTORIN k=50, n=200 0.44 0.64 0.43 0.64 113.45
k=100, n=200 0.43 0.65 0.43 0.65 116.73
k=200, n=200 0.43 0.65 0.43 0.66 146.81
k=350, n=200 0.43 0.65 0.42 0.67 166.18
k=500, n=200 0.43 0.65 0.42 0.67 189.18
k=750, n=500 0.43 0.65 0.42 0.68 315.22
k=1000, n=500 0.43 0.65 0.42 0.68 350.45
sl_baseline 0.42 0.69 0.42 0.70 9165.93
sl_hdps 0.42 0.70 0.41 0.71 15743.89