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Abstract

Click chemistry has found wide application in bioconjugation, enabling control over the site of 

modification in biomolecules. Demonstrations of this chemistry to construct chemically defined 

antibody-drug conjugates (ADCs) have increased in recent years, following studies that support 

benefits of homogeneity and site-specificity of drug placement on the antibody. In this chapter, a 

brief history of early applications of this chemistry in ADCs is presented. Examples of click 

chemistry that are utilized for ADC synthesis, including those currently undergoing clinical 

investigation, are enumerated. Protocols for two common methods based on carbonyl-aminooxy 

coupling and strain-promoted azide-alkyne cycloaddition are presented.
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1. Introduction

The bioconjugation strategy to connect a drug molecule to an antibody continues to be an 

active area of research in the field of antibody-drug conjugates (ADCs) [1]. Among the four 

ADCs currently approved by the U.S. Food and Drug Administration (FDA), all of them 

(Mylotarg, Adcetris, Kadcyla, and Besponsa) are made using stochastic conjugation 

chemistries that target native lysine or cysteine residues of the antibody. Consequently, these 

ADCs have heterogeneous drug-to-antibody ratios (DARs) and conjugation sites. For 

instance, Mylotarg (gemtuzumab ozogamicin), the first FDA-approved ADC, is composed of 

a mixture of antibodies with a range of DARs, of which ~50% remains unconjugated and 

can compete with the active ADC for target cell uptake [2]. In addition, the ADCs with 

variable DARs can possess differential pharmacological properties. Indeed, corroborative 

studies over the past decade have reached a consensus that the DAR and the site of drug 

conjugation can have an impact on the pharmacokinetics and the therapeutic index of ADCs 

[3–5]. Therefore, methods and conjugation chemistries that enable the synthesis of 

homogeneous, site-specific ADCs are desired.
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One seminal method for creating site-specific ADCs is the THIOMABs technology from 

Genentech [3]. In this approach, the antibody is engineered with cysteine residues at 

particular sites, to which cysteine-reactive (often maleimide-functionalized) drug linkers will 

solely attach if the interchain disulfides are left unreduced. A revolving concern regarding 

this approach is the stability of the conjugation, namely that the thiosuccinimidyl linkage 

formed from the reaction of cysteine with maleimide is reversible and can thus undergo 

premature cleavage upon exchange with circulating thiols in vivo. Continued research for 

stability improvement notwithstanding [4,6–8], interests in other conjugation chemistries 

forge another front working in parallel toward chemically defined and stable ADCs.

Concurrent development in bioorthogonal chemistries has provided a number of chemical 

strategies for ADC applications [9]. Often referred interchangeably to as click chemistries, 

these reactions involve the selective coupling of two unnatural functionalities that are 

orthogonal, or inert, to other biological functional groups. The product of these reactions 

should be stable in the biological milieu. The preconditions to be classified as bioorthogonal 

thus coincide with the attributes that are presently in demand for bioconjugation in ADC 

production.

While extended exploration of click chemistries for site-specific antibody-drug conjugation 

is relatively recent, examples of utility of such chemistry can be found even in early-

generation ADCs, including Mylotarg [10]. Mylotarg contains a hydrazone bond, formed via 

one of the earliest bioorthogonal reactions – condensation of a carbonyl (aldehyde/ketone) 

with an α-effect amine. In this case, the carbonyl is an aromatic ketone installed in a lysine-

targeted linker to the antibody and the α-effect amine is a hydrazide derivatized on the 

calicheamicin payload. It should be noted that the conjugation to the antibody still stems 

from the lysine-reactive component of the linker, hence the aforementioned heterogeneity of 

this ADC. The purpose of the hydrazone, which is acid-labile, is to render the ADC 

susceptible to drug cleavage upon cellular internationalization to the acidic lysosomal 

compartment. The same pH-sensitive linker is also present in the recently approved ADC, 

Besponsa (inotuzumab ozogamicin). Outside of serving as a cleavable linker, hydrazone 

ligation has also been applied for direct conjugation to antibodies that include predecessors 

of Mylotarg [10–12]. However, the conjugates lacked homogeneity, as the number of 

aldehydes introduced to the antibody through oxidation of the attached glycan was 

heterogeneous. Although site-specific ADCs using hydrazone ligation has subsequently been 

demonstrated [13], the hydrazone linkage has generally been deemed not sufficiently stable 

to avoid off-target cleavage at physiological condition [14].

Application of carbonyl-based chemistry with α-effect amine continues as the field shifts 

toward site-specific conjugation. Alkoxyamine is a common choice for the α-effect 

nucleophile. The condensation product, an oxime, is hydrolytically more stable than a 

hydrazone [15]. Some site-specific ADCs generated via oxime ligation are currently 

undergoing clinical development (e.g. ARX788 from Ambrx) [16] or preclinical assessment 

(e.g. LCB14–0110 from LegoChem Biosciences) [17].

Variations of the carbonyl-based chemistry have also been developed to improve from 

deficiencies of oxime ligation. Oxime formation suffers from slow kinetics and necessitates 
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acidic condition as well as high concentration of reactants (or large excess of one) to reach 

appreciable conversion [18,19]. Hydrazino iso-Pictet-Spengler (HIPS) ligation, which pairs 

an aldehyde with an alkylhydrazine-functionalized indole, has been shown to perform 

optimally at near neutral pH (pH 6) [20]. The product contains a newly formed C-C bond 

and is reportedly more stable than the corresponding oxime. Utility of this chemistry for 

site-specific ADCs has been demonstrated [21] and one (Trph-222 from Triphase - licensed 

from Catalent) has recently entered clinical trial [22].

In addition to HIPS, other aldehyde-based chemistries have also been reported for ADC 

synthesis. In a direct comparison of the rate of antibody-drug conjugation, the trapped-

Knoevenagel ligation has a reported rate of 0.4 M−1s−1 at pH 7, compared to 0.03 M−1s−1 at 

pH 4.6 for oxime ligation [23]. Despite the improvement, the rate is still considered 

relatively slow. A substantially faster aldehyde-based reaction, with rate constants in the 

order of 103 M−1s−1 at neutral pH, involves an aromatic aldehyde with a boronic acid at the 

ortho position [24–27]. We have demonstrated that coupling this moiety with an α-amino-

hydrazide as the nucleophile produces a unique zwitterionic boron-nitrogen heterocycle that 

is stable across a wide range of pH [28]. We have recently applied this chemistry to generate 

site-specific antibody conjugates [29]. Although the work presented thus far has used a 

fluorophore payload as proof-of-principle, the conjugate’s stability in human serum and its 

preservation of antibody function show promise for the utility of this developing chemistry 

for efficient ADC production.

Aside from carbonyl condensation chemistries, another class of click chemistry that is 

partaking in the development of site-specific ADCs is the azide-alkyne cycloaddition (AAC) 

reaction. Two major types that have been widely used for bioconjugation are the copper-

catalyzed AAC (CuAAC) and the strain-promoted AAC (SPAAC). The former involves the 

coupling of an azide with a linear alkyne and the latter with a cyclooctyne. As the names 

suggest, CuAAC is catalyzed by copper while SPAAC relies on the ring strain on the 

cyclooctyne for its reactivity. Both reactions produce a 1,4-substituted triazole, though only 

the CuAAC product is regiospecific [30]. Site-specific ADCs conjugated via CuAAC and 

SPAAC have both been demonstrated [31–37] and some of them are currently under clinical 

evaluation (e.g. STRO-001 from Sutro Biopharma and ADCT-601 from ADC Therapeutics) 

[38]. For CuAAC, oxidation of certain amino acids on the antibody due to copper has been 

observed and is a factor to consider, as oxidized proteins may cause an immunogenic 

response [34].

Application of the inverse-electron-demand Diels Alder (IEDDA) reactions to construct site-

specific ADCs has also been demonstrated. The IEDDA reactions involve the ligation of a 

strained alkene with a tetrazine and constitute some of the fastest bioorthogonal reactions to 

date [39]. In particular, in a recent study, an antibody equipped with a cyclopropene was site-

specifically conjugated to a tetrazine-functionalized payload [40]. The conjugation was 

reportedly faster than most of the conjugations that made use of other bioorthogonal 

handles.

Table 1 illustrates the various click chemistries that have been applied for the generation of 

homogeneous, site-specific ADCs. At present, two of the most common click chemistries 
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used for antibody-drug conjugation are the oxime and the SPAAC ligations. Therefore, this 

method chapter will focus on these two chemistries, even as others may assume a broader 

role in the future.

To implement these chemistries for ADC assembly, the bioorthogonal reactive groups need 

to be introduced to the antibody and the payload. In general, for oxime and SPAAC 

ligations, the carbonyl or the azide, respectively, is installed on the antibody while the 

aminooxy or the cyclooctyne is placed on the drug-linker. Table 2 and 3 list select methods 

that have been developed to enable site-specific incorporation of the carbonyl/azide handle 

onto the antibody. A collection of previously synthesized drug-linkers that carry the 

complementary reactive group is also included. Readers are encouraged to refer to the cited 

references for detailed instructions on the derivatization process prior to conjugation. The 

method section will concentrate on the procedure to perform the conjugation using oxime 

and SPAAC chemistries.

2. Materials

2.1. General

Dimethyl sulfoxide (DMSO) / dimethylformamide (DMF)/dimethylacetamide (DMA)

Desalting column

30 or 50 kDa MWCO ultracentrifugal filter

0.2 μm syringe filter

2.2. Oxime ligation

Acetate buffer, pH 4.5: 0.1 M sodium acetate, pH 4.5

PBS: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4

Aldehyde/ketone functionalized antibody

Aminooxy-functionalized drug-linker

37 °C incubator / water bath

2.3. SPAAC ligation

PBS: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4

Azide-functionalized antibody

Dibenzoazacyclooctyne (DBCO)-functionalized drug-linker
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3. Method

3.1. Oxime ligation

1. Take the purified antibody functionalized with aldehyde/ketone, buffer exchange 

using a desalting column (e.g. PD-10 column containing Sephadex G-25 resin, 

GE Healthcare) equilibrated with acetate buffer, pH 4.5 (see Note 1).

2. Prepare a 26.7 mM stock solution of an aminooxy-functionalized drug-linker in 

DMSO (see Note 2).

3. To 10 mg of carbonyl-functionalized antibody in acetate buffer, pH 4.5, add 50 

μL of 26.7 mM aminooxy-drug linker stock (see Note 3). The final volume of the 

sample is 1 mL. The following is the final composition of the sample in terms of 

concentration: 10 mg/mL (66.7 μM) antibody and 1.33 mM aminooxy-drug 

linker in acetate buffer, pH 4.5 containing 5% DMSO (see Note 4, 5, 6 & 7).

4. Allow the sample to incubate at 37 °C for 1–4 days (see Note 8).

5. Remove excess drug-linkers by subjecting the sample to a desalting column 

equilibrated with PBS (see Note 9).

6. The resultant ADC sample may be concentrated using a 30 or 50 kDa MWCO 

protein concentrator (e.g. Amicon Ultra centrifugal filter).

7. Filter the purified ADC with a 0.2 μm syringe filter.

8. The ADC sample can be stored at −20 °C to −80 °C until use.

3.2. SPAAC ligation

1. Take the purified antibody functionalized with azide, buffer exchange using a 

desalting column equilibrated with PBS (see Note 10).

2. Prepare a 26.7 mM stock solution of a DBCO-functionalized drug-linker in 

DMSO (see Note 2 & 11).

1.Avoid amine-containing buffer, such as Tris or glycine.
2.Drug-linker may be dissolved in organic solvents other than DMSO, typically DMF or DMA.
3.The protocol here is for a scale of 10 mg antibody.
4.Here the antibody is assumed to have one reactive group on each light or heavy chain for a total of two reactive groups per antibody. 
The concentration of the drug-linker selected here (1.33 mM) corresponds to ten equivalents relative to the number of reactive group 
on the antibody.
5.The conjugation is reported to be more efficient with higher reactant concentrations [18,50].
6.The percentage of organic cosolvent is dependent on the solubility of the drug-linker. A less soluble drug-linker would require a 
higher percentage of organic cosolvent.
7.A catalyst may be added to speed up the reaction or to allow it to occur at neutral pH. Aniline or aniline derivatives are commonly 
used at 10 mM to 100 mM range as a nucleophilic catalyst [19,51,45,52,53]. We use 4-aminophenylalanine for catalysis, which is 
more biocompatible than aniline and accelerates the conjugation reaction rate at low temperature and neutral pH [54].
8.Analysis by LC-MS or hydrophobic interaction chromatography (HIC) is recommended to ensure that the conjugation is complete 
within the suggested time frame.
9.ADC can be further purified using HIC if the conjugation does not reach 100%. See chapter 20 for further instructions.
10.Avoid azide (such as sodium azide)-containing buffer. Buffers other than PBS with a buffer range near neutral pH may be used.
11.Other cyclooctyne-functionalized drug-linkers may be considered. Reported examples include dibenzocyclooctyne (DIBO) [31] 
and bicyclo[6.1.0]nonyne (BCN) [34,35]. BCN is reportedly able to conjugate with an azide-functionalized antibody more efficiently 
and is considered a less hydrophobic alternative to DBCO [34].
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3. To 10 mg of azide-functionalized antibody in PBS, add 50 μL of 26.7 mM 

DBCO-drug linker stock (see Note 3). The final volume of the sample is 1 mL. 

The following is the final composition of the sample in terms of concentration: 

10 mg/mL (66.7 μM) antibody and 1.33 mM DBCO-drug linker in PBS 

containing 5% DMSO (see Note 4, 5 & 6).

4. Allow the sample to incubate at room temperature for 2 hours (see Note 8).

5. Remove excess drug-linkers by subjecting the sample to a desalting column 

equilibrated with PBS (see Note 9).

6. The resultant ADC sample may be concentrated using a 30 or 50 kDa MWCO 

protein concentrator (e.g. Amicon Ultra centrifugal filter).

7. Filter the purified ADC with a 0.2 μm syringe filter.

8. The ADC sample can be stored at −20 °C to −80 °C until use.
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Table 1.

Click chemistries for site-specific antibody-drug conjugation.
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Table 2.

Methods for site-specific incorporation of a carbonyl handle onto an antibody.

Approach Scheme 
a Click 

Chemistry
Drug-

Linker 
b

Reported 
DAR 

(Expected 
DAR)

Ref.

Glycan 
Remodeling

Oxime Aminooxy-
MMAE 

Aminooxy-
Dol10

1.3–1.9 
(4)

[43]

GlycanRemodeling Oxime Aminooxy-
AF

4 (4) [44]

Unnatural amino 
acid (UAA) 
mutagenesis

Oxime Aminooxy-
AF 

Aminooxy-
MMAD

>1.9 (2) [41] 
[42]
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Approach Scheme 
a Click 

Chemistry
Drug-

Linker 
b

Reported 
DAR 

(Expected 
DAR)

Ref.

N-terminal serine 
engineering

Oxime Aminooxy-
MMAE

1.9 (2) [45]

Enzymatic 
modification of 
peptide tag

Oxime Aminooxy-
MMAF 2 (2)

c [46,49]

Enzymatic 
modification of 
peptide tag

HIPS HIPS-
maytansine

1.5 ->1.8 
(2)

[21]

Knoevenagel thioPz-
maytansine 2 (2)

c [23]

Pz-
maytansine 4 (4)

c [47]

Enzymatic 
modification of 
peptide tag

DAB N/A 1.6 ->1.9 
(2)

[29]

a
Gal T: β−1,4-galactosyltransferase; Sial T α−2,6-sialyltransferase; NaIO4: sodium periodate; β−1,4-T1-Y289L: Y289 mutant of β−1,4-

galactosyltransferase; Prenyl T: prenyl transferase; FGE: formylglycine-generating enzyme; mTG: microbial transglutaminase.

b
MMAD/MMAE/MMAF: monomethyl auristatin D/E/F; Dol 10: dolastatin 10; AF: auristatin F; thioPz: thiopyrazolone; Pz: pyrazolone. 

Regarding the drug-linkers listed, only the functional group and the drug are specified. The linker connecting these two moieties may vary.

c
DAR not explicitly stated.
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Table 3.

Methods for site-specific incorporation of an azide handle onto an antibody.

Approach Scheme 
a Click 

Chemistry
Drug-

Linker 
b

Reported 
DAR 

(Expected 
DAR)

Ref.

Glycan 
Remodeling

SPAAC DIBO-Dox 4.5 (4) [31]

Glycan 
Remodeling

SPAAC BCN-Dox 
BCN-

MMAE 
BCN-

MMAF 
BCN-

maytansine 
BCN 

DUMSA

>1.9 (2) [34]

CuAAC Alkyne-
PBD

>1.9 (2) 
3.8 (4)

[37]

Unnatural 
amino acid 
(UAA) 
mutagenesis

SPAAC DBCO-
MMAF

1.2–1.9 
(2)

[32]
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Approach Scheme 
a Click 

Chemistry
Drug-

Linker 
b

Reported 
DAR 

(Expected 
DAR)

Ref.

UAA 
mutagenesis

CuAAC 
SPAAC

Alkyne-
PBD 

Alkyne-AF 
BCN-AF

1.8 ->1.9 
(2)

[35]

Enzymatic 
modification 
of peptide 
tag

SPAAC DBCO-
MMAE

>1.9 (2) [33]

Enzymatic 
modification 
of peptide 
tag

SPAAC DBCO-
MMAE

3.3 (4) [48]

a
GalNAz: azido-modified N-acetyl-D-galactosamine; PNGase F: N-glycosidase F.

b
DIBO: dibenzocyclooctyne; BCN: bicyclo[6.1.0]nonyne; DUMSA: duocarmycin SA; PBD: pyrrolobenzodiazepine dimer; DBCO: 

dibenzoazacyclooctyne. Regarding the drug-linkers listed, only the functional group and the drug are specified. The linker connecting these two 
moieties may vary.
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