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The development of novel digital auscultation techniques has become highly significant in the context 

of the outburst of the pandemic COVID 19. The present work reports the spectral, nonlinear time series, 

fractal, and complexity analysis of vesicular (VB) and bronchial (BB) breath signals. The analysis is carried 

out with 37 breath sound signals. The spectral analysis brings out the signatures of VB and BB through 

the power spectral density plot and wavelet scalogram. The dynamics of airflow through the respira- 

tory tract during VB and BB are investigated using the nonlinear time series and complexity analyses in 

terms of the phase portrait, fractal dimension, Hurst exponent, and sample entropy. The higher degree 

of chaoticity in BB relative to VB is unwrapped through the maximal Lyapunov exponent. The principal 

component analysis helps in classifying VB and BB sound signals through the feature extraction from the 

power spectral density data. The method proposed in the present work is simple, cost-effective, and sen- 

sitive, with a far-reaching potential of addressing and diagnosing the current issue of COVID 19 through 

lung auscultation. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Our respiratory organ lung is the primary infection area for

andemic disease-causing viruses like coronavirus, influenza, and

thers due to its constant exposure to viruses, bacteria, chemi-

als, and particles in the atmosphere [ 1 , 2 ]. Disability-Adjusted Life

ear (DALY) is a statistical term coined by the World Health Or-

anization (WHO) such that one DALY is equivalent to one lost

ear of healthy life due to the burden of disease. The Global Bur-

en of Disease Study published in 2017 reports that the DALYs per

ear from 1990 to 2017 due to chronic respiratory diseases lies be-

ween 97.2 to 112.3 million [3] . Among the thirty most common

auses of death, five are respiratory-related diseases [4] . Therefore,

roper monitoring, diagnosis, and treatment of respiratory-related

iseases are crucial for the healthy being of humankind. Auscul-

ation is the primary procedure employed by the physicians to in-

estigate or diagnose the respiratory condition of a patient through

he lung sounds [5] . The lung sounds at different positions contain

nformation about lung conditions. The lung sounds are produced

1) by the friction caused by the turbulent flow of air through the

irway walls in the respiratory tract, (2) while the air moves to a

roader space from narrower during the respiration and (3) from
∗ Corresponding author. 
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he glottis [6] . The pathological condition of lungs gets reflected

hrough the sound having some signature features, which helps in

iagnosis [7] . 

Normal and adventitious breath sounds are the two classes of

reath sounds [8] . Vesicular breath (VB) and Bronchial breath (BB)

re the normal breath sounds. Wheezing, crackles, pleural rub,

tridor, and rhonchi sounds are examples of adventitious breath

ounds [9] . The adventitious breath sounds indicate lung problems

uch as infection, inflammation, obstruction, fluid in the lungs,

sthma, and others. The normal breath sounds VB, and BB car-

ies information about the ordinary working condition of the lungs.

he VB sounds are soft non-musical low pitch sounds, which be-

ame softer during the expiration. In VB sounds, the duration of

he inspiration is about three times longer than the expiration. The

B sounds can be auscultated from most areas of the lungs, espe-

ially from the bases and periphery. Unlike VB sounds, BB sounds

re high pitched and louder, like tubular or hollow sounds. The

uration of inspiration and expiration cycle in BB sounds are al-

ost similar that are auscultated over the trachea [10–12] . The BB

ounds are considered abnormal if they are auscultated over the

eriphery of the lungs. This abnormality arises due to the pres-

nce of consolidated tissue in the lung airway, which is caused by

neumonia and fibrosis [13] . Pneumonia and fibrosis due to the

resence of consolidated tissue in the lung airway leads to the ab-

ormal breath sound. Therefore, a study focussing on the signature

haracteristics of VB and BB sounds is necessary to diagnose and

https://doi.org/10.1016/j.chaos.2020.110246
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110246&domain=pdf
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classify normal and abnormal lung sounds, especially in the case

of a disease like COVID 19, affecting the lungs severely. 

The conventional auscultation procedure using the stethoscopes

for the diagnosing of respiratory-related diseases have inherent

shortcoming like inter-listener variability. The electronic ausculta-

tion and automated classifications helps in preventing such short-

comings. Several computer-aided techniques like Fourier transform,

wavelet transform, nonlinear time series analysis, principal compo-

nent analysis, and others are used for the analysis of breath sounds

[ 7 , 12 , 14 ]. The digital data of auscultation is a time-domain data,

which is a superposition of various frequency components. Trans-

formation of the signal from the time domain to the frequency

domain, employing Fourier transform technique, gives information

about the frequency components. The Fourier series decomposes

the time domain signal as the superposition of various sine and

cosine waves with different frequencies. The Fourier transform is

an effective tool for breath sound analysis because of the dis-

tinct spectral characteristics of different breath sounds. The Fourier

transform tells us only about the presence and magnitude of a par-

ticular frequency component, and it doesn’t give information about

the instant at which a particular frequency occurs. The temporal

information of the occurrence and duration of a frequency com-

ponent can be studied using the wavelet analysis. Wavelet anal-

ysis uses specific short duration wavelet functions called mother

wavelets like Morse, Morlet, Haar, and others to bring out the tem-

poral information of the frequency components. Wavelet analysis

helps in studying the sudden frequency changes in conditions like

crackles. Breath sounds are time-series data formed by the dynam-

ics of airflow through the bronchial tubes and bronchioles, in the

lungs and trachea, make the lung a dynamical system [ 7 , 15 ]. 

The dynamical systems in nature do not unveil all its dependent

parameters. From most of the systems, we get only the change of

one of the parameters with time as time-series data. Powerful non-

linear time series analysis can bring out the hidden information

of the dynamical system. Nonlinear time series analysis finds ap-

plications in various fields such as signal processing, biomedical,

weather forecasting, economics, and applied physics [16–18] . The

phase portrait in the phase plane is the geometrical representation

of the change in the state of the system with time. The nonlin-

ear time series analysis could reconstruct the phase portrait of the

system from the time series, utilizing the Method of delays by esti-

mating the time lag, l, and embedding dimension, m. The time lag

is the time separation between the adjacent uncorrelated points,

while the embedding dimension is the number of dependent vari-

ables required to specify the system completely. Fractal dimension

(D), Hurst exponent (H) and sample entropy (S) are the parameters

that help to analyze the complexity of the time-series signals [19] .

Fractal structures are omnipresent in this universe [20–23] . An-

alyzing the fractal nature and quantifying its complexity by frac-

tal dimension is an interdisciplinary field with wide applications.

The study of self-affine nature and complexity gives the fractal

behavior of a time series. Methods like walker divider, epsilon

bracket, power spectrum, box-counting, and other methods gives

an estimation of fractal dimension, among which the box-counting

method is the simple and effective one [24] . Another critical term

for classification of the complexity of a time series is the Hurst ex-

ponent. The value of H indicates the extent of correlation between

the elements of a time series. For the signals with the value of H

between 0 and 0.5, there is a low correlation between the adja-

cent values indicating its antipersistent nature. The low correlation

of antipersistent signals suggests a very complex and random na-

ture. When the value of H is close to 0.5, the signal is termed as

Brownian time series, as it does not contain information about the

future values, and when the H value is between 0.5 and 1 the sig-

nal is called persistent time series as there is a short term pos-

itive correlation among the data. Hence, there is a possibility of
rediction in persistent time-series signals [25] . Sample entropy is

nother statistical tool based on information theory that measures

he uncertainty in a time series. It can quantify the randomness

f a time series without the previous information about its source.

ample entropy, which is a measure of the speed at which new

nformation is produced in time-series data, is extensively used in

edical and experimental signal analysis [ 19 , 26 ]. 

One of the important objectives of the present study is the

omputer-aided automated classification of VB and BB sounds.

rincipal component analysis (PCA) is an effective tool for group-

ng data sets with similar characteristics. PCA identifies the direc-

ions called principal components, along which there is a maxi-

um variation in dataset, and neglecting the unwanted dimension-

lities. PCA could compress a data set by extracting only the most

rucial information from it. Groups with almost the same proper-

ies have almost the same principal component values, which helps

n grouping similar datasets. The present work attempts a detailed

nalysis of VB and BB sound signals through spectral, nonlinear

ime series and complexity analysis to extend to COVID 19 auscul-

ation. Principle component analysis is also employed to separate

he VB and BB sound signals for computer-aided automated detec-

ion [27] . 

. Materials and methods 

Nowadays, digitization and automation of the medical field em-

loying computer-aided techniques have made the diagnosis ac-

urate and quick. In the present work, digital audio signals of 37

espiratory cycles (one inspiration and expiration) of vesicular (18)

nd bronchial (19) breath sounds from various databases are an-

lyzed by spectral, nonlinear time series, and complexity analyses

28–32] . The signals during inspiration and expiration are also in-

estigated. 

.1. Spectral analysis 

Lung sound signals are the variation of sound intensity in the

ime domain. Fourier transform brings out the spectral informa-

ion hidden in the time domain signals. Simple and effective Fast

ourier transform (FFT) algorithm converts the time domain signal

nto the frequency domain. The Fourier transformed complex sig-

al X(f) of time-domain signal ‘x(t)’ is defined as [7] , 

 ( f ) = ∫ x ( t ) e i 2 π f t dt, (1)

here f and t are the frequency and time, respectively. The real-

alued power spectral density (PSD) function, which gives the dis-

ribution of power of the signal over the frequency range , can be

omputed from the FFT signal using the equation, 

SD = 

| X ( f ) | 2 
N 

, (2)

here ‘N’ is the length of the original signal. The dominant fre-

uency of the signal and other frequency components can be es-

imated using PSD. The PSD function helps in the classification of

ignals based on their spectral signatures. The temporal evolution

f the frequency components in a signal helps in understanding

he temporal evolution of the system under study. The wavelet

nalysis paves the path for such an investigation. 

The translation of a fixed-function called mother wavelet ( ϕ)

hrough the continuous signal generates wavelets [7] . In the

resent study, Morse wavelet is chosen as the mother wavelet

unction, which is useful for analyzing the time-varying frequency

nd amplitude signals. The wavelet transform of the signal (x(t))

or a scale parameter - s and translation parameter τ is given by, 

 c f ( s, τ ) = 

∞ ∫ 
x ( t ) .s −1 / 2 ϕ 

(
t − τ

s 

)
dt . (3)
− ∞ 
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.2. Nonlinear time series analysis 

Nonlinear time series analysis is a potential tool to extract

aluable information about the system from time-series data. The

hase portrait analysis unveils the whole dynamics of a system.

he reconstruction of the phase portrait of a dynamical system

rom a univariate time series is done by using the ‘Method of de-

ay’ employing the time lag l and embedding dimension m as pa-

ameters. A reconstructed vector in the phase plane in terms of l

nd m can be formulated as, 

 n = 

(
x n −( m −1 ) l , x ( n −( m −2 ) l ) , . . . . . . , x n 

)
. (4) 

For a good one to one correspondence and similarity between

he reconstructed phase portrait and actual attractor, the time lag

nd embedding dimension must by optimum. The time lag can be

alculated by employing the mutual information function. The mu-

ual information function, which takes account of the nonlinear-

ty of data points, is the best method available for getting time

ag. The embedding dimension, which is the number of depen-

ent parameters of the system, is calculated by using Cao’s method

 19 , 33 ]. 

The Lyapunov exponent λ is a measure of divergence rate of

rajectories in a chaotic system [34] . The distance between two

akens vectors in the phase space δ(t) and δ(0) at time t and t = 0

re related as given in Eq. (5) . 

( t ) = δ( 0 ) · exp ( λ · t ) (5) 

The slope of the log ( δ(t)/ δ(0)) vs t plot gives the value of the

yapunov exponent λ [19] . 

.3. Complexity analysis 

Fractal dimension, Hurst exponent, and sample entropy are the

uantities used to quantify and classify the complexities of a time

eries. The fractal dimension quantifies the intricate patterns in

 time series. The box-counting method is a simple and effective

echnique for finding the fractal dimension. Box counting method

stimates the fractal dimension by superimposing the signal with

rids of varying dimension ‘ ε’ and counting the number of grids

( ε) required to cover the signal [24] . The value of N( ε ) and ε fol-

ow a fractal power law with the fractal dimension D as given by

q. (6) . 

 ( ε ) ∝ ε −D (6) 

The fractal dimension D appears as the slope of logN ( ∈ ) vs

og ( 1 ∈ ) graph, from which the value of Hurst exponent H can be

alculated using Eq. (7) . 

 = 2 − D (7) 

0 ≤ H < 0.5 – Antipersistent, H = 0.5 – Brownian and 0.5 < H ≤ 1

Persistent, give the classification of time series based on the

alue of H [25] . 

The uncertainty in a time-series signal can be estimated

hrough the sample entropy from the correlation sum C(r) of di-

ension m and m + 1 for a radius r using Eq. (8) [35] . The value

f sample entropy at a particular embedding dimension is the av-

rage of sample entropy value for different values of r. 

ample entropy ( m, r ) = ln 

(
C m ( r ) 

C m +1 ( r ) 

)
(8) 

.4. Principal component analysis 

The principal component analysis is a robust classification

cheme for grouping data having identical features like P, S, H,

nd D. Among these, the value of P at different frequencies suits
est for representing time-series signals. The power spectral den-

ity data is large, which makes the principal component analysis

edious. Hence the method of feature extraction from power spec-

ral density data helps in overcoming the difficulty. For this, the

requency data range 100 – 10 0 0 Hz is divided into 26 segments,

nd the mean value of P of each segment is taken as the represen-

ative variable for carrying out principal component analysis using

he R software. 

. Results and discussion 

The analysis of lung sounds for clinical diagnosis begins with

he invention of the stethoscope by the famous French physician

ene Laennec, the father of clinical auscultation. The basic prop-

rties of the VB and BB breath sounds are understood by analyz-

ng 37-time spectra, and a representative time spectrum is given

n Fig. 1 . Fig. 1 shows that, in VB sound signals, the duration and

agnitude of the inspiration (INS) are higher than that of expira-

ion (EXP), which is in agreement with the literature report [8] .

his difference shows that the mechanism of origin of VB sounds

or inspiration and expiration is different. There is a clear pause

etween the inspiratory and expiratory phases for both VB and BB

ignals. The duration of expiration and inspiration for BB signals

re almost similar. The spectral features of both signals are under-

tood from the Fourier transform and wavelet analyses. 

.1. Spectral analysis 

The spectral features can be extracted by analyzing the PSD of

B and BB, along with their inspiration and expiration signals, as

hown in the representative plot Fig. 2 . From the PSD of VB shown

n Fig. 2 (a), it can be seen that the signal contains a high-intensity

eak between 200 and 300 Hz. It is worth to note that the fre-

uency of the VB sound is almost confined to a single frequency.

he VB sound signal originates from the lobar and segmental air-

ays during inspiration and expiration. As this involves the airflow

hrough segmental and lobar bronchi of diameters 0.56 cm and

.83 cm respectively, all passages of air through these produce a

ound signal of the nearly same frequency, which is responsible for

he appearance of a high-intensity sound signal at a nearly single

requency as shown in Fig. 2 (b). The VB signal during expiration

s more from the central airways besides the lobar and segmental

ronchi, which is responsible for the appearance of more frequency

omponents in Fig. 2 (c), the PSD plot of VB expiration. Fig. 2 (a)

o 2(c) also displays the harmonic components of the fundamental

round 600 Hz. 

The PSD of the BB signal displayed in Fig. 2 (d) shows a greater

requency spread with a large number of frequency components

between 250 and 400 Hz) of higher intensity. The presence of

 large number of frequency components can be viewed as due

o the flow of air through the trachea and main stem bronchi of

iameters 1.8 cm and 1.22 cm, respectively [36] . The airflow dur-

ng inspiration and expiration through tubes of different diameters

enerates sound signals of different frequencies. The time duration

f expiration in BB is slightly less than inspiration, while in VB,

he duration of inspiration to expiration is in 3:1 ratio, as shown

n the wavelet scalogram Fig. 3 . From Fig. 3 (a), it can be seen that

he frequency component of higher intensity lasts only for a short

uration during expiration than during inspiration. The observa-

ion is in agreement with the PSD plot shown in Fig 2 (b) and 2(c).

he wavelet scalogram of BB, shown in Fig. 3 (b) agrees with the

iterature reports of a slightly higher duration of inspiration than

xpiration. Unlike Fig. 3 (a) of VB, Fig. 3 (b) shows the persistence

f frequency components of larger intensities almost during the

ntire duration of inspiration and expiration. This persistence na-

ure helps in differentiating BB from VB. The scalogram, Fig. 3 also
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Fig. 1. The time spectrum of (a) VB and (b) BB sound signals. 

Fig. 2. Power spectral density plot for VB signals - (a) respiration (b) inspiration, (c) expiration and for BB signals - (d) respiration (e) inspiration, (f) expiration. 
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shows the presence of larger frequency components of very low

intensities, as observed in the PSD plot. 

3.2. Nonlinear time series analysis 

Nonlinear time series is a powerful tool for studying the dy-

namics of a system. The breath, being a time-varying signal em-

bedded with conditions of lungs and the airways, it is subjected to

nonlinear time series analysis using the R software. The geomet-

rical representation of the dynamical system through phase por-

trait analysis is done by estimating the time lag using the function

“timeLag” in the nonlinearTseries package in the R software. The

optimum time lag is selected as the time lag at which the average

mutual information becomes a minimum. The embedding dimen-

sion is estimated by using the “estimatingEmbeddingDim” function

in the nonlinearTseries package employing the algorithm proposed

by Cao. The function “buildTakens” is used to generate the coor-
inates for the phase portrait, according to Eq. (4) [19] . A repre-

entative phase portrait of VB and BB sound with its inspiration

nd expiration signal is shown in Fig. 4 . The phase portrait of the

B signal ( Fig. 4 (d)) seems to be much more complicated than the

B signal ( Fig. 4 (a)). The degree of freedom for the air molecules

s different in VB and BB, which accounts for the variation in the

omplexity. The air molecules pass through lobar and segmental

ronchi of smaller diameters 0.83 cm and 0.56 cm [36] , respec-

ively, in VB, compared to the airways trachea and bronchi of di-

meter 1.8 cm and 1.22 cm, respectively in BB. Greater the diame-

er of the airways, the higher is the degree of freedom and entropy.

his higher degree of freedom is reflected in the phase portrait as

n increase in complexity, as evidenced through Fig. 4 . The differ-

nce in the duration of inspiration and expiration, as displayed in

ig. 1 can also be seen in the corresponding phase portraits as a

arying number of phase points. The lower expiration time in VB

ppears as a comparatively less complex phase portrait ( Fig. 4 (c))
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Fig. 3. Wavelet scalogram of (a) VB and (b) BB signals. 

Fig. 4. Phase portrait for VB signals - (a) respiration (b) inspiration, (c) expiration and for BB signals - (d) respiration (e) inspiration, (f) expiration. 
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han that of inspiration ( Fig. 4 (b)). The nearly equal inspiration and

xpiration time appear as phase portraits of nearly equal complex-

ties, as displayed in Fig. 4 (e) and 4(f). 

The maximal Lyapunov exponent ( λ) is a measure of unpre-

ictability and one of the indications of the presence of chaotic

ature in the time series [37] . Fig. 5 shows the box plot of λ for

he VB and BB signals along with the inspiration and expiration. It
s evident from Fig. 5 that all the signals have a positive value of λ,

hich is one of the conditions for chaoticity and unpredictability.

rom the box plot of λ shown in Fig. 5 (a), it is clear that the mean

alue of the λ of BB signals is higher than that of the VB signals.

he larger value of λ of BB signals is because of the formation of

ortices while the air flows turbulently through the trachea and

ronchi of the respiratory tract. This higher value of λ is in agree-
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Fig. 5. Maximum Lyapunov exponent ( λ) for BB and VB signals of (a) respiration (b) inspiration, and (c) expiration. 

Fig. 6. Fractal dimension (D) for BB and VB signals of (a) respiration (b) inspiration, 

and (c) expiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Hurst exponent (H) for BB and VB signals of (a) respiration (b) inspiration, 

and (c) expiration. 
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ment with the results obtained in the phase portrait analysis. The

value of λ of the BB signal is found to be higher than VB during in-

spiration and expiration, and the box plots comparing the D values

are shown in Fig. 5 (b) and 5(c). 

3.3. Complexity analysis 

The quantification of the complexity of a time series can be

done by estimating its fractal dimension. The box-counting di-

mension of the signals are calculated using the ‘fd.estim.boxcount’

function in the ‘fractaldim’ package of R software and are shown

as a box plot in Fig. 6 (a). The mean fractal dimension of the BB

signal greater than that of the VB signal indicates its higher degree

of complexity. This higher complexity of BB is in agreement with

the phase portrait analysis. The higher complexity of the BB signal

compared to the VB signal can be attributed to the persistence of

high intense frequency components throughout the inspiration and

expiration, as evidenced by Fig. 3 . The fractal dimension of the BB

signal is found to be higher than VB during inspiration and ex-

piration, and the box plots comparing the D values are shown in

Fig. 6 (b) and 6(c). 
The classification of the signals based on the complexity can

lso be done by analyzing the Hurst exponent (H) calculated using

q. (7) . The box plot of the H values of BB and VB during inspi-

ation and expiration is given in Fig. 7 . Fig. 7 shows that all the

reath signals have the Hurst exponent value between 0 and 0.5,

hich shows its antipersistent nature. This antipersistent nature

uggests a very low correlation between the elements in the time

eries and the highly complex nature of the breath sound signals.

he mean value of Hurst exponent for the BB signal is less than

hat of the VB signal, which suggests high complexity of the BB

ignal compared to the VB signal, as explained earlier. The value

f Hurst exponent of inspiration ( Fig. 7 (b)) is also less than that of

xpiration ( Fig. 7 (c)). 

Breathing involves the flow of air molecules inward or outward,

he dynamics of the molecules of which are capable of giving infor-

ation about the airways. Any blockage in the airways affects the

ature of the flow, which is getting reflected in the PSD, wavelet,

hase portrait, D, and H values. Sample entropy is another pa-

ameter that tells the degree of disorder involved in the airflow,

uring inspiration and expiration through the respiratory tract, in-

roduced by obstructions of different nature. The sample entropy
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Fig. 8. Sample entropy for BB and VB signals of (a) respiration (b) inspiration, and (c) expiration. 

Fig. 9. Principal component analysis of VB and BB (a) respiration, (b) inspiration and (c) expiration. 
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e  
f the breath signals is estimated using the ‘sampleEntropy’ func-

ion in the R software and is shown as a box plot in Fig. 8 . From

he figure, it can be seen that the mean value of sample entropy

f BB signals is higher than the VB signals. The higher value of

ample entropy for BB signals is due to the increased complexity

nd the presence of high intensity persistent multiple frequency

omponents, as evidenced by the phase portrait, PSD, and wavelet

nalysis. The sample entropy for inspiration and expiration in both

B and BB also exhibits a similar variation. 

.4. Principal component analysis 

The principal component analysis is a powerful tool for group-

ng datasets with similar characteristics. In the present work, the

ower spectral data is used for the feature extraction and prin-

ipal component analysis. Initially, the 26 power spectral features

re extracted from the data as detailed earlier. The 26 power spec-
ral features of each signal are used in R software to compute the

rincipal component analysis. The projection of the dataset in the

ain two principal components is shown in Fig. 9 (a). The first two

rincipal components cover about 78.9% of the total variance of

he original data set. Fig. 9 suggests the possibility of classifying

B and BB sound signals based on their spectral features. From

ig. 9 (b) and 9(c), the distinction between inspiration and expira-

ion breath signals of VB and BB, are also evident. The distinctive-

ess among the parameters derived from the analysis of VB and BB

ignals opens the possibility of application to a wider spectrum of

uscultation in pulmonology. 

. Conclusion 

Auscultation is one of the oldest methodologies of diagnosis

hat is in practice with the aid of stethoscope and other mod-

rn equipment. The modern lifestyle, together with environmen-
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tal pollution, leads to different types of pulmonary diseases af-

fecting the lungs. The World Health Organization considers five

respiratory-related diseases among the thirty most common causes

of death, which necessitate the development of novel, simple, and

cost-effective methods for auscultation. The work reported in the

paper elucidates the potential of nonlinear time series and fractal

analyses in the auscultation of lung-related diseases by investigat-

ing 37 vesicular and bronchial breath signals together with differ-

ent spectral analysis tools like PSD and wavelet. The spectral anal-

ysis reveals the distinction between VB and BB in terms of the

number of frequency components. When VB shows a nearly sin-

gle high intense frequency component, BB shows many frequency

components of high intensity. The wavelet scalogram of VB and

BB reveals the duration of persistence of the high intense fre-

quency component during inspiration and expiration, which ac-

counts for the turbulent flow of air through the respiratory tract.

The dynamics of air molecules in the airways during the respi-

ration is unveiled through the nonlinear time series analysis of

VB and BB signals. The difference in the degree of freedom of air

molecules due to the difference in the diameter of the airways in

VB and BB accounts for the difference in the complexity, which

is reflected through phase portrait, sample entropy, fractal dimen-

sion, and Hurst exponent. The maximal Lyapunov exponent for BB

higher than VB suggests that BB is more chaotic than VB. The prin-

cipal component analysis carried out by the feature extraction of

PSD data suggests the possibility and sensitivity of classifying the

VB and BB signals. The distinctiveness among the spectral param-

eters and the chaoticity parameters H, S, D, and λ derived from

the analysis of VB and BB signals opens the possibility of appli-

cation to a broader spectrum of auscultation in pulmonology. The

method can be employed as a promising, simple, and low-cost tool

for addressing the current issue of the pandemic COVID 19 for un-

derstanding the lung condition by analyzing the inspiration and

expiration breath signals. However, due to the unavailability of a

credible database, we could not investigate with the sound signal

of respiration of COVID 19 patients. 
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