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The generalized logistic equation is used to interpret the COVID-19 epidemic data in several countries: 

Austria, Switzerland, the Netherlands, Italy, Turkey and South Korea. The model coefficients are calcu- 

lated: the growth rate and the expected number of infected people, as well as the exponent indexes in 

the generalized logistic equation. It is shown that the dependence of the number of the infected people 

on time is well described on average by the logistic curve (within the framework of a simple or general- 

ized logistic equation) with a determination coefficient exceeding 0.8. At the same time, the dependence 

of the number of the infected people per day on time has a very uneven character and can be described 

very roughly by the logistic curve. To describe it, it is necessary to take into account the dependence of 

the model coefficients on time or on the total number of cases. Variations, for example, of the growth 

rate can reach 60%. The variability spectra of the coefficients have characteristic peaks at periods of sev- 

eral days, which corresponds to the observed serial intervals. The use of the stochastic logistic equation 

is proposed to estimate the number of probable peaks in the coronavirus incidence. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Already in this century, several global epidemics have broken

ut (bovine spongiform encephalopathy, avian influenza, severe

cute respiratory syndrome (SARS), etc.). The latest coronavirus

pidemic (CODIV-19) struck everyone with its scale and affected

iterally all countries forced to take emergency measures to pre-

ent the infection spread of (closure of state borders, quarantine,

elf-isolation, temporary work break of many enterprises and in-

titutions, transition to distance work and training). The number

f people infected in the world exceeds 4.89 million people (the

ata from end-May 2020), and the number of deaths is more than

20,0 0 0 people. General information about this viral infection can

e found on the Internet. The dynamics of the disease spread is

llustrated in Fig. 1 , built according to the World Health Organi-

ation (WHO) website ( https://www.who.int/emergencies/diseases/

ovel-coronavirus-2019/situation-reports ) on 05/20/2020. In this

gure, the growth in the number of coronavirus cases in the world

nd in several countries is indicated in a semi-logarithmic scale.

he dashed lines show exponential asymptotics corresponding to
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oubling the number of cases in a certain number of days. Aster-

sks indicate the days when countries introduced restrictive mea-

ures. As one can see, the nature of the epidemics spread in each

ountry follows almost the same scenario, first there is an expo-

ential growth (or close to exponential) of the number of infected

eople, and then this growth slows down (however, the numeri-

al values of the constants describing these curves are different for

ifferent countries). In some countries, the number of cases is no

onger increasing, so the coronavirus epidemic in these countries

s almost over. In other countries, the curves in these coordinates

re still almost straight lines, which means an exponential increase

n the number of cases, and the epidemic has not yet reached its

eak. In general, these curves are quite smooth, although some of

hem show bends associated with the action of certain quarantine

easures. 

Fig. 2 presents the dynamics of the infection by days, built on

he same data. In contrast to Fig. 1 , the curves in Fig. 2 are not

mooth, and sporadic outbreaks of the number of cases are notice-

ble in them, which is caused by many, often unpredictable rea-

ons. These data show that in the dynamics of the epidemic spread

here are different scales from several months (the total epidemic

uration), to several weeks (the incubation period), and even up

o several days (the serial interval and local causes). Some of the

cales are associated with certain virus properties, others – with

https://doi.org/10.1016/j.chaos.2020.110241
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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mailto:pelinovsky@gmail.com
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Fig. 1. The confirmed number of people infected with the coronavirus on 05/20/2020. 

Source: WHO data https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports . 

Fig. 2. The number of infected people per day, normalized to the maximum value for each country, according to the same data. 
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the action of the state and local authorities that introduced re-

strictive rules. The noted features of the dynamics of the COVID-19

virus spread can be reproduced in mathematical models. 

To explain the spread of epidemics and predict their conse-

quences, a number of mathematical models of different complexity

levels are used. Historically, the first model is the Verhulst logistic

equation [1] , representing a nonlinear first-order ordinary differen-

tial equation (ODE) with constant coefficients. It is also used as the

simplest model to describe the population growth and advertising

performance. Qualitatively, it explains the increase in the number

of disease cases over the time presented in Fig. 1: the exponential

increase in the number of infected people at the initial stage of the

epidemic development and the tendency towards a constant value

by the end of the epidemic. In the context of COVID-19, this model

is used in [ 2 , 3 ]. The COVID-19 data analysis given in [4] , showed

that an exponential increase in the number of cases at the initial

stage is found mainly in America and Australia, while in many Eu-

ropean countries it is a power law. In this case, one can use the

generalized logistic equation [ 5 , 6 ], and it was used in [ 3 , 7-9 ]. From

the mathematical point of view, the dynamics in the framework

of the logistic equation is trivial. More complex dynamics, includ-

ing chaotic, arise in the different logistic equation or when the de-

lay for the incubation period is accounted for [10-14] , and these

models are also used to interpret and forecast COVID-19 [15-17] .
n more complex models, people are divided into different groups:

S) The susceptible class: those individuals who are capable of con-

racting the disease and becoming infected, (I) The infected class:

hose individuals who are capable of transmitting the disease to

thers, and (R) The removed class: infected individuals who are

eceased, or have recovered and are either permanently immune

r isolated, so the mathematical model called SIR model and its

eneralizations, includes a higher-order ODE system. The dynamics

f such systems has not yet been sufficiently studied, and stochas-

ic oscillations are possible in it [18-26] . However, models of this

evel can be comparatively easily implemented, they have shown

heir effectiveness and are actively used to model the distribution

f COVID-19 [27-38] . 

There are also models that take into account, for example the

uper-spreading phenomenon of some individuals or quarantine

easures, including social distancing and isolation policies, border

ontrol, and a high number in the percentage of reported cases [ 39

his issue], [ 40 this issue], [ 41 this issue]. 

The statistical methods to forecast the epidemic development,

ased on Poisson statistics, are also worth mentioning [42-45] . 

The main difficulty in applying mathematical models is asso-

iated with the uncertainty of the choice of coefficients in the

quations. The more complex is the model, the larger is the num-

er of its coefficients. The experience of using models to interpret

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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Fig. 3. The relationship between the number of cases per day ( K ) and the total number of cases ( N ). The markers show the data, the solid line is the regression according 

to Eq. (8) , and the dashed lines give non-simultaneous 95% prediction bounds for response values: a – Austria: N ∞ = 14700 , r = 0.195, R 2 = 0.81; b – Switzerland: N ∞ = 

28400 , r = 0.163, R 2 = 0.81; c – The Netherlands: N ∞ = 42,580, r = 0.114, R 2 = 0.89; d – Italy: N ∞ = 216,600, r = 0.099, R 2 = 0.82; e – Turkey: N ∞ = 133,700, r = 0.144, 

R 2 = 0.94; f – South Korea: N ∞ = 10300 , r = 0.158, R 2 = 0.55. 
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old” epidemics may not always help, since the intensity of the

irus impact on living organisms changes, many epidemics were

ocal, and, accordingly, measures to prevent the epidemic spread

ere different. The pattern of the curves shown in Figs. 1 and 2 ,

hows their strong differences for different countries, which is as-

ociated with different population density, differences in their cus-

oms, traditions and administrative preventive measures. Therefore,

ny forecasts at the initial stage of the epidemic development re-

arding its final stage are very rough and unreliable. As the epi-

emic develops, more and more constants in the equations can

e determined from medical databases, but the previous constants

re also corrected. Therefore, in essence, for prognostic purposes,

quations with variable coefficients are solved, which mathemat-

cal properties (existence, convergence and stability) are not de-

ned. As a result, different models with permanently “corrected”

oefficients can lead to close forecast results for a short time. At

he same time, for long-term forecasts, it is necessary to under-

tand the possible temporal variability of the model coefficients,

nd their influence on the character of the obtained solutions. 
In this study, we will try to assess the character of the scatter

f the logistic model coefficients and its generalizations on the ba-

is of the currently available COVID-19 data. The data of the epi-

emic development were used for the following countries: Aus-

ria, Switzerland, the Netherlands, Italy, Turkey and South Korea.

ection 2 presents the classical logistic equation and shows the

alculations of the coefficient average values within this equation

or the above mentioned countries. It has been shown that this

odel with a high determination coefficient is suitable to describe

he number of patients with coronavirus in most countries, ex-

ept for South Korea. To take into account the data randomness

n the number of cases per day, it is proposed to switch to a

tochastic logistic equation with external force. The spectral and

tatistical properties of random parameters of this equation are

nvestigated. Section 3 describes the same procedure within the

ramework of the generalized logistic equation. It is shown that,

n average, this model is suitable for all the countries listed above

ith a high determination coefficient. Section 4 summarizes the

esults. 



4 E. Pelinovsky, A. Kurkin and O. Kurkina et al. / Chaos, Solitons and Fractals 140 (2020) 110241 

Fig. 4. The normalized growth rate coefficient r norm = ( r − 〈 r〉 ) / 〈 r〉 as a function of the total number of the infected people ( N ) – the upper panel and of time ( t ) – the lower 

panel: left – for Austria, right – for Switzerland. 

Fig. 5. The spectrum and the distribution histogram for r ( t ): top – for Austria, bottom – for Switzerland. Distribution parameters for Austria: standard deviation 0.6, skewness 

0.7, kurtosis −0.4; for Switzerland: standard deviation 0.7, skewness 1.2, kurtosis −3.2. 
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2. Logistic equation 

Here we will give briefly the main information on the logistic

equation theory written in the standard ODE form 

dN 

dt 
= rN 

(
1 − N 

N 

)
. (1)
∞ 
here N ( t ) is the total number of people affected by the epidemic,

 ∞ 

is the maximum number of the infected people during the

hole epidemic, and r is the growth rate of the epidemic. The

olution of this equation with constant coefficients can be easily

ound in the form 

(t) = 

N 0 N ∞ 

exp (rt) 

N ∞ 

+ N 0 [ exp (rt) − 1 ] 
, (2)
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Fig. 6. “External force” f as a function of the total number of cases N on the upper panel and as a function of the time on the lower panel: the left column is for Austria, 

the right column is for Switzerland. 

Fig. 7. The spectrum of the “external force” (left) and its probability distribution (right) for Austria. The Gaussian approximation is shown by the red line. 
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here N 0 is the initial number of the infected people and t is the

ime from the beginning of the epidemic. At the initial stage of the

pidemic, it can be represented by an exponential function 

(t) = N 0 exp (rt) , (3) 

nd, if this curve approximates the increase in the number of cases

t the initial stage well, we will be able to determine the growth

ate r . At the same stage, the logistic model can be rejected if the

ata do not fit in with the exponential dependence. At the same

ime, the most important characteristic for prediction – the max-

mum possible number of the infected people N ∞ 

– can be esti-

ated only at the stage of the noticeable difference between the

ata and the exponential curve, when the number of sick people

s already not small. 

To prepare medical institutions to function in an optimal way

uring an epidemic, it is important to know the number of in-

ected people per day, which is easily obtained when Eq. (2) is
ifferentiated 

dN 

dt 
= 

N 0 N ∞ 

( N ∞ 

− N 0 ) r exp (rt) 

( N ∞ 

+ N 0 [ exp (rt) − 1 ] ) 
2 

, (4) 

nd this curve is nonmonotonic with the maximum given by 

ax 

(
dN 

dt 

)
= 

r N ∞ 

4 

, (5) 

hich corresponds to the time (the epidemic peak) 

 = 

1 

r 
ln 

N ∞ 

− N 0 

N 0 

. (6) 

As it can be seen, these characteristics Eqs. (5) and ( (6) ) can

nly be estimated when the data are no longer described by an

xponential curve and both model parameters r and N ∞ 

are found

r known. 

Let us note that the time dependences (2) and (4) are smooth

unctions, while from Fig. 2 it follows that dependence (4) must be

on-smooth and irregular. The study of the resulting irregularity is

arried out below. 
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Fig. 8. The relationship between the number of cases per day (K) and the total number of cases (N) in the framework of the generalized logistic model: approximation from 

Eq. (15) is given by the pink line, the dashed line shows non-simultaneous 95% prediction bounds for response values for the generalized model. The green line shows a 

parabolic curve in the framework of a simple logistic model ( Eq. (8) ): a – Austria: N ∞ = 18500 , r = 0.151, α = 1 . 1 , β = 2 . 56 , R 2 = 0.88; b – Switzerland: N ∞ = 32100 , r = 1.093, 

α = 0 . 8 , β = 1 . 5 , R 2 = 0.86; c – the Netherlands: N ∞ = 41,950, r = 4.702, α = 0.6, β = 0.7, R 2 = 0.94; d – Italy: N ∞ = 499,300, r = 0.994, α = 0 . 8 , β = 5.1, R 2 = 0.96; e –

Turkey: N ∞ = 146,500, r = 3.573, α = 0.7, β = 1.07, R 2 = 0.975; f – Suth Korea: N ∞ = 16200 , r = 0.143, α = 1 . 2 , β = 5 . 4 , R 2 = 0.91. 
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Since medical statistics operates with the cases per day, it is in

fact necessary to solve the difference logistic equation 

K n = N n +1 − N n = r N n 

(
1 − N n 

N ∞ 

)
. (7)

After removing the index n, we obtain a simple relationship be-

tween the number of cases per day (K) and the total number of

cases (N) 

K = rN 

(
1 − N 

N ∞ 

)
, (8)

which in these variables is a parabola. 

As an example, we will take the data on the coron-

avirus incidence in several countries where the epidemic is

close to its end (at least its active phase is over). These

countries are Austria (number of points 58), Switzerland (58

points), the Netherlands (64 points), Italy (72 points), Turkey

(49 points) and South Korea (number of points 94). We will
perate with the data on the 04/23/2020); they are taken

rom the WHO data ( https://www.who.int/emergencies/diseases/

ovel-coronavirus-2019/situation-reports ). Fig. 3 shows the rela-

ionship between the number of cases per day ( K ) and the to-

al number of cases ( N ) for each country. Parabolic approxima-

ions (the solid lines) arising from (8) are also presented here.

on-simultaneous 95% prediction bounds for response values (the

ashed lines) are shown as well. 

Evidently, the parabolic approximation of the available data is

ood enough for almost all of the listed countries ( R 2 > 0.8), but

bviously has low accuracy for South Korea ( R 2 ~ 0.55). Here R 2 

s a standard coefficient of determination found by MATLAB tools.

herefore, later in this section we will not use the data on South

orea, for which the logistic model is not suitable (this case is an-

lyzed in the next section). Despite a good approximation of the

ata for most countries of the logistic curve, the scatter of points

ear the parabolic curve is still not small; it indicates that it is

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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Fig. 9. The normalized growth rate coefficient r norm = ( r − 〈 r〉 ) / 〈 r〉 as a function of the total cases (left) and of the time (right) in the framework of the generalized logistic 

model for Austria, Switzerland and South Korea (top to bottom). 
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ecessary to consider the coefficients of the parabolic curve as the

ime functions, which, in essence, is done in the forecasts when

hese coefficients are refined when new data appear. Let us, for ex-

mple, change only the coefficient r . Within the framework of the

ogistic model, this coefficient variability can be determined from

he available data by using the following formula, arising from

8) : 

 = 

K 

N 

(
1 − N 

N ∞ 

) . (9) 

Actually, there are two ways of analyzing this coefficient; it can

e either a function of the number of cases ( N ) or time ( t ). In

he former case, the logistic equation remains to be the ODE with

onstant coefficients, but it has a rather complex nonlinearity. In

he latter case we come to the ODE with variable coefficients. We

tudy both possibilities of changing the growth rate coefficient r .

ig. 4 , top, shows the variability of the function r ( N ) for Austria

nd Switzerland. For convenience, we switched to a dimensionless

ariable r norm 

= ( r − 〈 r〉 ) / 〈 r〉 , for its variability to be more obvi-

us. Herewith we didn’t take into account the first few days, when

othing is clear with the epidemic, and the last few days, when

he epidemic was essentially over, since these points correspond

o the small values of the denominator in Eq. (9) . Reducing the

umber of points, of course, affects somewhat the average value of
his coefficient (for Austria 0.225 instead of 0.195 as in Fig. 3 , 0.2

nstead of 0.16 for Switzerland), but more important is the demon-

tration of variability of the coefficient r . Functional dependence

 ( N ) can be rewritten in more familiar terms of temporal variability

 ( t ), presented in Fig. 4 , bottom, where it is demonstrated that this

oefficient changes almost every day. As an example, let us give

he amplitude spectrum of the coefficient variation r , relative to

he average, for Austria and Switzerland ( Fig. 5 , left). Peaks corre-

ponding to intra-weekly variability are clearly visible on the spec-

rogram due to the fluctuation properties of the epidemic spread,

hich are different inside condominiums with different apartment

umbers or on farms far from each other. In fact, changes in model

oefficients can be considered to be random. The probability distri-

ution of the same coefficient for Austria and Switzerland is char-

cterized by the probability density ( Fig. 5 , right), which is well

escribed by a normal curve. The standard deviation is not small

60–70%), that fact speaks once again about the necessity to take

nto account the growth rate variability in the epidemic dynamics. 

Similar conclusions can be drawn for other countries, but we

ill not consider them in detail. From the analysis given above it

s clear that, on average, the epidemic development in a number

f countries is well described by the logistic equation with con-

tant coefficients. However, to give a more detailed understanding

f variations in the number of cases per day, it is reasonable to
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Fig. 10. Spectrum and distribution histogram for r ( t ) in the framework of the generalized logistic model for Austria, Switzerland and South Korea (top to bottom). Distribution 

parameters for Austria: standard deviation 0.6, skewness 0.4, kurtosis –0.17; for Switzerland: standard deviation 0.6, skewness 0.03, kurtosis 0.4; and for South Korea: 

standard deviation 0.9, skewness 0.6, kurtosis –0.07. 
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consider a stochastic logistic equation 

dN 

dt 
= r(t) N [ 1 − p(t) N ] , (10)

or its difference analogue, in the general case with two random

functions. From the point of view of the available data, the coeffi-

cients can be also considered to be random functions of the case

number. The properties of a stochastic equation ( Eq. (10) ) have

been investigated yet. 

In fact, another way to take into account the initial data irreg-

ularity is possible, namely, the introduction of an external random

force in Eq. (1) , as is often done in problems of mechanics: 

dN 

dt 
= rN 

(
1 − N 

N ∞ 

)
+ f (t) , (11)

considering all the coefficients constant. The external force is easily

found from the available data using the equation following from

Eq. (11) : 

f = K − rN 

(
1 − N 

N 

)
. (12)
∞ 
Fig. 6 shows the dependence of the “external force” f calculated

y formula (12) on the total number of cases N (the upper panel)

nd on the time t (the lower panel) for Austria (left) and Switzer-

and (right). The magnitude of variations in the external force f is

ather small (less than 10% of the total number of cases), and in

his sense it does not significantly affect the curve behavior N ( t ),

ut it becomes important to analyze the variability of K ( t ) . The

robability characteristics of the values of f are shown in Fig. 7 for

ustria. The distribution density is well approximated by the Gaus-

ian curve with an average value of 10 and a standard deviation of

32. The differences from the Gaussian curve are characterized by

he skewness of 1.1 and kurtosis equal to 2. Similar conclusions can

e made for the epidemic data in other countries. 

Thus, in principle, stochastic generalizations of the logistic

quation can be considered 

dN 

dt 
= r(t ) N [ 1 − p(t) N ] + f (t ) , (13)

r its difference analogue with an external random force, depend-

ng on the number of cases or on time. It will explain the irregular-
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Fig. 11. «External force» f as a function of the number of cases N (left) and f ( t ) (right) in the framework of the generalized logistic model for Austria, Switzerland and South 

Korea (top to bottom). 
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ties in the number of cases per day, and the appearance of several

eaks of incidence and their duration, which are not predicted by

he deterministic logistic equation. 

. Generalized logistic model 

We will now consider a more general model of a logistic equa-

ion containing four constants [ 5 , 6 ] 

dN 

dt 
= r N 

α
(

1 − N 

N ∞ 

)β

. (14) 

hen α = β = 1 , Eq. (14) coincides with Eq. (1) . Again, our goal

s not to solve the equation, but to investigate the relationship be-

ween the number of cases per day ( K ) and the total number of

he infected people ( N ), which is expressed by the algebraic curve

esulting from (14) : 

 = r N 

α
(

1 − N 

N ∞ 

)β

, (15) 

Let us consider this model applicability to the description of

he development of the COVID-19 epidemic in the same countries

s above: Austria, Switzerland, the Netherlands, Italy, Turkey and
outh Korea. Fig. 8 presents the data from medical statistics and

pproximations from Eq. (15) . 

It follows from Fig. 8 that the approximation accuracy has in-

reased for all countries ( R 2 = 0.86 – 0.97), including South Ko-

ea ( R 2 = 0.91), for which a simple logistic model was not suitable

t all. In fact, it is the consequence of the general statistics rule

hat an increase in the number of parameters of the approximation

urve leads to an increase in the correlation coefficient, so there is

othing surprising here. More interesting are the magnitude of the

xponent indexes in Eqs. (14) , (15) and their differences from the

nity in a simple logistic model. The power α varies from 0.6 to

.2, and it is not very far from the unity. Nevertheless, this leads

o a qualitative difference in the behavior of the growth curve of

he case number at the initial epidemic stage. So, Eq. (14) with a

mall number of cases is easily solved 

 = 

⎧ ⎨ 

⎩ 

[ (1 − α) rt ] 
1 

1 −α , 0 < α < 1 , 

N 0 exp (rt) , α = 1 , 
1 

[ (α−1) r( t 0 −t) ] 
1 

α−1 

, α > 1 

(16) 

In contrast to the simple logistic model, where the increase in

he case number occurs according to the exponential law, in the



10 E. Pelinovsky, A. Kurkin and O. Kurkina et al. / Chaos, Solitons and Fractals 140 (2020) 110241 

Fig. 12. Amplitude spectrum of f ( t ) – the left column, histogram and its Gaussian approximation (the red line) – the right column, for Austria, Switzerland and South Korea 

(top to bottom). Distribution parameters of f ( t ) for Austria: standard deviation 125, skewness 0.6, kurtosis 1.5; Switzerland: standard deviation 220, skewness 0.9, kurtosis 

2.6; South Korea: standard deviation 61, skewness 0.2, kurtosis 2.5. 
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generalized logistic model with α � = 1 the growth occurs according

to the power law. As it is noted in the Introduction, a power law of

gradual increase in the number of cases during the COVID-19 epi-

demic is typical for many countries [4] , so the generalized logistic

curve is in good agreement with the medical statistics data. 

The range of values of β is rather wide, from 0.7 to 5.4. The

values of β > 1, lead to an asymmetric deformation of function

K ( N ) towards small values, and means that the epidemic peak is

relatively fast, while the end of the epidemic is delayed. 

Let us now evaluate the variability of the coefficients of the

generalized logistic model from the known data for Austria and

Switzerland (to see what differences the generalized logistic model

brings) and South Korea, for which a simple logistic model does

not work properly. The growth rate variability is given by the for-

mula 

r = 

K 

N 

α
(
1 − N 

N ∞ 

)β
, (17)

generalizing Eq. (9) . Fig. 9 shows the dependence r norm 

=
( r − 〈 r〉 ) / 〈 r〉 on the total number of cases ( N ) – left, and on the
ime ( t ) – right, in the framework of the generalized logistic model

14) for Austria, Switzerland and South Korea (top to bottom).

ig. 10 shows the spectrum of variations and the distribution his-

ogram. For Austria and Switzerland, the characteristics of variabil-

ty have not changed much compared to those considered above,

hich is to be expected, since both models give similar results

or them. But now we can evaluate the growth rate variability for

outh Korea, for which a simple logistic model does not work.

n general, the characteristics of variability are close for different

ountries, in the sense that the spectra have peaks at close fre-

uencies and the histograms are qualitatively similar. 

Similarly, we can relate the data discrepancy with the theory

sing the “external force” introduced analogously to Eq. (12) : 

f = K − r N 

α
(

1 − N 

N ∞ 

)β

. (18)

Fig. 11 shows the calculated dependences of external force on

he number of patients and on the time. Its spectral and prob-

bility characteristics are illustrated by Fig. 12 . The correspond-

ng graphs are similar to those within a simple logistic curve. We
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Fig. 13. The total number of cases in time: blue markers represent the initial data, the green dashed line – solution (2) of the simple logistic model, the pink dashed line 

– the numerical solution of Eq. (14) of the generalized logistic model for Austria ( a ), Switzerland ( b ), the Netherlands ( c ), Italy ( d ), Turkey ( e ) and South Korea ( f ) (top to 

bottom). 
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ould like to emphasize once again that a larger number of coun-

ries are properly described by this model, in particular South Ko-

ea, demonstrating the qualitatively identical nature of the variabil-

ty of the logistic model coefficients. 

Thus, the generalized logistic equation can be considered to be

 stochastic one with time-dependent coefficients 

dN 

dt 
= r(t ) N 

α[ 1 − p(t) N ] 
β + f (t ) , (19)

r with non-linear functions depending on the number of cases N .

. Discussion and conclusions 

Summarizing the results, we would like to emphasize, that with

ll its simplicity and crudity, the logistic model describes prop-

rly the growth in the number of COVID-19 cases with time. This

s illustrated by Fig. 13 , which shows the actual data and logistic

urves. It is evident that for many countries the use of the simple
ogistic equation leads to a very good agreement with the available

ata. The use of a generalized logistic curve improves the agree-

ent significantly, including the countries for which the logistic

odel is too crude (for example, South Korea). It is worth noting

hat the prognostic number of the total number of cases N ∞ 

in

he generalized logistic model is slightly higher than in the simple

ogistic model, and the approach to the limiting constant value is

elayed in time. 

Fig. 14 illustrates the capabilities of the logistic model for de-

cribing the number of sick people per day. On average, the theo-

etical model describes the real data rather well, but the scatter of

oints is still not small, and sometimes deviations can reach 50%

nd higher, although on average they are less than 50%. These dif-

erences are especially evident near the epidemic peak when it is

esirable to have a more accurate prognosis for medical facilities.

he extent to which this scatter is better described by other mod-

ls (such as SIR models) will be clear in the near future when the



12 E. Pelinovsky, A. Kurkin and O. Kurkina et al. / Chaos, Solitons and Fractals 140 (2020) 110241 

Fig. 14. The number of cases per day in time: blue markers represent the initial data, the green line corresponds to expression (4) in the framework of the logistic equation, 

Eq. (1) , of the simple logistic model, the pink line – numerical solution of Eq. (14) of the generalized logistic model for Austria ( a ), Switzerland ( b ), the Netherlands ( c ), Italy 

( d ), Turkey ( e ) and South Korea ( f ). 
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results of relevant studies appear. From the mathematical point of

view, the resulting difference in the use of the logistic model to

describe two characteristics: the total number of cases ( N ) and the

number of cases per day ( K ) is obvious: the curve N ( t ) is the in-

tegral with respect to K ( t ), and, therefore, it is smoother and more

determined. To describe the dependence K ( t ), at least on a qualita-

tive level, it is better to use stochastic equations of a logistic model

of the Eq. (19) type, where external random forces or random co-

efficients are introduced. They will help to understand the degree

of the data spread, and, what is most important, the number of

possible large outliers during the epidemic. Such work remains to

be done. 

The authors understand that for the real forecast of the epi-

demic development, it is necessary to have multifactor models,

which include dividing the population into different groups (chil-

dren, the elderly, etc.), living conditions (traffic flows between ter-

ritories, the population density etc.). Such models should include

high-order ODEs and PDEs, taking into account lagging arguments
nd integral terms. Such complex models are being developed

ow, yet we will not consider them here. Nevertheless, the anal-

sis within the framework of simple low-parameter models is im-

ortant because it allows us to describe the process qualitatively,

o understand the role of certain factors, and to identify certain

henomena (stochastization, fractality, nonlinearity) that are also

nteresting for other branches of physics and technology. In this

ense, the results obtained above demonstrate the capabilities of a

ell-developed logistic model for describing an epidemic of such a

rand scale as COVID-19. 

In conclusion, we would like to say again that real variability

f virus test daily data is related with non-control conditions of

dministrative actions (for instance, variable number of examined

eople each day) and social behaviour of people (migration, unpro-

ected contacts between them, etc.). This is an interesting problem

o investigate contribution of each factor which is out of simple

athematical model. Best approximation for such non-control fac-

ors is an approximation by random functions. This randomness is
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ot related to the properties of physical models (their stochastic-

ty). Of course, this variability can not explain features of mech-

nisms of epidemic dynamics, and the main advantage of given

nalysis is the determination of possible levels of non-control fac-

ors when mathematical models are used for analysis of epidemic

pread. 
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[33] Lopez, Victoria, and Milena Čuki ́c. The comparison of trends in Spain and the

Nederland: a Dynamical compartment model of the transmission of Coron-
avirus. arXiv preprint arXiv:2004.09874 (2020). 

34] Fodor, Zoltán, Sándor D. Katz, and Tamás G. Kovacs. Why differential equa-

tion based models fail to describe the dynamics of epidemics?. arXiv preprint
arXiv:2004.07208 (2020). 

[35] Crokidakis, Nuno. Data analysis and modeling of the evolution of COVID-19 in
Brazil. arXiv preprint arXiv:2003.12150 (2020). 

36] Fanelli Duccio, Piazza Francesco. Analysis and forecast of COVID-19 spread-
ing in China, Italy and France. Chaos Solitons Fractals 2020;134:109761. doi: 10.

1016/j.chaos.2020.109761 . 
[37] Santos, Marcilio Ferreira dos, and Cesar Castilho. Deterministic Critical Com-

munity Size For The SIR System and Viral Strain Selection. arXiv preprint

arXiv:2004.14920 (2020). 
38] Fredj, Haifa Ben, and Farouk Chérif. Novel Corona virus Disease infection in

Tunisia: mathematical model and the impact of the quarantine strategy. arXiv
preprint arXiv:2004.10321 (2020). 

39] Ndaïrou Faïçal , Area Iván , Nieto Juan J , Torres Delfim FM . Mathematical mod-
eling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos

Solitons Fractals 2020;135:109846 this issuedoi: j.chaos.2020.109846 . 

40] Mandal Manotosh, Jana Soovoojeet, KumarNandi Swapan, Khatua Anupam,
Adak Sayani, Kard TK. A model based study on the dynamics of COVID-19:

prediction and control. Chaos Solitons Fractals 2020:109889 in press. doi: 10.
1016/j.chaos.2020.109889 . 

[41] Reis, Ruy Freitas, et al. Characterization of the COVID-19 pandemic and the
impact of uncertainties, mitigation strategies, and underreporting of cases

in South Korea, Italy, and Brazil Chaos Solitons Fractals this issue in press:

109888. doi: 10.1016/j.chaos.2020.109888 . 
42] Zhang Xiaolei, Ma Renjun, Wang Lin. Predicting turning point, duration and

attack rate of COVID-19 outbreaks in major Western countries. Chaos Solitons
Fractals 2020;135:109829. doi: 10.1016/j.chaos.2020.109829 . 

43] Matabuena, Marcos, et al. COVID-19: estimating spread in Spain solving an
inverse problem with a probabilistic model. arXiv preprint arXiv:2004.13695

(2020). 

44] Heinsalu Els, Maeso David Navidad, Patriarca Marco. The dynamics of natu-
ral selection in dispersal-structured populations. Physica A: Stat Mech Appl

2020;547(1):124427. doi: 10.1016/j.physa.2020.124427 . 
45] Li Lixiang, et al. Propagation analysis and prediction of the COVID-19. Infec-

tious Dis Model 2020;5:282–92. doi: 10.1016/j.idm.2020.03.002 . 

http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0001
https://doi.org/10.1016/j.meegid.2020.104306
http://arXiv:2003.13540
https://doi.org/10.1101/2020.03.30.20047274
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0006
https://doi.org/10.1016/j.scitotenv.2020.138834
http://arXiv:2003.05681
http://arXiv:2003.09477
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0011
https://doi.org/10.1007/978-3-319-72317-4
https://doi.org/10.1137/120904226
https://doi.org/10.3390/sym11121446
https://doi.org/10.3389/fphy.2020.00127
http://arXiv:2004.10118
http://arXiv:2003.13571
https://doi.org/10.1137/10081856X
https://doi.org/10.1137/15M1043315
https://doi.org/10.18500/0869-6632-2019-27-2-5-20
https://doi.org/10.3934/dcdsb.2020124
https://doi.org/10.1137/19M1246973
https://doi.org/10.3934/dcdsb.2020017
http://arXiv:2004.15018
https://doi.org/10.1016/j.idm.2019.12.003
https://doi.org/10.1016/j.aml.2019.106203
http://arXiv:2004.06522
https://doi.org/10.1038/s41592-020-0822-z
http://arXiv:2003.09861
http://arXiv:2004.09314
https://doi.org/10.1126/science.abb4557
https://doi.org/10.1016/j.physd.2020.132540
http://arXiv:2004.09874
http://arXiv:2004.07208
http://arXiv:2003.12150
https://doi.org/10.1016/j.chaos.2020.109761
http://arXiv:2004.14920
http://arXiv:2004.10321
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0039
http://refhub.elsevier.com/S0960-0779(20)30637-8/sbref0039
https://doi.org/10.1016/j.chaos.2020.109889
http://dx.doi.org/10.1016/j.chaos.2020.109888
https://doi.org/10.1016/j.chaos.2020.109829
http://arXiv:2004.13695
https://doi.org/10.1016/j.physa.2020.124427
https://doi.org/10.1016/j.idm.2020.03.002

