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A B S T R A C T

Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called
SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However,
many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless,
currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of
disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or
non‐existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is
restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous
burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest
evidence regarding outstanding vaccine approaches and the challenges for vaccine production.

1. Introduction

Corona virus disease 2019 (COVID-19), also known as 2019-nCoV
acute respiratory disease, is caused by SARS-CoV-2 that has led the
current ongoing pandemic worldwide [1]. The first SARS-CoV-2 infec-
tion was discovered in Wuhan, Hubei, China, and rapidly spread around
the world by July 30, including more than 16,523,815 confirmed cases
655,112 confirmed deaths in 216 countries and territories [2,3]. Most
human coronaviruses are originated from bats [4], and importantly, a
genetic similarity between the bat Betacoronavirus and SARS-CoV-2 has
been recently demonstrated [4]. Although the certain transmission
route to humans has partially remained unknown, according to some
reports, the spike gene of SARS-CoV-2 may have originated from pan-
golins [4].

The SARS-CoV-2 colonizes the respiratory tract system and causes
symptoms similar to those of common cold, including respiratory dis-
orders, runny nose, dry cough, dizziness, sore throat, and body aches,
accompanied by headaches and fever for several days [5–7]. In people
with defective immune systems, such as immunocompromised and el-
derly individuals, COVID-19 symptoms can become more severe,
causing pneumonia and bronchitis [8]. The case fatality rate of this
disease seems to be age-dependent, with a higher percentage in the
elderly, particularly men, and an overall fatality rate up to 3% [9].
There is currently no specific treatment for COVID-19; however, re-
search is ongoing, and efforts are currently directed at repurposing li-
censed antivirals drugs. Still, the best way to deal with this disease is by
taking proper preventive measures; thus, hopes are pinned on devel-
oping effective vaccines [10]. Although by August 2020, no vaccines
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have been developed for COVID-19, various organizations are at-
tempting for vaccine development [10]. Three vaccination strategies
could be considered [11,12].

As the first strategy, researchers hope to produce a complete virus
vaccine. Such vaccine aims to induce a rapid immune response in hu-
mans against SARS-CoV-2 [11,12]. The second strategy is the devel-
opment of a sub-unit vaccine to induce the immune system for the
identification of specific viral subunits [11,12]. In case of SARS-CoV-2,
such research focuses on spike (S) proteins that facilitate binding of
virus to the angiotensin-converting enzyme 2 (ACE2) [13]. The third
strategy is the development of nucleic acid vaccines (DNA or RNA
vaccines) [11,12,14]. Although experimental vaccines developed by
either of these strategies should be tested for safety and efficacy, de-
veloping effective and safe vaccines is urgently needed to prevent
SARS-CoV-2 infections. In this review, we will describe various strate-
gies for developing COVID-19 vaccines based on current under-
standings of various coronaviruses, particularly the novel SARS-CoV-2.

2. Roles of viral S, M and N proteins

Coronaviruses (including SARS-CoV-2) are enveloped viruses and
their envelopes are composed of a lipid bilayer originated from the host
cell membrane when being released from the infected cells.
Structurally, SARS-CoV-2 has four main structural proteins, including S
glycoprotein, small envelope (E) glycoprotein, membrane (M) glyco-
protein, nucleocapsid (N) protein, as well as and several accessory
proteins [15]. The S glycoprotein is a transmembrane protein with a
molecular weight of about 150 kDa found on the viral outer membrane
[16]. S protein forms homotrimers that protrudes the viral surface and
facilitates binding of viral envelope to host cells by interacting with
ACE2 expressed on the lower respiratory tract cells [16]. This glyco-
protein is cleaved by the host cell furin-like protease into 2 subunits,
namely S1 and S2 [16]. S1 component is responsible for cellular
tropism with the receptor-binding domain while S2 mediates viral

fusion to host cells [16]. The N protein is the structural component of
coronaviruses bound to the viral nucleic acid [16]. As this protein is
bound to RNA, it is involved in processes related to viral genome, viral
replication cycle, and the host cell responses to viral infections [16].
The N protein is also strongly phosphorylated and is suggested to be
involved in structural changes, thereby enhancing affinity for viral RNA
[16]. The most abundant structural protein is the M glycoprotein; it
spans the membrane bilayer three times, leaving a short NH2-terminal
domain outside the virus and an extended COOH terminus (cytoplasmic
domain) inside the virion [17,18]. The S protein as a type I M glyco-
protein constitutes the peplomers. The primary target of neutralizing
antibodies is the S protein [17,18]. Within the envelope, molecular
interactions between proteins probably determine the coronaviral
membrane formation and composition [17,18]. The M protein plays a
predominant role in the intracellular formation of viral particles
without requiring the S protein. In the presence of tunicamycin, which
inhibits protein glycosylation, coronavirus continues proliferation and
produces spikeless, noninfectious virions that contain the M proteins
but lack the S proteins [17,18]. N proteins of many coronaviruses are
highly immunogenic and are expressed abundantly during infection
[19]. High levels of immunoglobulin G antibodies against the N protein
have been detected in sera of SARS patients. The N protein in a vaccine
setting induces SARS-specific T-cell proliferation and cytotoxic activity
[20].

3. Immune reactions and pathogenesis of COVID-19

Findings from COVID-19 have shown that in severe cases, a cytokine
storm has been observed that causes the acute respiratory distress
syndrome [21–23]. Other reports on severe COVID-19 cases have in-
dicated a high rate of pro-inflammatory cytokines and immune cell
subsets [23,24]. During COVID-19 infection, various immune cells are
synergistically involved in antiviral reactions [23]. Elevated leukocytes,
neutrophils, as well as the neutrophil-lymphocyte ratio, have been

Fig. 1. The SARS-CoV-2 immunopathogenesis in the lung.
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documented in severe COVID-19 cases [23]. Lymphopenia is indicative
of impaired immune reactions in most SARS-CoV-2-infected cases
[25,26] (Fig. 1). Hence, it seems that leukocytes and neutrophils along
with lymphocytes can prompt the cytokine storm in SARS-CoV-2-in-
fected individuals [23]. The levels of T lymphocyte subsets with crucial
roles in the equilibrium of immune reactions vary based due to different
viral pathogenesis mechanisms [23]. It has been previously found that
the number of T lymphocytes decrease in SARS-CoV infected in-
dividuals [23,27]. Findings have noted that COVID-19 infection could
lead to immune dysregulation by affecting T lymphocytes. The sig-
nificant reduction in the number of T lymphocyte has been demon-
strated in COVID-19, which is pronounced in severe cases [23]. The
numbers of T helper lymphocytes, cytotoxic suppressor T lymphocytes,
and regulatory T lymphocytes in patients with SARS-CoV are below the
normal ranges. It has been found that SARS-CoV-2 causes an immune
dysregulation by inducing aberrant cytokine activity and alterating the
rate of lymphocyte subsets, thereby leading to cytokine storm and tissue
injury. Excessive inflammatory responses during a cytokine storm lead
to severe disorders and facilitate the prognosis of SARS-CoV-2 infection.
Severe cases of COVID-19 infections are found to have lower lympho-
cyte levels and higher inflammatory cytokine rates [21,24,28]. Overall,
in late stages of COVID-19 infection, cytokine storm is the leading cause
of disease progression and death (26). The elevated levels of IL-1β, IFN-
γ, IL-10, IL-2, TNF-α, and IL-4 have led to the induction of granulocyte-
colony stimulating factor (GCS-F), IFNγ-induced protein-10 (IP-10),
macrophage chemoattractant protein-1 (MCP-1), and macrophage in-
flammatory protein 1α (MIP-1α) [28].

4. Coronavirus vaccines

Previous works on vaccine development for Coronaviridae have
aimed at SARS and MERS [29]; nevertheless, these vaccines have been
evaluated in non-human models. By 2020, no approved vaccine has
been reported to be safe and protective in humans; however, the
identification and development of novel vaccines and medicines to
tackle with SARS-CoV is a priority for public health agencies around the
world. In this section, we review the latest strategies for evaluating
candidate vaccines for SARS and MERS, and most importantly, we
provide an overview of SARS-CoV-2 candidate vaccines.

5. Candidate vaccines for severe acute respiratory syndrome

Several approaches have been considered for the development of
SARS vaccines, such as inactivated virus vaccines, live-attenuated SARS
vaccines, recombinant vector vaccines, recombinant SARS proteins, and
DNA vaccines [30–33] (Fig. 2). The inactivated whole vaccine is an
attractive candidate as it is easily produced and presents an antigenic
moiety similar to what the host immune cells meet during viral infec-
tions [30]. Besides, this vaccine presents many proteins on its surface
for recognition by the immune system [30]. Many researchers have
developed an inactivated whole SARS vaccine and found that it sti-
mulates neutralizing antibodies [34–37]. Stadler et al. [38] found that
inactivated whole vaccine prevented pulmonary SARS replication in
mouse model. Another study showed that in the absence or presence of
alum adjuvant, the inactivated whole vaccine induced protection
against SARS infection by stimulating neutralizing antibodies and de-
creasing viral loads in the respiratory system [39]. Additionally, for-
maldehyde-inactivated SARS vaccines were administered to rhesus
monkeys and the results showed their immunogenicity and safety [30].
Interestingly, inactivated SARS (a.k.a SARS CoV1) vaccines have been
used in humans and stimulated neutralizing antibodies. These vaccines
were found to be effective and safe [40]. Overall, findings indicated
that the inactivated whole vaccine is safe, induces neutralizing anti-
bodies for SARS, and stimulates T lymphocytes.

Recombinant virus vaccine consists of live replicating viruses with
the ability of inducing efficient immune reactions mediated by T and B

lymphocytes as it can directly infects antigen-presenting cells (APCs)
[41]. This vaccine produces target proteins within the host cell that can
be processed by antigen-processing machinery to be expressed by MHC
I and subsequently be presented to CD8+ T cells [30]. Some viruses
have been shown to express the SARS protein for triggering potent
cellular immunity as well as neutralizing antibodies [30].

Viral vector vaccines combine many of the positive aspects of DNA
vaccines with those of live attenuated vaccines [42]. Similar to DNA
vaccines, viral vector vaccines transfer DNA into the host cell for the
generation of antigenic proteins with the ability of provoking a variety
of immune responses, including antibodies, T helper cells (CD4+ T
cells), and cytotoxic T lymphocytes (CTLs) [42]. Unlike DNA vaccines,
viral vector vaccines have the potential to actively attack host cells and
replicate within them, much like a live attenuated vaccine, further
stimulating the immune system similar to an adjuvant [42]. Therefore,
the viral vector vaccine generally consists of a live-attenuated virus that
is genetically engineered to transfer DNA coding for protein antigens
from a pathogenic organism. Currently, viral vectors expressing pa-
thogenic proteins are being developed as vaccines against viral patho-
gens [42]. For some diseases, viral vectors are being used in combi-
nation with another strategy called the heterologous prime-boost
approach [42]. One vaccine is given as a priming step, followed by an
alternative vaccine as a booster [42]. The heterologous prime-boost
strategy aims to provide a more robust immune response [42].

Adenovirus vaccine lacks pathogenicity when administered through
oral and nasal routes and promotes mucosal immunity [43]. The lim-
itation of the adenovirus vaccine is its restricted host range leading to
difficulties in in vivo settings [41,44]. Protection against SARS by ade-
novirus-vectored vaccines was primarily evaluated in mice. It triggered
high rates of anti-N protein interferon-gamma as well as neutralizing
antibodies, and reduced viral titers [39]. Importantly, the intranasal
administration triggered immunoglobulin A, which could effectively
block viral replication in both the nose and the lungs [30]. These data
show that the intranasal administration of the N and S recombinant
adenovirus vaccines can trigger protective host mucosal immunity.
Also, adenoviruses that express SARS proteins have been tested in
rhesus macaques and a ferret model. The results showed the im-
munogenicity of these vaccines as the decreased severity of pneumonia
and viral titer were reported [45].

Fig. 2. The current approaches considered for SARS-CoV-2.
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Subunit vaccines are safe, easily provided, and often less protective
due to the presentation of produced proteins by MHC II and less ability
of inducing CTLs [30]. The S protein can be employed for the SARS
subunit vaccine development as it induces the protective immunity
[46,47]. This protein is responsible for binding host receptor ACE2;
hence, it is a suitable target for vaccine development [48,49]. Ad-
ditionally, it has been found that the N protein can represent another
target for vaccine development [50,51] as it has been documented to
stimulate the host cell immunity via CD8+ T lymphocytes [30].

DNA vaccines encoding viral proteins can stimulate cellular and
humoral immune reactions. Protein antigens are expressed and pre-
sented by MHC I, thereby triggering CD8+ T lymphocytes [30]. Some
DNA vaccines have been developed for SARS based on the S, N, and M
proteins [30,52–54]. A DNA-S protein vaccine triggered neutralizing
antibodies as well as T lymphocyte responses and subsequently de-
creased SARS replication [55]. Also, a DNA vaccine based on multiple-
epitope strategy triggered the generation of antibodies for the S and M
proteins, which could prevent SARS-CoV infection [54]. Reportedly, the
efficacy of DNA vaccines in most clinical studies have not been very
promising; thus, numerous approaches have been used to enhance their
efficacy [30]. For example, it has been suggested that a DNA vaccine in
conjunction with inactivated viral proteins as well as vectors can im-
prove immune reactions, in particular, specific T helper 1/T helper 2
responses [54,56,57]. Overall, these work on SARS-CoV vaccine suggest
strategies that could work for SARS-CoV2.

Finally, attenuated viral vaccines are the most prominent and ef-
fective vaccines as they possess immune-activating moieties. These
vaccines usually very effective, and a single dose is often enough to
induce long-lasting immunity [30]. The problem with attenuated vac-
cines is that mutations can cause virulence, as found in poliovirus [30].
Virulence has not been indicated following SARS-attenuated vaccine
administration; however, several mutations have been reported [30].
The protective efficacy and immunogenicity of a live-attenuated vac-
cine with recombinant SARS lacking the E gene showed that hamsters
immunized with this vaccine had a high rate of neutralizing antibodies
that prevented SARS replication and respiratory symptoms [58].
Therefore, the deletion of E gene can be considered as a primary step in
the development of a live-attenuated SARS vaccine. Additionally, it has
been found that the deletion of nsp-1 gene in murine hepatitis virus can
be used for the development of a highly efficacious attenuated vaccine,
suggesting a promising approach for the development of an attenuated
vaccine for SARS-CoV-1 [59].

6. Candidate vaccines for middle east respiratory syndrome
(MERS)

For MERS prevention, several candidate vaccines are under devel-
opment, including subunit vaccines, DNA vaccines, peptide vaccines,
vector vaccines, and live-attenuated vaccines [60]. It has been found
that the intramuscular injection of MERS-DNA vaccine expressing the S
protein stimulated S-specific neutralizing antibody and T lymphocyte
responses that led to IFN-γ, TNF-α, and IL-2 induction in rhesus ma-
caques [61]. Protective efficacy was found in rhesus macaques with
decreased viral titer and the absence of pneumonia. This finding led to
the first phase I clinical trial of a MERS DNA-vaccine developed by
some companies [60,61]. In an in vivo study, Wang et al. [62] de-
monstrated that the combination of S DNA vaccine subunit protein in
alum triggered neutralizing antibodies against MERS. The S DNA vac-
cine induced greater humoral reactions in mice [62]. Immunization
with S DNA protein in primates also decreased pulmonary infiltrates
and consolidation [62].

Commonly, subunit vaccines are safe and tolerated, and induce
specific CD4+ T lymphocytes [63,64]. In SARS, the receptor-binding
domain, S1 subunit, has been identified as the primary target for neu-
tralizing antibodies [65–67]. Additionally, in MERS, the S protein, as
the receptor-binding domain, has been applied to evaluate its efficacy

and its ability to induce neutralizing antibodies in rhesus macaques,
rabbits, and mice [68–71]. It has been shown that the modified re-
ceptor-binding domain of the S protein from MERS could trigger potent
cellular and humoral reactions [64,72]. Also, Coleman et al. [73,74]
showed that recombinant S nanoparticles combined with M adjuvant
stimulated neutralizing antibodies and decreased viral loads in murine
lungs.

However, more investigations are required to evaluate the safety,
immunogenicity and the efficacy of nanoparticles in human clinical
trials for further developments. Reportedly, vector-based MERS vac-
cines that express the S protein can induce a robust neutralizing anti-
body response and reduce the viral replication in the respiratory tract
[75]. A chimpanzee adenovirus-based MERS vaccine prepared by the
Jenner Institute entered the clinical trial phase [76]. Several Chim-
panzee-adenovirus vaccines have been tested in vivo for several viral
infections such as HIV (human immunodeficiency virus), Ebola, hepa-
titis C, rabies, as well as SARS, and the results showed their potent
immunity and efficacy [60]. Additionally, immune reactions caused by
MERS candidate vaccines such as Chimpanzee-adenovirus and modified
vaccinia virus Ankara (Modified Vaccinia Ankara) were investigated.
These vaccines induced neutralizing antibodies and immune reactions
in vivo [77]. Also, a live attenuated vaccine that can be developed by
the deletion of virulence genes has been found to trigger immune re-
actions [60]. Recently, a live-attenuated vaccine for MERS has been
prepared via a replication-competent virus [78].

7. Antibody-dependent enhancement

Antibody-dependent enhancement (ADE), sometimes less accurately
referred to as immune enhancement or disease enhancement, is an
episode during which binding of a virus to non-neutralizing antibodies
enhances its insertion into host the cells [79]. This event, which leads to
both increased infectivity and virulence, has been observed in viruses
such as Dengue virus, Yellow fever virus, Zika virus, HIV, and cor-
onaviruses [80–83]. The concern with ADE of coronaviruses infection
initially raised from studies on feline infectious peritonitis virus (FIPV)
[84]. FIPV infects myeloid-derived cells, such as macrophages, in cats
[85]. As the target cell of FIPV also displays fragment crystallizable (Fc)
receptors, this virus can interact with Fc receptors to enter macrophages
[84]. Indeed, vaccines that provide low titers of neutralizing antibodies
led to peritonitis and higher mortality rates in kittens [86]. Concerns
were also raised on the possibility of ADE following SARS-CoV and
MERS-CoV infections [87].

ADE begins when antibody-bound virus attaches activating Fc re-
ceptors to start Fc receptor-mediated endocytosis or phagocytosis [84].
This process promotes virus entry into Fc receptor-expressing mono-
cytes, macrophages, and dendritic cells [84]. However, binding active
Fc receptors alone is inadequate for ADE [84]. This is because activated
Fc receptors trigger signaling molecules that provoke IFN-stimulated
gene (ISG) expression [17]. ISGs have potent antiviral activities [84].
Consequently, for ADE to happen, viruses need to develop ways to
suppress such antiviral responses in target cells [84]. For example, ADE
of dengue virus infection is also reliant on the binding of dengue virus
to the leukocyte immunoglobulin-like receptor B1 (LILRB1) [88]. Sig-
naling from LILRB1 represses the pathway involved in ISG expression to
generate an intracellular environment advantageous for viral replica-
tion [88–90]. Moreover, we have lately described that in addition to
binding LILRB1, DENV has also developed other ways to fundamentally
alter the host cell response throughout antibody-mediated infection to
support viral replication [91]. Consequently, viruses that employ ADE
must (1) target Fc receptor-expressing cells for infection, and (2) evolve
mechanisms to overcome antiviral responses in myeloid-derived cells
[92]. For viruses to evolve such abilities, Fc receptor-expressing cells
must be their primary targets so that positive selection can take place
[84]. However, currently, SARS-CoV-2 has so far been discovered to
infect ACE2-expressing epithelial cells [93]. Further studies will be
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demanded to define the potential of SARS-CoV-2 in infecting myeloid-
derived cells and the role of ADE of SARS-CoV-2 in viral pathogenesis
[84]. It is critical to define which vaccines and adjuvants can evoke
protective antibody responses to SARS-CoV-2 [94]. Previous in-
vestigations have revealed that the immunization of mice with in-
activated whole SARS- CoV, the immunization of rhesus macaques with
MVA- encoded S protein and the immunization of mice with DNA
vaccine encoding full- length S protein could induce ADE or eosinophil-
mediated immunopathology to some degree, probably owing to low
quality and quantity of antibody production [95,96]. It has been noted
that it is essential to consider ADE to develop countermeasures toward
the SARS-CoV-2. Data from previous coronaviruses research strongly
suggest that ADE may play a role in viral pathology. If this is the case
with SARS-CoV-2, then careful design and testing of vaccines or alter-
native prophylaxic approaches will be needed to prevent ADE.

8. SARS-CoV-2 targets for the development of the vaccine

Similar to SARS-CoV and MERS-CoV, the recent SARS-CoV-2 be-
longs to the Betacoronavirus genus [97]. The genome size of the virus is
about 30 kilobases, which, similar to other coronaviruses, encodes
several structural and non-structural proteins [98]. The structural
proteins include the S, E, M, and N proteins [98]. Elementary studies
have recommended that SARS-CoV-2 is very similar to SARS-CoV based
on the full-length genome phylogenetic analysis, and the putatively
similar cell entry mechanisms and human cell receptors [97,98]. Due to
this apparent similarity among the two viruses, recent research that has
presented an understanding of protective immune responses toward
SARS may be furthered to facilitate SARS-CoV-2 vaccine development.

Several reports related to SARS have recommended a protective role
of both humoral and cell-mediated immune responses. In case of the
former, antibody responses produced against the S protein are protec-
tive against infection in mouse models [55,99]. Many studies have in-
dicated that antibodies generated against the N protein of SARS were
particularly widespread in SARS-infected patients [100,101]. While
being active, the antibody response was affirmed to be short-lived in
recovering SARS patients [102]. In contrast, T cell-associated responses
have been shown to induce long-term immunity, even up to 11 years
post-infection, and have therefore drawn attention as a promising
vaccine against SARS-CoV [102,103]. SARS structural proteins are the
most immunogenic in the convalescent SARS patients compared to the
non-structural proteins as they significantly induce T cell responses
[104]. Furthermore, T cell responses against the S and N proteins have
been reported to be the most dominant and long-lasting immune re-
action [105].

The SARS-CoV S protein is made of two subunits; the S1 subunit
comprises a receptor-binding domain that interacts with the host cell
receptor ACE2 and the S2 subunit mediates fusion between the viral
and host cell membranes [106]. The S protein has critical roles in the
induction of neutralizing-antibodies and T-cell responses, as well as
protective immunity throughout SARS infection [106]. Particular an-
tibodies toward SARS-CoV (IgG and IgM) were detectable about two
weeks post-infection, reached a peak at 60 days post-infection, and
remained at high levels 180 days post-infection [107]. High titers of
neutralizing antibodies and SARS-specific cytotoxic T lymphocyte re-
sponses were detected in patients who had recovered from SARS. The
severity of the responses correlated with the disease outcome
[108–110].

Neutralizing antibodies and T-cell immune responses can directly
target several SARS-CoV-2 proteins, but mainly the S protein. This
suggests that S protein-induced specific immune responses is vital in the
fight against SARS-CoV-2 infection [106]. SARS-CoV-2 S protein has
also a crucial role in overcoming the species-dependent barriers. The
adaptive evolution of S protein can contribute to the animal-to-human
transmission route of SARS-CoV-2 [106]. As the S protein of SARS-CoV-
2 is implicated in receptor recognition and virus attachment and entry,

it represents one of the most critical components for the construction of
SARS-CoV-2 vaccines and therapeutics. Genomic analyses indicated
that SARS-CoV-2 shares genomic relationships with SARS-CoV in the
receptor-binding motif that directly interacts with the human receptor
ACE2 [111]. For both of these coronaviruses, the S protein is crucial for
viral transmission and infection and defines the tropism of the virus to
host cell entry [111]. SARS-CoV-2 binds the ACE2 receptor similar to
MERS-S that binds the cellular receptor dipeptidyl peptidase 4 (DPP4)
via the receptor-binding domain (RBD) in the N-terminal surface sub-
unit (S1). It then employs its C-terminal transmembrane subunit (S2) to
fuse with the host cell membrane [111]. Due to this vital functional
feature and established antigenicity, the S protein is a principal target
for vaccine development.

9. Ongoing vaccines for severe acute respiratory syndrome
coronavirus 2

Vaccines for acute viral infections are developed such that they can
recapitulate immune reactions towards natural infections [112]. Basic
knowledge is now absent for COVID-19, including whether equilibrium
and the type of cells that respond to the virus differ corresponding to
the course and its severity. This understanding can help us choose the
vaccine that is most likely to stimulate the immune systems against
SARS-CoV-2. Due to the fast spread of SAR-CoV-2 infections in various
countries, many companies have attempted to develop an effective
SAR-CoV-2 vaccine.

Vaccination for prophylaxis stimulates a sufficient amount of neu-
tralizing antibodies and memory cytotoxic T cells specifically aimed at
viruses present in the lung to stop viral replication [113]. To prevent
viral replication, co-presence and co-activation of APCs, T cells, and B
cells are needed in lymph nodes [113]. Considering the speed and level
of respiratory immunopathology caused by SARS-CoV-2, vaccines
should optimally induce the formation of neutralizing antibodies and
local cellular immunity to hinder infection progression [113]. Although
such immunity by a vaccine is achievable in the young, it may still be
more challenging in the elderly as low efficacy of seasonal influenza
vaccines has been observed in this population [113]. By understanding
the path adopted for the development of SARS and MERS vaccines,
many researchers have started to find a strategy to develop the SAR-
CoV-2 vaccine following the outbreak. Bellow, we will explain the
currently promising approaches for COVID-19 vaccine development.

As of July 2020, 115 vaccine candidates have been announced for
fighting COVID-19, among which 78 are being actively investigated,
and 37 have been disregarded [114]. Among the 78 confirmed active
projects, 73 are at the preclinical stages. Candidate vaccine that were
shown to be the most promising including mRNA-1273 (developed by
Moderna), Ad5-nCoV (developed by Can Sino Biologicals), and INO-
4800 (developed by Inovio) have reached the clinical trial stage [114].
Information about specific SARS- CoV-2 antigen(s) employed for vac-
cine development is publicly limited. Publicly announced vaccines are
known to induce neutralizing antibodies aimed at the S protein, thereby
hindering virus uptake by the ACE2 receptor [114].

Nevertheless, the genomics of the virus is unknown, and the inter-
relationship between various forms and variants of the S protein em-
ployed in candidate vaccines is unclear. Research by Shenzhen Geno-
Immune Medical Institute has shown the potency of LV- SMENP- DC
and pathogen-specific APCs for developing SARS vaccines. Several
other companies that are working on vaccine development are planning
to initiate clinical trials (102). One of these companies is Cambridge,
Massachusetts-based Moderna [115], which is on the front line of de-
veloping a COVID-19 vaccine, mRNA-1273 that is currently undergoing
clinical trials [115]. This mRNA vaccine codes for a prefusion-stabilized
form of the S protein [115]. This vaccine somehow resembles gene
therapy and when administered, it leads to protein production by
human cells, thereby triggering immune responses that prepare the
body against viral infections [115].
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Ad5-nCoV is considered as the first coronavirus vaccine that entered
the clinical trial phase in China [116]. This candidate vaccine is built
according to the Can Sino BIO’s adenovirus-based viral vector vaccine
platform [116] and is genetically engineered such that the replication-
defective adenovirus type 5 (Ad5) expresses the SARS-CoV-2 S protein
[116]. Animal studies in preclinical stages suggested that Ad5-nCoV can
stimulate an efficient immune reaction [116]. These studies also
showed the safety of these vaccines [116]. The new Ad5-vectored
COVID-19 vaccine is the primary vaccine that has been tested in a
clinical trial [117]. This vaccine uses a weakened form of adenovirus to
deliver genetic substances coding for the SARS-CoV-2 S protein [116].
The S proteins are produced and delivered to the lymph nodes, where
the immune responses generate neutralizing antibodies against the S
protein [116]. Feng-Cai Zhu et al. [117] showed that the Ad5-vectored
COVID-19 vaccine could induce immunogenicity 28 days following
vaccination. Humoral immunity towards SARS-CoV-2 was at its optimal
levels 28 days following vaccination in healthy individuals. Rapid and
specific T-cell responses were also observed following 14 days of vac-
cination [117]. Their results indicated that the Ad5-vectored COVID-19
vaccine requires more investigation. Notably, a phase II clinical pla-
cebo-controlled double-blinded trial has been started to assess the re-
combinant vaccine for COVID-19 (Ad5 vector) (CTII-nCoV) [118]. This
trial addresses the healthy adults aged over 18 years who met all in-
clusion criteria [118] and assesses the safety and immunogenicity of
Ad5-nCoV [118]. Five hundred individuals will be included, 250 sub-
jects receiving the middle-dose vaccine, 125 subjects receiving the low-
dose vaccine, and a group of placebo [118]. Immunogenic properties of
the vaccine will be assessed on days 0, 14, 28, and 180 following
vaccine administration [118].

In phase III clinical trials in 6 countries, reducing health care
workers absenteeism in COVID-19 pandemic through BCG vaccine
(BCG-CORONA) will start in a placebo-controlled adaptive multi-center
randomized controlled trial. Subjects will be categorized into two
groups, one of which receives the BCG vaccine via intracutaneous ad-
ministration, and the other receives the placebo in a 1:1 ratio [119].
BCG vaccine was initially developed against tuberculosis, but several
studies have indicated its potency against various infectious diseases
[119] (Fig. 3). A promising effect has been indicated against viral pa-
thogens, including yellow fever, herpes simplex virus, respiratory syn-
cytial virus, and human papillomavirus [119]. Due to the ability of BCG
in reducing the occurrence of respiratory tract infections in children, it
is hypothesized that it induces immunity towards COVID-19 infection
[119].

Researchers at the University of Oxford have started to study sub-
jects in a phase 2/3 clinical trial of Astra Zeneca-partnered COVID-19
vaccine AZD1222 (the recombinant adenovirus vaccine) (aka ChAdOx1
nCoV-19) [120]. The next step of the program, which includes a 1,000-
subject phase I trial, is designed to enroll 10,260 subjects in the U.K. to
obtain promising results for confirming the initial shipments to custo-
mers at the end of the summer (108). Some other companies include
the International Vaccine Institute (IVI), INOVIO, and KNIH partnered
with CEPI that are conducting the phase I/II clinical trial of INOVIO’s
COVID-19 DNA vaccine (DNA plasmid delivered by electroporation) in
South Korea [121].

Kim et al. [122] described the usage of microneedle arrays (MNAs)
for delivering MERS-CoV vaccines and indicated their immunogenicity
in preclinical studies. According to the results, the MNA that delivered
MERS-S1 subunit vaccines prolonged antigen-specific antibody induc-
tion [122]. Notably, these vaccines induced efficient antigen-specific
antibodies two weeks following immunization [122]. Therefore, they
can be promising for fighting against coronavirus infections [122] Ef-
forts to develop MNA-MERS-S1 subunit vaccines have enabled re-
searchers to rapidly develop MNA-SARS-CoV-2 subunit vaccines cap-
able of provoking efficient virus-specific antibody responses [122].
Collectively, their results demonstrate the clinical development of
MNA-delivered recombinant protein subunit vaccines against COVID-

19. In a non-clinical research by Safoni, this candidate SARS vaccine
demonstrated immunogenicity and provided relative protection in an-
imal models [123]. As a current licensed vaccine has been based on this
platform, clinical research can be conducted almost quickly. Currently,
several clinical and preclinical vaccines are being studied around the
globe, and a complete list is depicted in Table 1.

10. Adjuvants

Vaccine candidates toward SARS-CoV have been examined in many
investigations and include inactivated whole virus vaccine, re-
combinant S protein preparations, and several viral vectors containing
genes coding for SARS-CoV proteins [124–126]. Many of such vaccine
candidates efficiently induced the production of neutralizing anti-
bodies. Such antibodies target the S protein of the SARS-CoV-2, sub-
sequently blocking the binding of viruses to their cellular receptor and
inhibiting cell entry. However, there are a few fundamental limitations
in vaccine development [127]. One critical issue in vaccine design is to
guarantee the efficacy of vaccine while reducing the possible risks
correlated with it [127]. The inactivated virus vaccine may not evoke a
sufficient immune response and may require multiple booster doses
[127].

Similarly, new-generation vaccines that consist of recombinant viral
proteins require immunostimulatory molecules [128,129]. Besides, as
with other RNA viruses, these coronaviruses frequently experience re-
combination; hence, a live attenuated vaccine may reverse to a virulent
form and may pose a severe threat to human lives [127]. Ideally, a
vaccine against highly pathogenic viruses, including coronaviruses,
should generate a protective antibody response to minimize antigen
doses quickly and with no adverse reactions [127]. Most of the above
issues may be solved by employing a suitable adjuvant in vaccine
preparations, which will help elicit a robust immune response, while
possibly decreasing the antigen load and the need for multiple doses of
vaccine. Thus, selecting an efficacious adjuvant becomes crucial for the
development of an adjuvanted vaccine against COVID-19.

Recent data on SARS-CoV-2 vaccine investigations in non-human
primates (NHPs) appears promising. An inactivated vaccine (PiCoVacc)
adjuvanted with alum, elicited S and RBD protein-specific neutralizing
antibodies and protected the macaques from SARS-CoV-2 challenge
[127]. Importantly, this study did not show ADE in immunized animals
[130]. When administered to macaques, The recombinant S1 protein of
the virus fused with Fc and adjuvanted with saponin microemulsion
induced potent anti-S1 neutralizing antibodies [131]. The Oxford Uni-
versity's vaccine candidate, ChAdOx1 nCoV-19 encoding the S protein
of SARS-CoV-2, protected rhesus monkeys from developing pneumonia
[127]. This vaccine significantly diminished the viral loads in bronch-
oalveolar lavage fluid and respiratory tract tissue without inducing
disease progression in vaccinated monkeys [132]. Further, a recent
phase I clinical trial with Ad5-nCoV expressing S protein vaccine re-
ported promising results [127]. This vaccine was safe, well-tolerated,
and induced both humoral and cellular immunity [133]. Supportive
results have also been received from a recent phase I clinical trial for
the MERS-CoV vaccine [127]. An MVA-MERS-S (MVA: modified vac-
cinia virus Ankara) DNA vaccine was safe, well-tolerated, and produced
humoral and cell-mediated immune responses in 87% of the partici-
pants after receiving the second dose [134]. The MVA vector tech-
nology may be repurposed to develop a COVID-19 vaccine by com-
bining SARS-CoV-2 S protein [127]. Moreover, to facilitate SARS-CoV-2
vaccine development, many leading vaccine companies are collabor-
ating to share their previously approved molecular compounds [127].
To date, some vaccine candidates have progressed to either phase I or II
clinical trials. Among these, Ad5-nCoV (CanSino Biologics, Inc) is
progressing immediately and has reached the phase II clinical trial
[127]. Many of these programs are applying the established adjuvant
system with their COVID-19 vaccine candidates. An adjuvant based on
TLR9 agonists (CpG 1018), which has been developed by Dynavax
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Technologies Corp., USA, is being used in a recombinant S protein (S-
Trimer) vaccine candidate against COVID-19 announced by Clover
Biopharmaceutics, China [127]. The CpG 1018 adjuvant has been used
in an FDA-approved hepatitis B vaccine (HEPLISAV-B®) [127]. Glax-
oSmithKline has also teamed up with many firms such as Xiamen In-
novax Biotech and Sanofi, to make an adjuvant technology available to
its collaborators for their vaccine candidates [127]. Both Sanofi and
Xiamen Innovax Biotech used GSK's AS03 adjuvant (squalene-based) in
their recombinant protein vaccine candidates [127]. Similarly, CSL
(Commonwealth Serum Laboratories, Australia) and Seqirus (Ger-
many), which employ a novel molecular-clam technology in their
COVID-19 vaccine candidate, have tied up to use the MF59 adjuvant
[127]. Novavax, (USA), on the other hand, is using its proprietary
Matrix-M™ adjuvant for a vaccine candidate (NVX-CoV2373), con-
sisting of nanoparticles carrying SARS-CoV-2 S protein antigens [127].
Another Biopharma company, Soligenix, Inc., has collaborated with
BTG. Speciality Pharmaceutics Soligenix is using a novel vaccine ad-
juvant (CoVaccine HT) from BTG., with its COVID-19 vaccine candidate
[127]. CoVaccine HT is an oil-in-water emulsion consisting of sucrose
fatty acid sulfate easter (SFASE) and squalene, which has been reported
to induce both humoral and cell-mediated immunity [135,136]. iBio
has signed up an agreement with Infectious Disease Research Institute

(IDRI, Seattle, US) to utilize their novel adjuvants such as GLA (Glu-
copyranosyl Lipid Adjuvant), a synthetic analogue of the MPL, for
SARS-CoV-2 VLP vaccine development [127,137].

The experience and knowledge generated from the past vaccine
studies with different adjuvants against similar coronaviruses may ex-
pedite the development of an adjuvanted vaccine against COVID-19.
Inclusion of adjuvant may significantly cut down the amount of antigen
in a vaccine, especially when vaccine candidates employ the re-
combinant S/RBD protein. This could address an overwhelming de-
mand for a vaccine during a pandemic in a short time.

11. Vaccine production

Vaccine development for human application can take years, mainly
when novel technologies that have not been widely examined for safety
or scaled up for mass production are used. As no coronavirus vaccine is
on the market and no large-scale production capability is present, we
will need to develop new processes and capacities that can be slow and
time-consuming for the first time. The Coalition for Epidemic
Preparedness Innovation (CEPI) has granted funds to many highly in-
novative professionals in the field, and many of them will likely succeed
in ultimately producing a SARS-CoV-2 vaccine [12]. However, none of

Fig. 3. The current ongoing clinical trial for candidate SARS-CoV-2 vaccines.
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these companies and organizations have an established pipeline to
progress such a vaccine to late-stage clinical trials that allow licensure
by regulatory agencies and they cannot currently produce the number
of doses needed.

An mRNA-based vaccine, which presents target antigens in vivo
following injection of mRNA encapsulated in lipid nanoparticles was
co-developed by Moderna and the Vaccine Research Center at the
National Institutes of Health and a phase I clinical trial has lately
started [12]. Curevac is working on a similar vaccine but is still in the
preclinical phase [12]. New approaches in preclinical steps comprise
recombinant-protein-based vaccines (focused on the S protein, e.g.,
ExpresS2ion, iBio, Novavax, Baylor College of Medicine, University of
Queensland, and Sichuan Clover Biopharmaceuticals), viral-vector-
based vaccines (focused on the S protein, e.g., Vaxart, Geovax, Uni-
versity of Oxford, and Cansino Biologics), DNA vaccines (focused on the
S protein, e.g., Inovio and Applied DNA. Sciences), live-attenuated
vaccines (Codagenix with the Serum Institute of India, etc.), and in-
activated virus vaccines [12]. These platforms have several advantages
and disadvantages, and it is not plausible to predict which approach
will be faster or more prosperous. Johnson & Johnson (J&J) and Sanofi
recently joined efforts to develop SARS-CoV-2 vaccines [12]. However,
J&J uses an experimental adenovirus vector platform that has not yet
resulted in a licensed vaccine [12]. Using a process similar to the means
employed for their approved Flublok recombinant influenza virus
vaccine [138], Sanofi's vaccine is also months, if not years, from being
ready for use.

There are currently no licensed human coronavirus vaccines. Also,
many applied technologies are new and need to be entirely examined
for safety. Vaccine's target, the S protein, has been identified, and
vaccine candidates are being generated. This is usually supported by
two critical steps that are typically needed before bringing a vaccine
into clinical trials. First, the vaccine is examined in suitable animal
models to understand whether it is protective. However, using animal
models for SARS-CoV-2 infection might be challenging. The virus does
not grow in wild-type mice and only provokes a mild disease in trans-
genic animals representing human ACE2 [139]. Other potential animal
models include ferrets and NHPs, for which pathogenicity studies are
ongoing [12]. Even in the absence of an animal model, it is possible to
assess the vaccine as serum from vaccinated animals can be examined
through in-vitro neutralization assays [12]. Post-challenge safety data
should also be obtained in these circumstances for vaccine development
such as the ones collected for SARS-CoV-1 and MERS-CoV vaccines
[12]. Moreover, vaccines need to be investigated for toxicity in animals
such as rabbits [12]. This examination, which has to be performed in
compliant with GLP (Good Laboratory Practice), typically takes
3–6 months to be completed [12]. For some vaccine platforms, safety
testing elements might be skipped if there is already adequate data for
similar vaccines made with same procedures.

Vaccines for humans are constructed in accordance with current
Good Manufacturing Practice (cGMP) to ensure consistent their quality
and safety [12]. This demands state-of-the-art facilities, trained per-
sonnel, proper documentation, and raw materials according to cGMP
[12]. These methods have to be planned or corrected to fit SARS-CoV-2
vaccines. For many vaccine candidates in the preclinical phase, such
methods do not yet exist and must be improved from scratch. Once
sufficient preclinical data are available and initial quantities of the
vaccine have been produced in accordance with cGMP, clinical trials
might be launched [12]. Typically, clinical vaccine development begins
with small phase I trials to evaluate the safety of vaccine candidates in
humans [12]. These are followed by phase II (formulation and doses are
established to prove initial efficacy) and phase III trials. The efficacy
and safety of a vaccine need to be exhibited in a larger cohort [12].
However, in an unusual situation like the current one, this plan might
be compromised, and an accelerated approval process might be devel-
oped. If efficacy is shown, a vaccine might be licensed by regulatory
agencies. Another critical point is that the capacity to produce sufficient

amounts of cGMP-quality vaccine needs to be available. For vaccines
based on existing platforms, such as inactivated or live attenuated
vaccines, this can be relatively easy to achieve, because existing infra-
structure can be used. For vaccines based on novel technologies, e.g.,
mRNA, reaching this capacity typically takes time. Although it would
be advantageous even if a restricted number of doses were available to
protect healthcare operators and the most vulnerable populations, the
goal should be to make vaccines accessible to the global population.
Even for influenza virus vaccines, for which many production facilities
exist in high-income countries, as well as low- and middle-income
countries, the demand in the case of a pandemic would by far surpass
the production capacity [12]. Finally, it takes time to distribute vac-
cines and administer them. To vaccinate a large proportion of the po-
pulation would likely take weeks [12]. Given that the community is
currently naive to SARS-CoV-2, it is highly likely that more than one
dose of the vaccine will be necessary [12]. Prime-boost vaccination
regimens are typically employed in such cases, and the two vaccina-
tions are regularly spaced 3–4 weeks apart [12]. Protective immunity
will likely be achieved only 1–2 weeks following the second vaccination
[12]. This, therefore, adds another 1–2 months to the timeline [12].
Even if alternatives for many of the steps discussed earlier can be found,
it is unlikely that a vaccine would be accessible earlier than 6 months
after the initiation of clinical trials [12]. Realistically, SARS-CoV-2
vaccines will not be available for another 12–18 months [12].

12. The challenges and limitations of SARS-CoV-2 vaccine
development

An interesting aspect of the COVID-19 vaccine development is the
variety of technology platforms currently being under investigation,
including vaccines based on nucleic acid (DNA and RNA), virus-like
particles, peptides, viral vectors, recombinant proteins, live-attenuated
vaccines and inactivated vaccines [114]. Currently, most vaccines are
not based on these platforms. On the other hand, next-generation ap-
proaches can be helpful in rapid vaccine development [114]. Some of
these vaccine platforms may possibly be suitable for the old population,
children, women during pregnancy or lactation, or immune-compro-
mised patients [114]. For some of the platforms mentioned above,
adjuvants can be used for improving immunogenic properties and
lowering the required dose of administration, thereby increasing the
number of individuals who can receive vaccination without compro-
mising immunity.

Vaccine development for human infections can take several years,
especially when applying new technologies for improving safety or
increasing the production scale. No coronavirus vaccines or no large-
scale production are currently present and initial works can be labor-
ious and time-consuming. However, CEPI has granted funds to some of
the most innovative research companies in the field, many of which will
most probably succeed in making a SARS-CoV-2 vaccine [12]. Never-
theless, none of these centers have developed an FDA-approved COVID-
19 vaccine to late-stage clinical trials to be manufactured in large
scales. An mRNA-based vaccine that can accurately express the target
antigen after the administration of lipid nanoparticle-encapsulated
mRNA has been developed by Moderna [12]. Although it seems that the
RNA vaccine technology by Moderna, Pfizer, and BioNTech has pro-
gressed rapidly, there are some risks regarding this platform, and the
efficacy of the vaccine has not yet been approved. Primary data indicate
the safety of these vaccines; however, unwanted immune responses may
be observed. Furthermore, there is a risk of worsened condition of the
disease for all available vaccines where the immune reactions may be
unexpected [12]. As expected, all currently investigated vaccines may
not be practical in the future as they may not show proper safety or
immunogenicity. Moreover, large-scale manufacturing poses a great
hurdle. Following the development of a potent and efficient vaccine
against COVID-19, immediate large-scale production is required. As of
June 30, there are higher than 16, 523, 815 verified cases of COVID-19
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worldwide, but another 8 billion people are at risk that can benefit from
a vaccine. Although Moderna’s vaccine seems to be efficient and safe up
to now, no company has prior experience of RNA vaccine production,
let alone in the scale necessary. This company states that it can man-
ufacture millions of doses of the vaccine per month at a factory already
established for a different vaccine and are trying to attract other part-
ners. In case a vaccine becomes available in the coming year, first
candidates of vaccine administration would be doctors, nurses, para-
medics, infants, toddlers, and pregnant women. Other people in priority
of receiving the vaccine include high-risk patients and people
≥65 years of age.

Additionally, there are several challenges for development of a
vaccine for coronaviruses as these viruses infect the upper respiratory
tract, where our immune system is not strong [140] as the upper re-
spiratory tract is considered as an external part of the body. Discovering
an approach for neutralizing the virus “outside” of the body is ex-
tremely hard and since the epithelial cells get infected, strong immune
responses are not activated. Apparently, vaccine production against
viruses while not overly inducing the immune reactions is difficult. In
case a vaccine induces the immune reaction while not affecting the
target cells, subsequent results could be worse than the initial viral
infection.

Generally, possible limitations for vaccine development for other
viruses must be taken into consideration for COVID-19 vaccine in-
cluding a: adverse side effects, b: limitation in usage for the im-
munocompromised patients, c: reversion to a virulent vaccine in case of
using live-attenuated vaccines, d: the need for several booster admin-
istrations, and e: the shorter period of protection [141].

13. Conclusion

A better understanding regarding the pathogenesis, transmission,
and immune reactions against SARS-CoV-2 in animals and humans is
still required. Uncertain detection of the virus within the target popu-
lation(s), the variability of the S protein, and the absence of standar-
dized assays and/or proper animal models are the main reasons for the
current gaps in our knowledge. Nonetheless, several vaccine candidates
have been developed and reached the clinical trials and other vaccine
candidates are soon to be developed. The effective SARS-COV-2 vaccine
will induce antibodies with the ability of preventing viral proteins or
inducing T cells to destroy infected cells. Currently, clinical trials are
ongoing to evaluate the efficacy and potency of different drugs. These
trials will let us identify the potential therapies for SARS-CoV-2 infec-
tion. For preventing the COVID-19 pandemic, rapid development of a
vaccine is required. Despite the lower speed of vaccine development
compared to the spread of viral infection, ongoing research is pro-
mising. Further understanding of the life cycle and pathogenesis of
SARS-CoV-2 will facilitate vaccine and drug development to prevent
and treat COVID-19 in the future.
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